
Framework for Human Computer Interaction for

Learning Dialogue Strategies using Controlled

Natural Language in Information Systems

A thesis submitted in partial fulfilment of the

requirement for the degree of

Doctor of Philosophy (Ph.D)

in

Computer Science

by

Manzoor Ahmad

under the supervision of

Dr. S.M.K. Quadri

P.G. Department of Computer Sciences

Faculty of Applied Sciences & Technology

University of Kashmir

July, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Knowledge Repository Open Network

https://core.ac.uk/display/159343900?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:manzoor@kashmiruniversity.ac.in
http://csd.uok.edu.in/
http://csd.uok.edu.in/
http://www.kashmiruniversity.net


Declaration

This is to certify that the thesis entitled “Framework for Human Com-

puter Interaction for learning dialogue strategies using controlled nat-

ural language in information systems”, submitted by Mr. Manzoor

Ahmad in the Department of Computer Sciences, University of Kashmir, Sri-

nagar for the award of the degree of Doctor of Philosophy in Computer

Science, is a record of an original research work carried out by him un-

der my supervision and guidance without the prohibited assistance of third

parties and without making use of aids other than those specified; notions

taken over directly or indirectly from other sources have been identified as

such. The thesis has fulfilled all the requirements as per the regulations of

the University and in my opinion has reached the standards required for the

submission. The results embodied in this thesis have not been submitted

to any other University or Institute for the award of any degree or diploma

Supervisor and Head

(Dr. S.M.K. Quadri)

Department of Computer Sciences

University of Kashmir

Dated: 13-July-2012



To my father and mother,

for their continuous love, encouragement,care and support.



Acknowledgements

First of all, I would like to sincerely thank almighty ”ALLAH” for all his

grants that he bestowed on me,given me a chance and courage to complete

this Ph.D. Thesis.

I would like to thank to my PhD Supervisor, Dr.S.M.K.Quadri who

has been an incredible help throughout my research period, encouraging,

lively, enthusiastic, and energetic, would always keep me focussed with my

research by his timely lectures on research methodology. Dr Quadri has

been supportive and has given me the freedom to think more independently

about our experiments and results.He has also provided insightful discus-

sions about the research. I am also very grateful to Late Dr. Mehraj-u-Din

Dar for his scientific advice, knowledge and many insightful discussions and

suggestions. He was my primary source of inspiration and was instrumental

in my completion of this thesis.

I am also grateful for the feedback I received from other colleagues of

the University of Kashmir in particular Dr Javed Pervez and Mr. Sajad M.

Khan of the P.G. Department of Computer Science. I thank all the people

who have been part of my group particularly Er. Muheet Ahmad Butt and

Er. Majid Zaman, Mohd Rafi Khan who would exchange their information

regarding conferences and journals and give suggestions during our research

publications and thesis preparation.

A good support system is important to surviving and staying sane in

Post Graduate Department. I was lucky to have a strong supportive team,

I thank the members of staff from P.G. Department of Computer Science

and the Academic section for their help with administrative issues. Among

many from whose help I benefited are Mr Mohd Shafi Mir, Mohd Younis

wani, Mohd Ishaq khan and others.,I would like to thank those who shared

their knowledge with me and enabled me to complete the work described



in this thesis. I would like to express my deepest gratitude to Prof. Aarne

Rante, University of Chalmers, for introducing me to the fascinating world

of Natural Language Processing, Prof Chandershaker (BHU) for introduc-

ing me to different problems of NLP, the authors of papers and books cited

in this thesis, to the University of Kashmir for making available an excellent

environment for research, to my fellow-colleagues and other research schol-

ars for our enriching discussions. I am also grateful to all the people who

made my Ph.D. studies a pleasant experience and for being very supportive

in many different ways.

Last but not least, I’d like to express my deepest gratitude to my fa-

ther, mother and my wife, Gousia zahoor,for her patience and tolerance

over the last four years. Gousia, I could not have been able to finish this

work without your support. Thank you for being with me and for your

appreciated sacrifices.

Manzoor Ahmad



Abstract

Spoken Language systems are going to have a tremendous impact in all

the real world applications, be it healthcare enquiry, public transportation

system or airline booking system maintaining the language ethnicity for

interaction among users across the globe. These system have the capa-

bility of interacting with the user in different languages that the system

supports. Normally when a person interacts with another person there are

many non-verbal clues which guide the dialogue and all the utterances have

a contextual relationship, which manage the dialogue as its mixed by the

two speakers. Human Computer Interaction has a wide impact on the de-

sign of the applications and has become one of the emerging interest area of

the researchers. All of us are witness to an explosive electronic revolution

where lots of gadgets and gizmo’s have surrounded us, advanced not only

in power, design, applications but the ease of access or what we call user

friendly interfaces are designed that we can easily use and control all the

functionality of the devices. Since speech is one of the most intuitive form

of interaction that humans use. It provides potential benefits such as hand-

free access to machines, ergonomics and greater efficiency of interaction.

Yet, speech-based interfaces design has been an expert job for a long time.

Lot of research has been done in building real spoken Dialogue Systems

which can interact with humans using voice interactions and help in per-

forming various tasks as are done by humans. Last two decades have seen

utmost advanced research in the automatic speech recognition, dialogue

management, text to speech synthesis and Natural Language Processing

for various applications which have shown positive results. This disserta-

tion proposes to apply machine learning (ML) techniques to the problem

of optimizing the dialogue management strategy selection in the Spoken

Dialogue system prototype design. Although automatic speech recognition



and system initiated dialogues where the system expects an answer in the

form of ‘yes’ or ‘no’ have already been applied to Spoken Dialogue Sys-

tems(SDS), no real attempt to use those techniques in order to design a

new system from scratch has been made. In this dissertation, we propose

some novel ideas in order to achieve the goal of easing the design of Spoken

Dialogue Systems and allow novices to have access to voice technologies.

A framework for simulating and evaluating dialogues and learning optimal

dialogue strategies in a controlled Natural Language is proposed. The sim-

ulation process is based on a probabilistic description of a dialogue and

on the stochastic modelling of both artificial NLP modules composing a

SDS and the user. This probabilistic model is based on a set of parameters

that can be tuned from the prior knowledge from the discourse or learned

from data. The evaluation is part of the simulation process and is based

on objective measures provided by each module. Finally, the simulation

environment is connected to a learning agent using the supplied evaluation

metrics as an objective function in order to generate an optimal behaviour

for the SDS.
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GLOSSARY

ASR Automatic Speech Recognition ; can

be defined as the independent, com-

puter driven transcription of spoken

language into readable text in real

time

DT Discriminative training ; is based on

comparison the likelihood scores esti-

mated for single speech units(phones,

words).

GM Generative model ; are a class of mod-

els for randomly generating observ-

able data, typically given some hid-

den parameters. It specifies a joint

probability distribution over observa-

tion and label sequences

HMM Hidden Markov Model; is a statisti-

cal tool for modelling a wide range of

time series data, a model in which the

system being modeled is assumed to

be a Markov process with unobserved

(hidden) states

MMI Maximum Mutual Information ; con-

siders HMMs of all the classes simul-

taneously during training. Parame-

ters of the correct model are updated

to enhance it’s contribution to the ob-

servations, while parameters of the al-

ternative models are updated to re-

duce their contributions. This pro-

cedure belongs to the “discriminative

training” category

PP Perplexity; is often used for measur-

ing the usefulness of a language model

and is a probability distribution over

sentence, phrases, sequence of words,

etc .

SDS Spoken Dialogue System; a software

agent that interacts with humans by

accepting spoken language as input

Stationary Policies Policies which do not de-

pend on the stages

Turn A period in which one of the partici-

pants in a dialogue has a chance to

say something to the other partici-

pants

User Simulator A simulation of dialogue sys-

tem users, which generates a dialogue

act given a dialogue history.

WAcc Word Accuracy; used to report the

performance of a speech recognition

system

WAcc = 1−WER

=
N − S −D − I

N

=
H − I

N
where

H is N − (S +D), the number of cor-

rectly recognised words

WER Word Error Rate; A common metric

of the performance of a speech recog-

nition or machine translation system.

WER =
S + D + I

N
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reference (N = S + D + C)

Word-lattice A structure for representing mul-

tiple speech-recognition hypotheses.
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1. INTRODUCTION

1.1 Introduction

Spoken language is the most intuitive form of communication between humans. Com-

puter can be added knowledge and made to act intelligently but they lack this property

to communicate in natural spoken language. If the computers are made to interact with

the humans in a natural way using spoken language, it would greatly simply their us-

age which otherwise have obstructed many humans in their usage. The study of these

systems, known as spoken dialogue systems, is an important area of engineering and

provides insight into the understanding of human learning, linguistics and artificial in-

telligence. Early research on these systems was done about text interfaces rather than

speech which produced remarkable results. Reasonably convincing examples of text-

based dialogue systems were soon built using relatively simple techniques. The ELIZA

program was one example, which attempted to impersonate a psychiatrist (Weizen-

baum, 1966). The program reordered words in an input sentence using simple pattern-

matching rules. A sentence like ‘I am feeling sad.’ would be converted into ‘Why are

you feeling sad‘ without the program truly analyzing the meaning of the original input.

This simple scheme was so effective that when Weizenbaum gave it to his secretary,

she thought the machine was a real therapist and spent hours revealing her personal

problems to the program (Wallace, 1995; Weizenbaum, 1976). She was then horrified

to find out that all dialogues with the program had been recorded and that her boss

had access to all the transcripts. As research continued it became apparent that these

simple schemes were difficult to extend to more meaningful tasks. The state-of-the-art

is so far away from building a general purpose dialogue system that Marvin Minsky,

known by some as the father of artificial intelligence, even suggested that research on

this topic would be ‘obnoxious and stupid’ (Sundman, 2003). On the other hand, dia-

logue systems where the topic of conversation is limited have been shown to have wide

application and have improved significantly in performance over recent years. This

thesis will deal exclusively with these learning dialogue strategy in limited-domain di-

alogue systems. Examples of such dialogue systems are numerous. Systems have been

deployed to provide train information, in-car navigation, make bookings, interact with

robots and build computer interfaces for the illiterate and blind.

The rest of this chapter is organized as follows: Section 1.2 explains the motivation

behind this work, Section 1.3 gives an outline of this thesis followed by Section 1.4

which presents contributions made in this work.

2



1. INTRODUCTION

1.2 Motivation

Computer-based dialogue systems can be used to replace humans for such tasks where

the need is 24x7 such as enquiry system in hospitals, ticket reservation systems, aids

for illiterate and assistive technology based devices. This is based on several key ad-

vantages of such artificially intelligent systems i) Such devices will be available at all

times ii) These devices can be customized as per individual tastes and interests iii)

They will never get tired iv) Cost effective v) allows for more user privacy vi) can be

used in situations where it is impossible for humans to be placed. Existing spoken

dialogue systems are far from perfect due to various limitations and three major faults

appear when one compares them to humans.

1. Humans are capable of holding a dialogue in significantly more difficult environ-

ments and are not as affected by noise, ambiguities and errors.

2. Humans can learn during the conversation and do not need explicit rules to pre-

define how they should interact.

3. Humans are not constrained with respect to one domain but posses the capabil-

ity to understand any topic of conversation and can even turn between multiple

conversations.

4. Humans use other para linguistic information in the form of visual cues and

prosodic information to phrase its response while interaction.

In order to effectively handle noise, ambiguities and other difficulties, this thesis will

argue that a adaptive hybrid language model must be used for handling uncertainty

in the dialogue during the speech recognition. Spoken language is an inherently error-

filled medium of communication and even humans use error-correcting strategies to

ensure a correct understanding. n-gram Language model is a appealing approach for

decision making and there is also evidence that humans use language models when

3



1. INTRODUCTION

they have to predict the words which are either in low tone or not clear. Bayesian

probability theory is therefore an appropriate framework for handling the resulting

uncertainty. This thesis will argue further that statistical methods are an appropriate

framework for allowing a system to learn what to say in a dialogue. By examining

the effects of past decisions, a system can learn statistically optimal rules for making

future decisions. The resulting systems are capable of adapting to new environments,

new types of user and new domains with limited additional development. A significant

emphasis will be placed on building systems for large domains. The task of building

a general purpose system is not covered, although it is possible that suitable learning

methods may enable future general purpose systems to be built. An approach which

requires developers to encode all knowledge about the world is unlikely ever to succeed.

An approach which allows the system to learn this knowledge for itself may one day

become a reality.

1.3 Thesis Outline

Spoken dialogue systems are made up of several complex components. This thesis

will be concerned largely with the decision making component, known as the dialogue

manager. In studying the dialogue manager, it is useful to understand how each of the

other components interact to form a complete system.

Chapter 2 will begin the main part of this thesis with a discussion of a Spoken Di-

alogue System and its various components. Dialogue management which is the heart

of a spoken dialogue system is also elaborated and various error handling mechanisms

are also discussed. Chapter 2 also provides a literature review of dialogue manage-

ment theory. The task of dialogue management can be separated into two main areas.

Firstly, the system must efficiently maintain the state of the dialogue and secondly, the

system must use the state to make appropriate decisions.

Chapters 3 discuss methods for maintaining this state and discusses the actual deci-

sion making. (Robert, 2007, Ch 11) gives some evidence that the Bayesian approach

is in fact the only coherent approach to decision making. Various other theoretical

reasons for Bayesian decision making are also given. Lewandowsky et al. (2009) and

Wolpert & Ghahramani (2005) provide example experiments illustrating the Bayesian

nature of human decision making.

4



1. INTRODUCTION

Chapter 3 shows how machines can automatically decide what to say in a dialogue.

The chapter suggests the use of the Dynamic Bayesian Networks for representation of

the spoken dialogue and Grouped Loopy Belief Propagation algorithm for inferencing

the state representation and Natural Actor Critic algorithm for optimisation of the di-

alogue policy and provides a framework for building suitable function approximations

in the case of dialogue. An example application in the Tourist Information domain is

also described

Chapter 4 proposes an adaptive cache POS based language model which has been

used to cope up with the uncertainty which may be because of the spoken communi-

cation limitations or even when the user himself is not clear about which word to use

to fill in the gap.The proposed framework based on dynamic probabilistic model uses

word dependencies based on their part of speech tags along with the tri-gram Model

but also takes care of the influence of the word which are very far from the word being

considered in a text and stores the word history in a dynamic cache for information

mining using long distance dependency.

Chapter 5 proposes a framework wherein standard algorithms from the machine

learning literature have been used to efficiently annotate the un-annotated utterances

using hidden vector state model. The algorithm, called Mean Weighted Edit Distance

and Maximum Expectation are implemented which, improves efficiency by exploiting

conditional independence assumptions between variables in the probabilistic model.

The chapter provides an introduction to Hidden Vector State Model, Semi Supervised

Learning, Mean Weighted Edit Distance and Maximum Expectation The chapter also

provides an example of the use of this proposed framework.

Chapter 6 shows how prosodic information of the user utterance can be used

to know his mental state. This chapter discusses about how different parameters like

pitch, intensity, utterance time are used to determine the users belief about a particular

concept and his confidence levels during the dialogue. Results of Two experiment one

in the area of tourism and other about a university lecture are depicted to indicate the

level of certainty of different users.

Chapter 7 summarizes the major findings of this work and the contribution to

knowledge made in this dissertation. Moreover, it also presents the future scope of this

work which can be investigated in further research.

Some of the material presented in this thesis has been published previously. The

complete list of these published articles immediately follows Chapter 6.
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1. INTRODUCTION

1.4 Contributions

In this thesis, we have mainly concentrated on the framework for the dialogue manager

module of the Spoken Dialogue System. The main objective was to make a automatic

policy/strategy formulation by dialogue manager based on the previous dialogue history

into consideration. The major contributions are listed as follows:

1. We surveyed existing representation for the dialogue states and algorithms that

existed for updating the beliefs in the environment states. The goal was to

identify the optimum representation and algorithm which could enable efficient

inferencing. we proposed Dynamic Bayesian network for the dialogue states and

Group Belief Propagation algorithm for inferencing which proved to be compu-

tationally efficient. The Natural Critic Algorithm which is a modified version of

gradient descent has been used to learn the policy and has enabled to learn the

dialogue process optimally using the given structures.

2. We empirically evaluated various techniques for improving the user utterance

recognition to improve over the confidence score of the automatic speech recog-

nition.We proposed adaptive language model and semi-supervised learning over

Hidden Vector state language model for this purpose

3. Lastly, we proposed that the prosodic information variables, like the frequency,

pitch, intensity, etc. can be utilized to improve the dialogue policy formulation,

Experiments were conducted which proved that this information can aid the the

dialogue manager in having an meaningful conversation with the user.
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CHAPTER 2

SPOKEN DIALOGUE SYSTEMS
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2. SPOKEN DIALOGUE SYSTEMS

Thoughts and ideas are meaningful and can be realized when they can communi-

cated to others and spoken language is one of the human being’s main characteristic

by which he can communicate his ideas to other and collaboratively realize them in

practice other than in the written form of language. The speed and ease with which

we can speak is comparatively more than any other form of interaction like key presses

or mouse movements. But in real life when we speak we unknowingly embed lot of

information in the form of pitch, intensity, temporal variation other than the linguistic

word lattices which build our utterances during a dialogue with other human. And

humans being an intelligent entities decode not only the linguistic information but also

the auditory information and uses the previous dialogue context to generate a response

or decide about the next move in the dialogue process. The ability of understanding

and producing more or less coherent answers to spoken utterances implicitly defines

different degrees of intelligence which most humans demonstrate in all situations. But

intelligence has a closely relationship with learning.

Intelligent systems are agents which are capable of acting rationally towards any

change in environment based on the valid information it has. Machines like computers

can be intelligent if they are able to act rationally towards any change in environment

by applying the knowledge it carries in its knowledge-base. Since humans use mainly

spoken language and natural language for interaction with other human, machine to

be human-like have to also use the spoken language as its means of input and output

for interaction. There are many issues in the design of a spoken dialogue system. and

two key assumptions are almost always taken.

i Dialogues with exactly two participants are considered

ii All interactions between the system and the user are in the form of turns. A turn in

a dialogue is a period in which one of the participants has a chance to say something

to the other participant.

Under these assumptions, the dialogue will follow a cycle, known as the dialogue cycle.

One of the participants says something, this is interpreted by the listener, who makes

a decision about how to respond and the response is conveyed back to the original

participant. This same process of listening, understanding, deciding and responding

then occurs on the other side and the cycle repeats. Hence any dialogue system requires

a number of components: one that can understand the user‘s speech, one that makes

decisions and one that produces the system‘s speech.
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2. SPOKEN DIALOGUE SYSTEMS

2.1 History

Machines producing speech is not new. Since 17th century mathematicians and logi-

cians who designed the first computational machines had the thought that machines

could speak which was clear from the Rene Descartes declaration from “ Discourse on

the method” that if machines bearing the image of our bodies and capable of imitating

our actions, we may easily conceive a machine which emits vocables and even acts in

response to change in its organs so as to reply what is said in its presence. Then Lenord

Euler in 1761 said that,“It would be a considerable invention indeed that of a machine

able to mimic speech with its sounds and articulations. I think its is not impossible”.

In 1779 Christain Kratzenstein designed a machine which was able to produce vowel

sound and was based on the human vocal tract. In 1791, Wolfgang Von Kempelen built

the machine also known as first talking machine which was not only able to produce

sounds but also words and even short sentences in Latin, Italian and French languages.

At the end of 1878 Alexander Graham Bell invented telephone which was based on his

inspiration to invent a machine that could transcribe spoken words into text which he

could not complete.

While AT&T Bell Laboratories developed a primitive device that could recognize

speech in the 1940s, researchers knew that the widespread use of speech recognition

and understanding would depend on the ability to accurately and consistently perceive

subtle and complex verbal input. In 1939 Homer Dudley of Bell Labs invented a

controlled speech synthesizer but it required highly trained technicians to use it. In 1942

a toy dog which responded to its name was produced by Elmwood Button Company

that created a landmark in the field of speech recognition. Since then lot of research in

the parallel and inter-disciplinary fields have contributed to this area of speech analysis

and synthesis in building machines which could respond to speech signal as a mean

of interaction. In 1952, Bell Labs developed a system which recognized spoken digits

transmitted by a phone with an accuracy of 98 % with speaker adaptation [Davis

et al., 1952]. In 1959, a speaker independent system able to recognize vowels with an

accuracy of 93% was developed by Forgie and Forgie at MIT. A system capable of

matching spoken utterance to a list of 50 words with an accuracy of 83 % along with

a confidence score to indicate the recognition result was developed by Ben Gold of

MIT in 1966. In 1956, Noam Chomsky developed many theories about linguistics and
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2. SPOKEN DIALOGUE SYSTEMS

computational grammars and built the foundations of Natural Language Processesing.

In 1950 Claude E. Shannon, also known as father of information theory used the concept

of artificial intelligence to develop a chess playing software by a machine. Thus, in the

1960s, researchers turned their focus towards a series of smaller goals that would aid

in developing the larger speech recognition system. As a first step, developers created

a device that would use discrete speech, verbal stimuli punctuated by small pauses In

1966 Joseph Weizenbaum from MIT developed ELIZA, the first artificial intelligence

program which simulated human conversation and passed Turing Test to prove the

intelligence quotient. In 1968, Arthur C. Clarke and Stanley Kubrick created HAL9000

a computer that could hold a conversation, think and adapt its behavior.

However, in the 1970s, continuous speech recognition, which does not require the

user to pause between words, began. Also lot of research was funded in the speech

understanding program. It aimed at analyzing, storing and understanding continuous

speech by the computer systems. This led to lot of research groups at many leading

universities like MIT, Stanford, Carnegie Mellon University and other research institu-

tions like Microsoft and IBM to ponder on the different issues of speech understanding.

More focus in these days was on Automatic Speech recognition, where the recognition

error rates high because of the smaller vocabularies, It was because of the statistical

and empirical pattern matching frameworks based on Hidden Markov Models used

by James, Janet Baker and Fedreick Jelinek who actually got a break though in the

area of statistical pattern matching framework based on Hidden Markov Models to

speech recognition [Jelinek, 1976]. In the same years, due to technology improvement

especially memory and Processesing power of the computers, the structure of human

discourse was the main theme for investigation by researchers for making human com-

puter interfaces more friendly [Rabiner and Schafer, 1978]. In 1974 Barbara Grosz

studied the structure of dialogues in collaborative tasks [Grosz, 1974]. Speech Recog-

nition Systems have become so advanced and mainstream that business and health care

professionals are turning to speech recognition solutions for everything from provid-

ing telephone support to writing medical reports. Technological advances have made

speech based systems and devices more functional and user friendly, with most con-

temporary products performing tasks with over 90 percent accuracy. In 1986, Barbara

Grosz and Candace Sidner developed the theory of centering [Grosz and Sidner, 1986]

that aimed to formalize the way a human follows the focus of a conversation. James
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2. SPOKEN DIALOGUE SYSTEMS

Allen applied statistical pattern matching techniques usually applied in speech recog-

nition to semantic parsing of natural language [Allen, 1987]. In 1990’s hybrid methods

combining Artificial neural networks and HMM’s were successfully used in large speech

recognition systems. [Bourlard and Morgan, 1994] In 1996, the development of a com-

plete spoken dialogue systems (SDS) which including automatic speech recognition,

Natural Language understanding, dialogue management and speech synthesis started

to emerge.

Today, the latest generation of speech technology delivers conceptual search. This

approach utilizes advanced mathematics and complex algorithms to derive meaning

from speech. Conceptual search addresses the shortcomings of previous speech tech-

nology models and provides the most accurate way of recognizing and finding speech

because it understands what is being said. It can distinguish between homophones,

heteronyms, as well as find and group things by concept. It can also find related infor-

mation based on meaning and has lower computational need than some of the earlier

generations of speech recognition technology According to the industry, Satisfying the

needs of consumers and businesses by simplifying customer interaction, increasing ef-

ficiency, and reducing operating costs, speech based software is used in a wide range

of applications. Indeed, recent advances in spoken dialogue systems are creating a

dynamic environment, since this technology appeals to anyone who needs or wants a

hands-free approach to computing tasks. As the merger of large vocabularies and con-

tinuous recognition continues, look for more and more research is taking place toward

speech based systems and researchers are developing new gadgets with this technol-

ogy. Today, the latest generation of speech technology delivers conceptual search. This

approach utilizes advanced mathematics and complex algorithms to derive meaning

from speech. Conceptual search addresses the shortcomings of previous speech tech-

nology models and provides the most accurate way of recognizing and finding speech

because it understands what is being said. It can distinguish between homophones,

heteronyms, as well as find and group things by concept. It can also find related infor-

mation based on meaning and has lower computational need than some of the earlier

generations of speech recognition technology According to the industry, Satisfying the

needs of consumers and businesses by simplifying customer interaction, increasing ef-

ficiency, and reducing operating costs, speech based software is used in a wide range

of applications. Indeed, recent advances in spoken dialogue systems are creating a
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2. SPOKEN DIALOGUE SYSTEMS

dynamic environment, since this technology appeals to anyone who needs or wants a

hands-free approach to computing tasks. As the merger of large vocabularies and con-

tinuous recognition continues, look for more and more research is taking place toward

speech based systems and researchers are developing new gadgets with this technology.

2.2 What is a Human - Computer Dialogue ?

Dialogue may be defined as an interaction / a spoken or written conversation exchange

between two agents based on a sequential turn taking with an aim of achieving some

goal. When one of the agent is a computer and the other is human, the dialogue is

known as Human- Computer Dialogue. Also When the system initiates the dialogue

and always prompts the user to select an utterance from fixed menus it is known as

system initiative dialogue system. When the human and the machine makes a more

natural dialogue where the system attempts to determine the intentions of the user

from the unrestricted utterances, the dialogue system is known as mixed initiative dia-

logue system. But when other mean of communication like facial expressions, prosodic

information etc. other than speech is used in the interaction its known as multi-modal

dialogue. When the human machine dialogue is dedicated to the realization of a par-

ticular task or set of tasks, the dialogue system is known as task oriented dialogue

system. When the agent in a dialogue is a spoken dialogue system, the user and the

system exchanges a series or utterances where each spoken utterance is the acoustic

realization of the intentions and concepts embedded in the form of word lattice that

one of the agents wants to communicate to the other. Human-to-computer interac-

tion is an form of natural language Processing task between human and the computer

where the elements of human language, be it spoken or written, are formalized so that

a computer can perform value-adding tasks based on that interaction.

2.3 Levels in a Speech based Interaction

Information conveyed by speech can be analyzed at several levels. In the field of Natural

Language Processing, seven levels are commonly admitted in order to describe speech-

based communication [Boite et al., 2000]. These levels can be classified into high and

low levels of description, the lower level starts from the physical sound signal. This
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2. SPOKEN DIALOGUE SYSTEMS

distinction between high and low levels is applicable to all types of communications as

there is always a possibility to distinguish the physical stimuli and the interpretation.

(1) The Acoustic Level

Speech is a sequence of sounds which may also be defined as a variation of the air

pressure created by the vocal tract. The acoustic level concerns the signal and as

such represents the lowest level of speech communication. The study of the acoustic

signal includes the study of any of its representation as the electrical output of a

microphone (analog or digital), wave forms, frequency analysis (Fourier transforms,

spectrograms) etc. Useful information can be obtained from the analysis of the

acoustic signal such as the pitch (fundamental frequency), the energy and the

spectrum. In general, it is the only level considered by speech coding techniques.

As the human vocal tract is a physical instrument, it is subject to a certain inertia

and thus, it cannot assume sudden state modifications. This results in an important

property it can be considered as a pseudo-stationary signal.

(2) The Phonetic Level

It is a low level description where the main focus is on the production of particular

sounds by the ariculatory system. The phonetics studies how humans voluntary

contracts muscles in order to dispose obstacles like tongue, lips, teeth and other

organs in the aim of pronouncing a specific sound.

(3) The Prosodic Level

The main task at this level is the analysis of a limited number of distinct sounds

allowed in a particular language (phonemes), the rhythm with which they are

produced in a sequence, the musicality applied to this sequence(prosody) and he

accentuated part within the sequence. This level is considered to be transitory

between low and high levels as it concerns physically observable features of the

signal but those specific traits are voluntary produced by the speaker in the aim

of including meaningful clues into the speech signal. Prosody is used to detect the

sentiments and emotions in the speech signals like tutoring applications [Litman

and Forbes, 2003].
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(4) The Lexical Level

Also known as morphological level,The main focus at this level is on all the valid

phoneme sequences that produce words included in the lexicon of a particular lan-

guage where each phonemes are the finite number of different sounds in a specified

language. This level forms the first stage for the high level where word elementary

sub-units are studied which convey sense.

(5) The syntactic Level

Words constitute a valid sentence in a language only when the word chain follows

the set of rules also known as the grammar of the language or syntax of the lan-

guage. There are different rule sets to describe the syntax. The main function

of the grammar is to make a word function in a sentence so that the sentence

follows the syntactic structure. Computational grammars which are different from

the linguistic grammars have been developed in the early ages of natural language

understanding [Chomsky, 1965].

(6) The Sematic Level

At this level, the main focus is to determine the context independent meaning

that the words in the sentence mean and how those meanings combine to form

the information that the sentence try to convey. Although an utterance may be

syntactically correct but it might not provide the coherent information for which

it was framed. So this level studies how to extract the meaning/sense from the

utterances.

(7) The Pragmatic Level

Pragmatics is the study of grouping all the context dependent information in a

dialogue. Most often the utterances implicitly refer to the underlying information

also known as ground information. which is expected to be known by the partici-

pants of the conversation either based on the environmental conditions, the beliefs

that the participants hold, their background, common knowledge that they hold.

Pragmatic level is divided into three sublevels [Allen et al., 1987].

Pure pragmatic level

the study of the different meanings that can convey a single sentence uttered

in different contexts.
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Discourse Level

concerns how the directly preceding sentence affects the interpretation of the

next sentence. The study at this level help in disambiguation and anaphora

resolution.

World Knowledge Level

Also known as ground knowledge includes all the information people know

about the world and what an participant in conversation knows about the

other participants belief and goals.

2.4 General Dialogue System

In human to human conversation, the conversant tries to integrate all the information

from the senses based on the knowledge

2.5 Spoken Dialogue System

Spoken dialogue interaction has been suggested by researchers and practitioners as a

promising alternative way of communication between humans and machines[Zue et al.,

2000]. A compelling motivation is the fact that conversational speech is the most nat-

ural, efficient, and flexible means of communication among human beings. Because of

the complexity of human-human interaction, human-machine conversations need to be

much simpler. Talking to a machine requires a spoken dialogue system. These systems

may be alternatively referred to in the literature as “conversational agents”, “Spoken

language systems” or “conversational interfaces” [Jurafsky and Martin, 2008], [McTear,

2004] Huang et al., 2001. Such systems should be able to understand what a person

says, take an appropriate action, and then provide a response. Ideally, spoken dialogue

systems should yield successful, efficient and natural conversations within a given do-

main. However, building such systems is still a challenge for science and engineering.

Thus a spoken dialogue system may be defined as a intelligent agent that interacts with

humans using spoken language in order to perform some task which is normally to ac-

cess and manage information. These systems are an example of an open ended, goal

oriented, real time interactions between humans and computers. A Multi Modal Spo-

ken Dialogue systems is one which uses many modes of input like speech, Graphic User
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Figure 2.1: Architecture of a general Dialogue System - The figure shows different

processes involved in a human to human interaction
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Interface and computer vision e.g. In case of Telephonic technical support for product

and services, In-car music control for music navigation, Tutoring, Language learning,

Mobile search interface, Computer based assistance technology especially in Eldercare,

Automated receptionist. Voice enabled interfaces are now becoming common and most

of us have used such interface while dialing the number of a contact using his speech

tag, using voice recognition software for typing our documents in a word Processesing

software, browsing the internet using voice enabled internet browsing software which

accepts our voice commands and hear the emails in the inbox along with their contents.

In general the classification of spoken dialogue systems depends on the application and

its complexity and are becoming ubiquitous due to their rapid improvement in per-

formance and decrease in cost. The spoken dialog systems receive speech inputs from

the user, and the system responds with the required action and the information. For

example, a user might use a spoken dialog system to reserve a flight over the phone,

to direct a robot to guide him to a specific room, or to control in-car devices such

as a music player or a navigator. Since the early 1990s, many spoken dialog systems

have been developed in the commercial domain to support a variety of applications

in telephone-based services. For example, early spoken dialog systems functioned in

restricted domains such as telephone-based call routing systems (HMIHY) [Gorin et

al. 1997], weather information systems (JUPITER) [Zue et al. 2000], and travel plan-

ning (DARPA communicator) [Walker et al. 2001]. More recently developed systems

are used in incar navigation, entertainment, and communications [Minker et al. 2004;

Lemon et al. 2006; Weng et al. 2006]. For example, the EU project TALK2 focused on

the development of new technologies for adaptive dialog systems using speech, graph-

ics, or a combination of the two in the car. More recently, multi-domain dialog systems

have been employed in real life situations [Allen et al. 2000; Larsson and Ericsson

2002; Lemon et al. 2002; Pakucs 2003; Komatani et al. 2006]. Such multi-domain dia-

log systems are now able to provide services for telematics, smart home, or intelligent

robots. These systems have gradually become capable of supporting multiple tasks and

of accessing information from a broad variety of sources and services.
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Figure 2.2: Architecture of a Spoken Dialogue System - The figure shows different

modules involved in a human to computer interaction
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2.6 Characteristics of spoken dialogue system

2.6.1 Turn-taking

A dialogue consists of many turns, where in every turn one participant speaks. Who

should speak in the next turn is determined by using the Turn-Taking rules at the

end of each turn. These rules apply at a Transition-Relevance place(TRP). Transition

relevance places where the structure of the language allows speaker shift to occur. Here

is a simplified version of the turn-taking rules, grouped into a single three-part rule.At

each TRP of each turn:

1. If during this turn the current speaker has selected A as the next speaker then

A must speak next.

2. If the current speaker does not select the next speaker, any other speaker may

take the next turn.

3. If no one else takes the next turn, the current speaker may take the next turn.

2.6.2 Grounding

Grounding is a collective act performed by the speaker and the hearer wherein both

must constantly establish common ground. By common ground we mean the set of

things that are mutually believed by both speakers. The need to achieve common

ground means that the hearer must ground or acknowledge the speaker’s utterances,

or else make it clear that there was a problem in reaching common ground. For exam-

ple

U:I want to fly from Boston.

S: Mm hmm.(Acknowledgement)

The word mm-hmm here is a continuer, also often called a backchannel or an ac-

knowledgement token. a continuer is a short utterance which acknowledges the pre-

vious utterance in some way, often cueing the other speaker to continue talking (Jef-

ferson,1984;Schegloff, 1982;Yngve,1970).Clark and Schaefer(1989) discussed five main

grounding methods, ordered from weakest to strongest:
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• Continued attention: B shows she is continuing to attend and therefore re-

mains satisfied with A’s presentation. Relevant next contribution: B starts in on

the next relevant contribution.

• Acknowledgement: B nods or says a continuer like “uh-huh”, “yeah” an as-

sessment like “that’s great”.

• Demonstration: B demonstrates all or part of what she has understood A to

mean, for example by reformulating A’s utterance or by collaborative completion

of A’s utterance.

• Display: B displays verbatim all or part of A’s presentation.

Some Grounding examples:

U: ...I need to travel in June.

S: And, what day in May did you want to travel? (Display)

U: I want to be in New Delhi in time for the Asian games.

S: <reject>. Sorry, I didn’t get that. Please say the month and day you would like to

leave.(Rejection)

U: I want to go on October fifteenth.

2.6.3 Conversational implication

The interpretation of an utterance relies on more than just the literal meaning of the

sentences. For example:

S: ...And, what day in May did you want to travel?

U: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

Here the user does not in fact answer the question. The user merely states that he has

a meeting at a certain time. In this case the speaker seems to expect the hearer to draw

certain inferences; in other words the speaker is communicating more information than

seems to be present in the uttered words. Grice proposed that what enables hearers

to draw these inferences is that conversation is guided by a set of maxims, general

heuristics which play a guiding role in the interpretation of conversational utterances.

He proposed the following four maxims:
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• Maxim of Quantity: Be exactly as informative as is required:

a. Make your contribution as informative as is required

b. Do not make your contribution more informative than A required.

• Maxim of Quality: Try to make your contribution one that is true:

a. Do not say what you believe to be false.

b. Do not say that for which you lack adequate evidence.

• Maxim of relevance: Be relevant

• Maxim of Manner: Be clear, brief and orderly

2.7 Components of a Spoken Dialogue System

The general spoken dialogue system integrates four main components to process the

speech signal from the user in presence of environmental noise and the system can

generate the output which can be either visualized on the screen or synthesized by a

text to speech synthesis module or a pre-recorded audio. This process works iteratively

to complete the dialogue process wherein the intended purpose of the user is achieved.

The components involved in the dialogue process are :-

2.7.1 Speech Recognition

The users makes a verbal response which is usually speech signals with noises which are

recognized by an automatic speech recognition(ASR) subsystem which transforms the

speech waveform into a sequence of parameter vectors which are then converted into a

sequence of word (text). Most of the speech recognition methods uses Hidden Markov

Model (HMM) to estimate the most probable sequence of words from a given speech

signals. This component is built using many available toolkits ATK/HTK [Young

et al., 2000] and SPHINX packages [Walker et al., 2004]. The performance of the

speech recognition engine will depend on the difficulty of the task and on the amount

of in-domain training data. The error rates are higher in the limited-domain dialogue

systems and the user speaks freely using words which are out of the bounds of the

list. [Raux et al., 2006] describes the Let’s Go! bus information system, which has

a sentence average word error rate of 64%. The word error rate of the ITSPOKE an
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intelligent tutorial system is 34.3% [Litman and Silliman, 2004].

Most current spoken dialogue systems use only the most likely hypothesis of the

user’s speech. State-of-the-art recognisers can however, output a list of hypotheses

along with associated confidence scores. This list is called an N-best list, where N

denotes the number of hypotheses. The confidence scores give an indication of the

likelihood that the recogniser attaches to each word sequence. Ideally these confidence

scores will give the posterior probability of the word sequence given the audio input

[Jiang, 2005]. In some cases the recogniser may also return a word-lattice to represent

the set of possible hypotheses. Such word lattices may be converted into N-best lists by

first converting the lattice to a confusion network and then using dynamic programming

to find the minimum sum of word-level posteriors [Evermann and Woodland, 2000].

2.7.2 Natural Language Understanding

This unit analyses the textual form for the set of hypothesis of the user utterance

to understand the meaning of these words with the main aim to determine what the

user wants to achieve by saying the words e.g morphological analysis, part-of-speech

tagging, and shallow parsing. The NLU module maps the pre-processed utterance to a

meaning representation (e.g., semantic frame ) from which the dialogue act, user goal,

and named entities are extracted by semantic parser. e.g, whether the user says “I’d

like to know the doctor in the orthopaedics.”or “who is the orthopaedician on duty

” the desired outcome is the same. The user is asking for about the doctor on duty

in orthopaedics department. The fact that the first utterance is a statement and the

second is a question is irrelevant. This distinction between the exact semantics of an

utterance and it’s purpose was first made explicit in the definition of a speech act,

which is a representation of this underlying action [Austin, 1962], [Searle, 1969]. In the

example above, the speech act for both utterances would be “request”.

The speech acts has been extended in the case of dialogue to include actions

relating to turn-taking, social conventions and grounding [Traum, 1999]. The resulting

concept is called a dialogue act tag. Dialogue act tags also allow actions such as

“confirm” and “affirm” for confirmations and affirmations.e.g, a “confirm” action might

be used to represent “Did you say you wanted to see an orthopaedician” and an “affirm”

act might be used to represent “Yes!”. In the traditional definitions of both speech

and dialogue acts, the semantic information is completely separated from the act. A
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simplified form of semantic information is clearly an important input to the dialogue

system. In the case of the user asking for the doctor on duty the information should

be represented to indicate what is being requested. It is necessary to represent the

dialogue act as “request(doctor)”. Similarly, the confirmation case above the dialogue

act may be represented as “confirm( doctor=orthopaedic )”. Mostly the Dialogue acts

are therefore represented as the combination of the dialogue act type followed by a

(possibly empty) sequence of dialogue act items.

dialog act type(a = x, b = y, ....)

The dialog act type denotes the type of dialogue act while the act items, a =

x, b = y, etc.will be either attribute-value pairs such as doctor=orthopaedic or simply

an attribute name or value e.g request(addr), meaning “What is the address?” and

inform(well), meaning “I am well”.With the concept of dialogue acts in hand, the task

of understanding the user becomes one of deciphering dialogue acts. This is known

as semantic decoding. In general one could imagine doing this on the basis of several

sensory inputs. The prosodic information such as pitch or intensity of a user’s utterance

might give some indication as to the dialogue act type.

There are a wide range of techniques available for semantic decoding. Hand-crafted

techniques which include template matching and grammar based methods. Data-driven

approaches include the Hidden Vector State model [He and Young, 2006], machine

translation techniques [Wong and Mooney, 2007], Combinatory Categorial Grammars

[Zettlemoyer and Collins, 2007], Support Vector Machines [Mairesse et al., 2009] and

Weighted Finite State Transducers [Jurcıcek et al., 2009]. Most semantic decoders

will assign exactly one dialogue act for each possible word sequence obtained from

the speech recogniser. In the case of ambiguities, however, the semantic decoder may

choose to output a list of the most probable outputs along with associated confidence

scores. Since the speech recogniser is producing an N-best list of word sequences, some

method must be found for combining the confidence scores from the speech recogniser

with those of the semantic decoder.

2.7.3 Dialogue Management

After the utterances are semantically decoded, the system must choose an appropriate

response from a set of alternatives based on some strategy. The component which
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makes these decisions is called the dialogue manager. The response chosen by the

system is encoded as a dialogue act and is known as the system action or system act.

The chosen response is selected from a set of possible actions, a ∈ A and will depend

on the input that the system receives from the semantic decoder. This input is called

the observation, labelled o ∈ O, since it encodes everything that the system observes

about the user. Choosing the best action requires more knowledge than simply the

last observation. The dialogue manager coordinates the activity of all components,

controls the dialogue flow, and communicates with external applications. The dialogue

manager should play many roles which include discourse analysis, knowledge database

query, and system action prediction based on the discourse context and dialogue history

which plays an important role. The dialogue manager takes this into consideration

by maintaining an internal representation of the full observation sequence. This is

called the dialogue state, system state or belief state and is denoted by b ∈ B. The

current belief state will depend on a belief state transition function which is a mapping

δ : A × O × B → B which takes a given belief state and updates it for each new

observation and system action.

The component of the dialogue manager which defines its behaviour is the dialogue

policy or dialogue strategy(π). The policy determines what the system should do in

each belief state. In general, the policy will define a probability distribution over which

actions might be taken. If π(A) denotes the set of these distributions then the dialogue

policy will be a mapping from belief states to this set, π : B → π(A). Clearly the

actions, belief states and observations are all indexed by the turn number. When it is

important to note the time step being considered, they are denoted at, bt and ot. While

the system is in state bt it will choose action at according to the distribution determined

by the policy, π(bt). The system then observes observation ot+1 and transitions to a

new system belief state bt+1. When exact point in time is insignificant, the t is omitted

and a prime symbol is used to denote the next time step (e.g. o = ot+1).

2.7.4 Speech Synthesis System( TTS)

The system responses have to be finally conveyed to the user. The system dialogue

acts are first converted to natural language with a list of content items from a part of

the the knowledge base that keeps track of all the information generated through the

dialogue history, which is queried and/or updated by the natural language generator
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and finally passed to Speech Synthesis system which conveys the message as audio. The

simplest approach for natural language generation is to use templates. As an example,

a template might transform “inform(doctor=x)” into “The doctor is x”, where “x”

may be replaced by any name of the doctor which will be queried from the database.

Templates have proven to be relatively effective for natural language generation, since

the number of system dialogue acts is reasonably tractable. More complex approaches

have also been developed.[Mairesse and Walker, 2007]. The most common approach

used for the text to speech synthesis is the unit selection approach, which splices

segments of speech from a database to generate sound for a given word sequence and

other method is based on Hidden Markov’s model.

The process iterates until one of the conversant (user or machine) terminates the

dialogue.

2.8 User Simulation

It is essential to test a Spoken Dialogue System with user dialogues but it is a difficult

and time consuming exercise to generate the possible dialogues and then test the dia-

logue manager with human users. Simulated environments provide one way of speeding

up the development process by providing a more efficient testing mechanism.

Figure 2.3: Dialogue Act showing User simulator instead of User - A Graphical

representation showing the user simulator and error simulator instead of the user in the

dialogue act.
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A simulated environment generates situations that the dialogue system designer will not

have thought about and the system can be refined to handle them. Dialogue managers

that are built using techniques from machine learning can learn automatically what ac-

tions to take and for these systems simulated environment is particularly important as

the system can be boot-strapped by learning from interactions with the simulator. Fur-

ther refinements obtained from real interactions with human users make the dialogue

manager act like humans do in various situations.A user simulator generates dialogue

acts given the past dialogue history, as if it were human. This is passed through an

error simulator which generates appropriate confusions and confidence scores. The user

simulator operates on the dialogue act level as shown in figure 2.3 which graphically

represents the user simulator instead of the human user in the dialogue act.

There are also simulation environments which have been built to operate at a word-

level [Jung et al., 2009], [Schatzmann et al., 2007]. In this case, the simulated dialogue

act is used to generate a word-level form, which is passed to the error-simulator to pro-

duce word-level confusions. This is then passed to the semantic decoding component

of the spoken dialogue component as in the case of the human machine conversation.

The data-driven simulation techniques which are available and used for user simu-

lation are as follows :

• Bigram models.

• Goal-based models.

• Conditional random fields (CRF Models).

• Hidden agenda models.

A survey of statistical user simulation techniques for reinforcement-learning of dialogue

management strategies is given in [Schatzmann et al., 2006].

2.9 Dialogue Manager Design Paradigms

In Spoken Dialogue System design, the most challenging task is to build an effective

dialogue manager which can deal with the uncertainty as well follow policies which

can optimally learn from the dialogue history automatically. There are four different

paradigms for building the dialogue manager as given below.
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2.9.1 Hand Crafted Approach

The dialogue manager at the most basic level can be defined by, the concepts of belief

state, state transitions and policy In the hand crafted dialogue management framework

the system designer directly define all of these components. As dialogues become more

complex, the number of states, transitions, and policy decisions becomes very large so

researchers have developed various techniques to facilitate the design process.

Figure 2.4: Four major paradigms in spoken dialogue management - The fig-

ure shows four major paradigms in spoken dialogue management viz. hand-crafted ap-

proaches (HDC), Markov Decision Process models (MDP), Bayesian Network approaches

(BN) and Partially Observable MDP approaches (POMDP) with respect to how they

handle uncertainty and policy optimisation

The simplest approach to represent the dialogue manager is with the help of a

graph or flowchart, sometimes called the callflow [Pieraccini and Huerta, 2005]. Nodes

in the graph represent belief states of the dialogue and define which action should be

taken, while transitions are determined by the observations received. This approach has

proven to be very effective when the system’s prompts elicit highly restricted responses

from the user. On the other hand, the call-flow model typically struggles when users

take the initiative and direct the dialogue themselves. Another approach is frame-based

dialogue manager, also known as a form-filling dialogue manager [Goddeau et al., 1996].

Frame-based approaches assume a set of concepts that the user can talk about, called

slots, which take on values from a pre-defined set. The current set of filled slots is

included as part of the state, along with some hand-crafted information about how
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certain the system is about each slot value. Dialogue management proceeds by using

a pre specified action for each set of known slots. The ability for users to speak

about any slot at any time allows for much more freedom in the dialogue, which is

typically perceived as more natural for users. The frame based approach is most often

used in information seeking dialogues, where a user is seeking information subject to

a set of constraints. e.g health information system, which might have slots for the

symptoms, time of start of the problem. The system would ask for slot-values until

it decided that enough have been given, at which point it would offer information

about a relevant doctor. A problem with frame-based approaches is that some of the

slots will not be relevant for particular dialogues. Another issue is that dialogues are

often composed of smaller sub-dialogues, and the progress in a dialogue often follows a

particular agenda, which cannot easily be modelled using frames. This has led to the

development of hierarchical and agenda-based dialogue managers. These approaches

allow the definition of sub-dialogues which depend on the values of slots at higher levels.

When the domain of discourse moves away from information-seeking tasks, then the

agenda-based and frame-based approaches sometimes struggle to adapt.

Dialogue systems which are based on shared plans and not only what the user

wants such as collaborative dialogues e.g. language learning, where both participants

must work together to achieve a task are said to use plan-based dialogue managers [Rich

and Sidner, 1998]. Another framework for dialogue management is the information

state model [Bos et al., 2003] where in the dialogue acts correspond to dialogue moves

and are used to update an information state subject to certain preconditions. The

information state represents the accumulation of everything that has happened in the

dialogue, and is used by the dialogue manager to choose it’s next action according to

an update strategy such as logic programming [Fodor and Huerta, 2006].

All the above framework’s help in structuring the dialogue manager but these ap-

proaches don’t help in analyzing how to handle the uncertainty which is inherent in

the dialogue process.

2.9.2 Sequential Decision Process approach

Spoken Dialogue Systems have to deal with uncertainty which is inherent during the

process of speech recognition and natural language interpretation. A Common ap-

proach is to augment the hand crafted belief states with states which represent un-
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certainty as well [Bohus and Rudnicky, 2005]. But this model lacks the principled

definition for these states of uncertainty, so the alternative was sequential decision

process models which were natural and augmented a well researched framework based

on Markov Decision Processes(MDP’s) [Puterman, 1994], to aid the spoken dialogue

system to reliably identify the underlying environment state.

A spoken Dialogue System based on the Sequential Decision Process framework

interacts synchronously with the external environment i.e. the user with the main goal

of maximizing its reward by taking appropriate actions. These actions and history of

the environment states determine the probability distribution over next possible states

and as such are modelled as a stochastic process.

2.9.2.1 Markov Decision Processes framework(MDPF)

A formal model of fully-observable sequential decision processes which is an extension

of Markov chains with a set of decisions/actions and a state based reward structure.In

this process for each state a decision has to be made regarding the action to be taken

in that state to increase some predefined measure of performance. The action affects

not only the transition probabilities but the rewards as well. A state describes the

environment at a particular instant of time.In this thesis it is assumed that the system

can be in a finite number of states and the agent(Spoken Dialogue System) can choose

from a finite set of actions. Let S = s0, s1, s2, ..., sN be a finite set of states. Each state

at discrete time t ∈ T is viewed as a random variable St whose domain is the state

space S as the process is stochastic. The past history in the form of system states

is irrelevant in predicting the future so the state must contain enough information to

predict the next state for the process to be Markovian

Pr(St+1|S0, S1, ...St) = Pr(St+1|St) (2.1)

The Spoken Dialogue System at each state execute one of the available action (a) from

a set of actions (A) which affects the state transition probabilities. Thus each action

a ∈ A is fully transcribed by a |S|X|S| state transition matrix whose entry in ith row

and jth column is the probability that the system will move from state si to the state

sj if the action a gets executed.

P a
ij = Pr(St+1 = sj|St = si, A

t = a) (2.2)
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The effect of the actions A on the system states S is given by transition function (T )

where T : SXA → ∆(S) which associates a probability distribution over the possible

successor states. and δ(S) represents the set of probability distribution over S. Thus

for each state s, s′ and a ∈ A the function T determines the probability of a transition

from state s to state s′ after executing action a.

T (s, a, s′) = Pr(St+1 = s′|St = si, A
t = a) (2.3)

The spoken dialogue system assigns a reward (or cost if the value is negative) for being

in a state s and executing action a using a reward function R : SXA → R′). The

casual relationship between MDP states, actions and rewards is shown in the figure 2.5

Figure 2.5: Casual Relationships between MDP states, actions, rewards - Rt

is the reward received at time t

The Markov Decision Process was first suggested as a dialogue model by [Levin and

Pieraccini, 1997]. The system proposed used bi-gram language model for training and
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optimized the reward using standard algorithms. [Walker, 2011] proposed an MDP

based system (PARADISE framework) by using regression on the known features of

the dialogue as a means to determine the reward the system should assign during each

turn of the dialogue. This system along with various other dialogue systems have

been successfully tested with the human users [Kearns et al., 2011]. But since the

state transitions are mostly handcrafted by the system design spoken dialogue system

based on MDP framework, the state set gets intractable when the complexity of the

dialogue increases. For example the information state updates have been used in the

MDP systems by adding the concept of rewards and Markov property( i.e. the system

belief state depends only on its previous value and not on the history) to the standard

information state model [Lemon et al., 2006]. There is some research work [Paek and

Chickering, 2006] indicating that this may not necessarily be a valid assumption.

2.9.3 Partially Observable Markov Decision Process ( POMDP

) Framework

In order to act optimally, the spoken dialogue system must take all the previous his-

tory of observations and actions into account, rather than just the current sate it is

in. A POMDP is a generalization of MDPs in which system states are not fully ob-

servable.Partially observable Markov Decision Process(POMDP) were first suggested

for dialogue by [Roy et al., 2000]. A POMDP framework is based on the underlying

MDP extended with observation space O and observation function Z(.). In MDPs

the dialogue system has the complete knowledge of the system states whereas in case

of partially observable environments, observations are only probabilistically dependent

on the underlying environment state. Also the same observations can be observed in

different states which makes it difficult to determine the state of the system. Observa-

tion function Z : S × A → δ(O) specifies the relationship between the system states,

actions and the observation space. Thus Z(s′, a, o′) is the probability that observation

o′ will be recorded after an agent performs action a and moves to state s′. Thus

Z(s′, a, o′) = Pr(Ot+1 = o′|St+1 = s′, A′ = a) (2.4)

Formally POMDP is a tuple < S,A, T,R,O, Z > where S is the set of states, A

is the action space, T (.) is the transition function, R(.) the reward function, O is the
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observation space, and Z(.) is the observation function. The casual relation between

the elements of the tuple are shown in the figure 2.6

Figure 2.6: Influence Diagram in a POMDP framework - Casual Relationships

between POMDP states, actions, rewards and observations

2.9.3.1 Process History

In a POMDP the complete system history from start till time t is represented by a

triplet i.e. by the system state, the observation and the action taken e.g. (s0, O0, A0), (s1, O1, A1), ...., (st, Ot, At)

The history is the record of everything that has happened during the execution of the

process. In partially observable environment, the system bases its decision on the ob-

servable history as it cannot fully observe the underlying world state. The SDS has the

prior belief about the world state which are summarized by the probability distribution
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b0 over the system states and the system starts by executing an action a0 based on

the distribution b0. The set of all observable histories or trajectories are represented as

H0. Representing and structuring hH0 in different ways has led to different POMDP

solutions and Policy execution algorithms.

2.9.3.2 Performance Measures

The system trajectories are ranked with the help of a Value function (V : H → R)

which assigns a real number to each system history h ∈ H. A history h will be preferred

over h′ if V (h) > V (h′). In case of infinite horizon problems i.e. the problems where the

decision stops after a finite number of steps the value function for a system trajectory

h of length l is simply the sum of rewards attained at each stage [Bellman, 1954]

V (h) =
t=l∑
t=0

R(st, at) (2.5)

In case of infinite horizon problems i.e. the problems where the system trajectory is

unbounded, a discount factor γ is introduced which states that the rewards received

later get discounted which contribute less than current rewards.The value function for

such total discounted reward function is given as [Bellman, 1954]

V (h) =
∞∑
t=0

γtR(st, at) (2.6)

2.9.3.3 Policy

On each turn in a spoken dialogue, the system has to decide and execute an optimal

course of action in an uncertain environment contingent on the observable history. A

policy π : H0 7→ A is a rule that maps observable histories into actions. The main

aim of the spoken dialogue system is to choose a policy which maximizes the objective

function that is defined on the set of system trajectories(H0). Given a history

h′ =< a0, o0 >,< a1, o1 >, ....., < at−1, ot >

the action prescribed by the policy π at time t would be at = π(ht) where a0 is the

system’s initial action and ot is the latest observation.

The likelihood of particular system trajectory is controlled by inducing the prob-

ability distribution Pr(h|π, b0) over all possible sequence of states and actions by the
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system for initial distribution(b0). The Expected policy value is the expected value of

system trajectories induced by the policy π and is given by

EV (π) = V π =
∑
h∈H

V (h)Pr(h|π, b0) (2.7)

The system’s goal is to find a policy π∗ ∈ Π with the maximum expected value from

the set Π of all possible policies. The policies are generally represented using tractable

representations where in the observable histories are either represented as probability

distributions over system states or grouped into a finite set of distinguishable classes

using finite-suffix trees or Finite state controllers.

2.10 Conclusion

This chapter discusses the importance of spoken language in the design of the human

computer interaction process. When a user interacts with a computer, the user un-

knowingly embeds lots of information at different levels of speech which if capitalized

properly can help in the design of an efficient and effective dialogue system. The chap-

ter also elaborated on different modules that are to be focussed on during the design

of a spoken dialogue system. Testing of a spoken dialogue system with different dia-

logues is a challenging task, the system simulated user dialogue for testing purpose has

shown remarkable results in the design of a spoken dialogue system. Dialogue manager

forms the heart of the Spoken Dialogue system and the strategy it follows to reply to

user query/utterance has to be based on some prior knowledge of the dialogue context.

Various approaches in the design of the dialogue manager has been discussed in the

last section.
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In the last many years researchers have designed spoken dialogue system which have

the capability to communicate with the users in the real time. Many Spoken Dialogue

systems are realized which are the good examples of real time, goal-oriented interac-

tions between humans and computers that perform tasks like finding a good restaurant

nearby, reading your email, perusing the classified advertisements about cars for sale,

or making travel arrangements (Seneff, Zue, Polifroni, Pao, Hether- ington, Goddeau,

& Glass, 1995; Baggia, Castagneri, & Danieli, 1998; Sanderman, Sturm,den Os, Boves,

& Cremers, 1998; Walker, Fromer, & Narayanan, 1998). Yet in spite of 40 years of re-

search on algorithms for dialogue management in task-oriented dialogue systems, (Car-

bonell, 1971; Winograd, 1972; Simmons & Slocum, 1975; Bruce, 1975; Power, 1974;

Walker, 1978; Allen, 1979; Cohen, 1978; Pollack, Hirschberg, & Webber, 1982; Grosz,

1983; Woods, 1984; Finin, Joshi, & Webber, 1986; Carberry, 1989; Moore & Paris,

1989; Smith & Hipp, 1994; Kamm, 1995) inter alia, the design of the dialogue manager

in real-time, implemented systems is still more of an art than a science (Sparck-Jones

& Galliers, 1996). This chapter discusses a method, and experiments that validate the

method, by which a spoken dialogue system can learn from its experience with human

users to optimize its choice of dialogue strategy.

The dialogue manager of a spoken dialogue system accepts the user’s utterance

which is represented as a frame of Spoken Language Understanding modules results

and then chooses in real time what information to communicate to the human user

at a conceptual level and how to communicate it. The choice it makes is called its

‘strategy’ The system responses have to reflect the discourse context by maintaining

the discourse history.

The dialogue manager can be formulated as a state machine, where the state

of the dialogue is defined by a set of state variables representing observations of the

user’s conversational behaviour, the results of accessing various information databases,

and aspects of the dialogue history. Transitions between states are driven by the sys-

tem’s dialogue strategy. However, There are a many possible choices for policies at

each state of a dialogue. Decision theoretic planning can be applied to the problem

of choosing among dialogue strategies, by associating a utility U with each strategy

(action) choice and by positing that spoken dialogue systems should adhere to the

‘Maximum Expected Utility Principle’ which states that an optimal action is one

that max-imizes the expected utility of outcome states (Keeney & Raiffa, 1976; Russell

& Norvig, 1995), Thus, a SDS can act optimally by choosing a strategy (a) in state
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Si that maximizes U(Si). Several reinforcement learning algorithms based on dynamic

programming specify a way to calculate (Si) in terms of the utility of a successor state

Sj (Bellman, 1957; Watkins, 1989; Sutton, 1991; Barto, Bradtke, & Singh, 1995), so if

the utility for the final state of the dialogue were known, it would be possible to cal-

culate the utilities for all the earlier states, and thus determine a policy which selects

only optimal dialogue strategies. Previous work suggested that it should be possible

to treat dialogue strategy selection as a stochastic optimization problem in this way

(Walker, 1993; Biermann & Long, 1996; Levin, Pieraccini, & Eckert, 1997; Mellish,

Knott, Oberlander, & O’Donnell, 1998). There are three main possibilities for a sim-

ple reward function: user satisfaction, task completion,or some measure of user effort

such as elapsed time for the dialogue or the number of user turns. But it appeared that

any of these simple reward functions on their own fail to capture essential aspects of

the system’s performance. For example, the level of user effort to complete a dialogue

task is system, domain and task dependent. Moreover, high levels of effort, e.g., the

requirement that users confirm the system’s understanding of each utterance, do not

necessarily lead to concomitant increases in task completion, but do lead to signifi-

cant decreases in user satisfaction (Shriberg, Wade, & Price, 1992; Danieli & Gerbino,

1995; Kamm, 1995; Baggia et al., 1998). Furthermore, user satisfaction alone fails to

reflect the fact that the system will not be successful unless it helps the user complete

a task. A method for deriving an appropriate performance function was a necessary

precursor to applying stochastic optimization algorithms to spoken dialogue systems

in the paradise method for learning a performance function. In this chapter, we apply

the paradise model (Walker, Litman, Kamm, & Abella, 1997a) to learn a performance

function from a corpus of human-computer dialogues, which we then use for calculat-

ing the utility of the final state of a dialogue in experiments applying reinforcement

learning to selection of dialogue strategies.

3.1 Dialogue State Representation

In a spoken dialogue system, the dialogue manager form the heart of the system.

After the utterance is converted into a natural language form and the meaning is

interpreted by natural language module, the dialogue manager has to decide how and

what to say to the user to fulfil the system’s turn in the dialogue. In order to obtain
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computationally efficient algorithms, the structure of the domain under consideration

must be exploited. The Dialogue Manger in the HBIS has to maintain the state which

is defined by a set of state variables that represent the information that has happened

during the dialogue process and aids the dialogue manager in deciding the what the

system should do in opposite to the user utterances.The state variables encode various

observations of the user conversational behaviour, such as results of processing speech

with the natural language understanding module and results from accessing information

databases relevant to the application as well as certain aspects of the current context.

The better way to represent the state is using a probabilistic approach as a belief

distribution over environment states and updated using Bayes theorem.

3.1.1 Probabilistic Graphical Models

Probabilistic Graphical Models are graphs in which nodes represent the random vari-

ables and the arcs represent the conditional independence assumptions and thus provide

a representation for the joint probability distributions. A graphical model needs fewer

parameters based on the conditional assumptions and thus fit for efficient inferencing

and learning when compared to other representations.

There are three types of graphical models:-

1. Directed Graphical Models also known as Bayesian Networks, Belief Net-

works, Generative models, Casual models etc are graphs in which the arc are

directed and are mostly used in machine learning applications.

2. Un-Directed Graphical Models also known as Markov networks, Markov

Random Fields are graphs in which the arc are undirected.

3. Chain Graphs are models in which the arc are both directed and undirected.

3.1.2 Bayesian Networks

Its a directed acyclic graphical model which give an intuitive representation for the

various assumptions and belief states in a system and also facilitate the use of compu-

tationally effective algorithms for updating the beliefs in an environment state whenever

an observation is made. A Bayesian Network is a representation for statistical models

where each node represents a random variable and the edges represent the probabilistic
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constraints between edges. If an arc between two nodes X and Y is interpreted as ”X

causes Y”. The joint distribution of all variables in the graph factorises as the product

of the conditional probability of each variable given its parents in the graph. In a

POMDP based framework the assumptions are represented by the network as shown

in the figure 3.1

Figure 3.1: A portion of Bayesian network representing the POMDP Model

-

Networks as shown in the figure which repeat the structure( time-slices) at each

interval in time are refereed as Dynamic Bayesian Networks. Actions of the system(at)

are shown in the rectangles and Shading of Observation nodes(Ot) represent that they

are observed. The Bayesian networks for dialogue allow further factorization of the

dialogue system environment state (St) which aids the updation of factor beliefs us-

ing various efficient algorithms.[Williams and Young, 2005] factorized the environment

state into three components st = (gt, ut, ht) where gt represents the long term goal of

the user, ut represents the true user act and ht represents the dialogue history.Further

structuring can be done by representing the state into slotsc ∈ C where slot implies

a concept for which the user must specify a value e.g In a TIS the concept may be

destination or type of accommodation or food. The state is thus factorised into sub-

goals g
(c)
t or sub-histories h

(c)
t . The sub-histories h

(c)
t depend on the user act Ut and

the previous sub-histories h
(c)
t−1. The user act depends on the set of sub-goals g

(c)
t .
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3.1.2.1 Dependencies

The exists a strong dependency between the concepts of the real world dialogue as the

user intention clarifies. Given the user action, the sub-goal nodes cannot be assumed

to be independent as such there will be a dependency which is to be limited to enable

tractability whereas the sub-history nodes can be independent.A method to limit the

dependencies is to add the validity node [v
(c)
t ] for each concept which indicates whether

the associated sub-goal is relevant to the overall user goal or not. The validity node

takes the value either ’Applicable’ or ’Not Applicable’. If the validity node is ’Appli-

cable’ then the sub-goal also become applicable and the user sub-goal depends on the

previous value with some probability of change.

Figure 3.2: Factorisation of Bayesian network representing part of a health

based information system - vdisease is the validity node for disease, gtype represents

the type of department being sought

Figure 3.2 shows the network for a health based information system representing

two types of concept viz. the type of department the patient wants to visit and the

disease the patient is suffering from. The user act and user goal are assumed to be

independent from the previous history. When a patient asks for the type of depart-

ment, the disease concept may not be applicable. But once the patients talks about the
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disease it becomes relevant and hence applicable.Thus it clearly indicate the intention

of the user that he wants to visit a particular department for a disease he mentions

and hence the validity of the disease node increases.

3.1.2.2 History Nodes

History nodes store the information about the acts that have happened in a dialogue

and is used for framing a dialogue strategy. The sub-history is separated into the what

the user wants/desires to know d
(c)
t and the grounding information for each concept

i
(c)
t .The desire variable d

(c)
t may requires only few values such as NOTHING SAID, RE-

QUESTED, INFORMED. This allows the system to record when the user requests for

the value of a concept. The grounding information nodes i
(c)
t stores the last grounding

state for the concept value.

3.1.2.3 User Acts and Observation Nodes

In a real world spoken dialogue system there are large number of state variables and up-

dating the belief states of these variables in a Bayesian network will be computationally

expensive.In such situations, the user acts are split for each concept represented as u(c)

and depends on the user goal for that concept. Similarly the observation nodes are split

into sub-observation o(c) which store how a observation is related to a given concept.

Actions that do not apply to any concept appear in all concept-level observations.

Dialogue Act Confidence Score ?

Overall Observation inform(type=orthopaedics, disease=fracture) 0.9

o; inform(type=orthopaedics, disease=pain) 0.1

Type Observation otype inform(type=orthopaedics) 1.0

Disease Observation disease=fracture 0.9

odisease: disease=pain 0.1

Table 3.1: Split of overall observation into concept level observations

Since the observations are completely factorised, the approach may not give better

performance. However this approach can be used for modelling highly complex user

action models with the help of independent concept level user acts for which different
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user action probabilities are used for each concept which are then joined to determine

the probability of the overall user action.

Figure 3.3: Bayesian network with splitted user-acts -

3.2 Factor Graphs

Factor Graphs (fgraphs) is a representation which unifies directed and undirected

graphs [Kschischang et al., 2001] proposed a graphical framework known as Factor

graphs which provides a suitable formalism for analysing the independence of variables

in a spoken dialogue system. Also there exists many efficient algorithms for updating

the beliefs which can be used by the dialogue manager. Factor graphs are undirected

bipartite graphs comprising of two types of nodes which represent random variables(

Circle nodes) and factors (Square node). Factor Graphs are bipartite because each
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variable node Xi is connected to all the factor nodes Fi which contain Xi in their do-

mains.

In general factor graphs specifies how a function of many variables can be decom-

posed into a set of local functions. Factors are not probabilities themselves, they are

functions that determine all probabilities. The joint distribution over all random vari-

ables can be written as a product of factor functions, one for each factor node. These

factors are a function of only the random variables connected to the factor node in the

graph.There is a direct mapping from Bayesian networks to factor graphs. Figure 3.4

is a factor graph representation of the POMDP assumptions, previously depicted as a

Bayesian network in Figure 3.1

Figure 3.4: Factor graph representing POMDP model -

In this factor graph, the environment state transition function is represented as f
(trans)
t

and thus f
(trans)
t (st, st+1, at) = P (st+1|st, at) Also f

(obs)
t represents the observation func-

tion f
(obs)
t (st, ot, at+1) = P (ot|st, at−1) The variables in the factor graph are denoted by

Xi and the variable values by xi,the factors by fβ and vector x = (x1, x2, ...xNi
) rep-

resent the variable values simultaneously. Each factor will depend on a a subset of

random variables. As such they can be defined as functions over the whole set denoted

by fβ(x) which is achieved by defining factor values as factor values of the original

subset. Thus the joint distribution in the factor graph factorises as

p(x) ∝
∏
β

fβ(x) (3.1)
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3.3 Loopy Belief Propagation Algorithm

3.3.1 Belief Propagation

Belief propagation is a way of computing exact marginal posterior probabilities in

graphs with no undirected cycles (loops). The system takes an action based on the

current set of beliefs in the environment state which must be updated whenever an ob-

servation is made.The decision can be based on the marginal distribution of the beliefs

over a single variable and is computed by integrating or summing out all other random

variables from the joint distribution. The marginal distribution provides the informa-

tion that can aid the dialogue management decision and thus save the computational

time. The x̃1 notation indicates that the variable X1 is fixed while the other variables

are either integrated or summed thus the marginal p(x̃1) would be computed as

p(x̃1) =

∫
p(x̃1, x2, ...., xNi

)dx2, ...., dxNi

=
∑

x2,....,xNi

p(x̃1, x2, ...., xNi
)

=
∑

x:x1=x̃1

p(x)

Belief Propagation provides exact inferencing when there are no loops in graph

(e.g. chain, tree.) It is equivalent to dynamic programming/Viterbi in these cases.

The marginal distribution is generally not tractable as the belief propagation becomes

exponential in the size of the nodes. so an approximate algorithm like the Loopy Belief

Propagation(LBP) or sum-product algorithm [Kschischang et al., 2001] is to be used

to enable tractability.

When loops are present in the network the network is no longer single connected.

The local propagation schemes may not work and will run into trouble. If the loops

are ignored, and permit the nodes to communicate with the factors, the message will

circulate around the loops and the process may not converge to a stable equilibrium.

Loopy propagation algorithm maintains a set of messages for each arc in the model.

For each arc between a node representing a random variable Xi and a factor fa there

are two defined messages. µXi→fa(xi) is a message from the variable to the factor and

µfa→Xi
(xi)is the message from the factor to the random variable. Both of these are the

functions of the possible values of Xi. Once the messages are computed the marginal
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probability of a random variable Xi is calculated from the message to that variable

from the neighbouring factors, a ∈ ne(Xi) If k is the normalizing constant then

p(xi) = k
∏

a∈ne(Xi)

µfa→Xi
(xi) (3.2)

Algorithm 3.1 Loopy Belief Propagation Algorithm

Intialize : Set all messages equal to one.

Let Y = {x = (x1, x2, ..., xN)T |xi is the possible value of Xi}
repeat

Choose a factor fa to update. Suppose this is connected to variablesX1, X2, ..., XN .

First update the approximation as follows :

for each variable Xi connected to the factor do

Update the message out of the factor

(∀x′
i)µfa→Xi

(x
′
i) =

∑
x∈Y,xi=x

′
i

∏
j 6=i µXj→fa(xj).

Update the cavity distributions

Update the message into nearby factors

for each factor b 6= a connected to variable Xi do

(∀x′
i)µXi→fb(x

′
i) =

∏
a6=b µfa→Xi

(x
′
i).

end for

end for

until convergence

The iterative process of belief updates using factor graphs continues until the ap-

proximate distribution no longer changes significantly, at which stage the algorithm is

said to be converged and the resulting set of messages will constitute a fixed point of

the algorithm. If the factor graph has a tree structure, the algorithm will converge

after a breadth first traversal and followed by a reverse sequence of updates.

3.4 Limiations

In a dynamic bayesian network like POMDP the number of nodes grows with time.

In order to update its beliefs the system will have to maintain all the information for

all the nodes in the network i.e. for the most recent time-slice, the approximations for
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all the previous time-slices are needed. This issue contradicts the MArkov property

of POMDP i.e. the beliefs of the current time slice depends on the beliefs at the

previous time-slice. The Loopy Belief Propagation algorithm computes approximate

marginal distributions and if the network is highly connected, the observations from

future time-slices may effect the computation of marginals of the previous time-slices

which then affects the computation of marginals at the current time-slice. Thus it will

be a added responsibility for the system to store the information related to the cavity

and factor approximation for all nodes for the entire duration of the dialogue. To

overcome the difficulty of recomputing the approximation for all previous time-slices

for the lengthy dialogue, it is preferable to limit the number of time-slices that are

maintained [Murphy, 2002] Given a number n, the factor updates are limited to n

time-slices, the marginals for variables connected to factor nodes are computed at time

t by approximating the joint distribution at time t−1 for the most recent n time-slices

and are maintained for future updates. [Boyen and Koller, 1998] suggested an approach

wherein only the marginal approximation at time t − 1 is used to compute the exact

marginal distributions of the current time slice which are then stored and used for the

next iteration.

3.5 Expectation propagation

Complex Spoken Dialogue System have to deal with a large state spaces and when the

nodes have a large number of values it becomes difficult to update the beliefs using

Loopy Belief Propagation Algorithm.In case of arbitrary approximation, the marginal

matching can be replaced by minimizing a distance function between two probability

distribution known as divergence measure. Expectation propagation [Minka, 2001] is

like belief propagation except it requires that the posteriors (beliefs) on each variable

have a restricted form. Specifically, the posterior must be in the exponential family of

the form q(x) ∝ exp(γ
′
f(x)) where x is a variable. This ensures that beliefs can be

represented using a fixed number of sufficient statistics. We choose the parameters of

the beliefs such that

γ∗ = argD(p(x) ‖ qγ(x))

where p(x) and q(x) are two functions for which the distance measure is defined.

p(x) =
qprior(x)× t(x)

Z
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is the exact posterior and Z =
∫
x
qprior(x)× t(x) is the exact normalizing constant, t(x)

is the likelihood term (message come in from a factor and qγ(x) is the approximate pos-

terior. If the Sequential Bayesian Updation is combined with this approximation after

every update step, it is known as Assumed Density Filtering(ADF). or the probabilistic

editor which depends on the order in which the update are made on the beliefs.The

Expectation Propagation Algorithm being a batch algorithm reduces the sensitivity

to ordering by iterations wherein it goes back and re-optimizes each belief in the re-

vised context of the updated beliefs. To achieve this all the messages are to be stored

for undoing any of their effect. Thus instead of approximate matching of messages,

the posterior are matched using moment matching.Consider the factor graph given in

fig 3.6 to understand the difference between the Belief Propagation and Expectation

Propagation. A message is sent from f to x and then x belief’s are updated as

Figure 3.5: A Simple factor graph - Round nodes represent random variables and

rectangle nodes represent factors

φpriorx = φx/µ
old
f→x = µoldg→x

φpriorf = φf/µ
old
x→f = f(x.y)µoldy→f (y)

µf→x = φpriorf φf ↓ x =

∫
y

f(x, y)µoldy→f (y)

φx = φpriorx × µf→x = µoldg→x × µf→x

In Expectation Propagation, the approximate posterior φx is computed first and then

the message µf→x is derived which if combined with the prior φpriorx would result in the

same approximate posterior.

φpriorx = φoldx /µoldf→x
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φpriorf = φf/µ
old
x→f

(φx, Z) = ADF (φpriorx × φpriorf ↓ x)

µf→x = (Zφx)(φ
prior
x )

where (q, Z) = ADF (p) produces the best approximation from q to p within a specified

family of distributions.

Algorithm 3.2 Expectation Propagation Algorithm

For each factor f in order.

φf = φoldf
for each variable x connected to the factor f in predecessor order do

Update the message out of the factor

µx→f = (φoldx )(µoldf→x)

φf = φf × (µx→f )/(µ
old
x→f )

end for

for each variable x connected to the factor f in successor order do

Update the message in to the factor

φpriorx = φoldx /µoldf→x
φpriorf = φf/µ

old
x→f

(φx, Z) = ADF (φpriorx × φpriorf ↓ x)

µf→x = (Zφx)(φ
prior
x )

end for

3.6 Comparison to previous work

The key feature of the Loopy Belief Propagation is that dialogue manager can deal with

complex dependencies between variables by using an approximate updates instead of

exact updates.Past Research work of [Bui et al., 2009] which is close to LBP assumes

a completely independent factorization of goals and can therefore use the standard

Loopy belief Propagation to obtain an exact update. [Young et al., 2010] suggested

the Hidden Information State approach which updates probabilities by partitioning

the unfactorized state space into group of states which are indistinguishable given the

observations. It can be shown that the probabilities for all states in a given partition

may be updated simultaneously if the user goal never changes. The use of Loopy Belief
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Propagation allows to reduces the computation times by exploiting conditional inde-

pendence and allow probabilities that the user goal may change.[Henderson and Lemon,

2008] provided an alternative mechanism for state update similar to HIS update based

on the Markov Decision Process state mixture. Another approach for belief updates is

suggested by [Williams, 2007] and based on particle filters which uses sampling. The

approach has shown considerable benefits in terms of computation time of updates

when compared to exact updates.

3.7 Grouped Loopy Belief Propagation

Belief updates when the concept takes multiple values improves the computational

complexity of the dialogue system. Though Loopy Belief Propagation algorithm ex-

ploits the dependencies between the concepts but updating beliefs becomes complex

when the concept takes a large number of values e.g the disease concept can takes mul-

tiple values in the environment state. The solution to this problem was proposed by

[Young et al., 2010] and it suggested to join the indistinguishable environment states

into groups.

3.8 Policy Design and Learning

After the system’s belief state is defined, the dialogue policy or strategy π which

means how the actions are taken is to be defined. In case of Spoken Dialogue system

we propose to use reinforcement learning to optimize the policy in which the reward

function is defined by the function r(b, a) which indicates the reward obtained by taking

the action a when the system is in belief state b. But the system should take action

which will maximize the total expected reward in a dialogue which is based on the

assumption that the belief state transitions are directed and depend on the previous

value of b. The total expected reward is computed as

E(R) = E(
T∑
t=1

r(bt, at)) (3.3)

In POMDP, the belief state are probability distribution and hence continuous.

Thus p(b
′|b, a) denotes the probability density function. The expected future reward
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when starting in belief state b and following the dialogue policy π is recursively given

by

V π(b) =
∑
a

π(b, a)r(b, a) +
∑
a

∫
b′
π(b, a)p(b

′ |b, a)V π(b
′
) (3.4)

When Working with Markov Decision Processes various other functions help in the

task of policy optimization by choosing one of the policy(π) which maximizes V π(b0)

where b0 is the start belief start e.g.

The Q-function Q∗(b, a) is the expected future reward obtained by starting with a

particular action and then following the policy and is given by

Q∗(b, a) = r(b, a) +

∫
b′
p(b

′ |b, a)V π(b
′
) (3.5)

The advantage function A∗(b, a) is the difference between the Q-function and the total

expected reward or value function V π and is given by

A∗(b, a) = Q∗(b, a)− V π(b) (3.6)

The occupancy frequency d∗(b) gives the expected number of times each state is visited.

In the given equation p(bt = b denotes a probability density and dπ(b) is a form of

density function.

dπ(b) =
∞∑
t=0

, p(bt = b) (3.7)

In a dialogue system, there are situations wherein it is clear to the system designer that

taking a particular action is better than the others. Summary actions thus reduce the

size of the action set during the policy learning and thus enable the system designer

to embed the expert knowledge to allow learning to be quick and efficient. So along

with machine actions A the summary actions A which are a subset of the machine

actions are defined which are used for learning. Given a summary action a and a belief

state b a mapping back to the original action set F (a, b) is also defined. The use of

summary actions is based on the summary POMDP idea proposed by [Williams and

Young, 2005] which factors the state and actions according to a set of concepts.

3.8.1 Function approximation

The dialogue system can always reach a belief state which has never been observed

earlier. So function approximation are to be used to generalize the past experiences to
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new belief states and depend on the actions as well as beliefs. The standard approach

used is linear function approximation for either the value function V , the Q-function

or the policy π in which the approximation is parameterised by a vector, θ, where the

entries of θ are called policy parameters. The summary features which are computed

from the belief states as a summary of the important characteristics are also used for

function approximation and compiled into a vector φ(b). Features can include the

entropy of the concept or the most likely probability for a concept. Given a set of

features, different parameters will be used in the approximation, depending on which

the action is taken. If the policy parameters for action a are denoted by θa then the

approximation for the Q-function would be

Q(a, b, θ) ≈ θa.φ(b) (3.8)

Some of the parameters from different actions are tied by the use of basis function

φa(b) for optimization. Thus the approximation for the Q-function is given by

Q(b, a, θ) ≈ θ.φa(b) (3.9)

3.9 Natural Actor Critic Algorithm

The algorithm Natural Actor Critic Algorithm [Peters and Schaal, 2008] is a modified

form of gradient descent machine learning algorithm which we used in the framework

and aided the spoken dialogue system to learn the parameters that optimize the ex-

pected future reward after the policy was parameterised using a suitable structure. Var-

ious other alternative algorithms e.g Temporal Difference Learning [Sutton and Barto,

1998] and Least Squares Temporal Difference Learning [Bradtke and Barto, 1996] have

shown large fluctuations in policy performance during learning. The gradient descent

algorithm uses the Euclidean matric as a measure of distance and iteratively subtracts

a multiple of the gradient from the parameters being estimated. In general, the pa-

rameter space is known as Riemann space and for small changes in the parameters θ, a

metric tensor, Gθ is defined such that the distance is |d(θ)|2 = dθT Gθdθ. [Amari, 1998]

showed that for optimizing an arbitrary loss function in a general Riemann space the

direction of the steepest descent also known as natural gradiend as compared the tra-

ditional vanilla descent is given by G−1θ ,OθL(θ).[Amari, 1998] also showed the optimal
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metric tensor which gives distances that are invariable to scale with the parameters is

the Fisher Information Matrix Gθ which is given by

(Gθ)ij = E(
∂ logp(x|θ)

∂θi

∂logp(x|θ)
∂θj

) (3.10)

where p(x|θ) is a given probability distribuiton. [Peters and Schaal, 2008]showed that

the Fisher Information Matrix for an Markov Decision Process is given by

Gθ =

∫
B

dπ(b)

∫
A

π(a|b, θ)Oθ logπ(a|b, θ)Oθlogπ(a|b, θ)T da db. (3.11)

The direction of the steepest descent is the inverse of this matrix multiplied by the

vanilla gradient which is given by Policy Gradient Theorem as

OθV (b0, θ) =

∫
B

dπ(b)

∫
A

Aπ(b, a)π(a|b, θ)Oθlogπ(a|b, θ) da db (3.12)

The equation depends on the advantage function and the occupancy frequency where

the advantage function is approximated and the integral over the occupancy fre-

quency is approximating using sampling methods where the rewards in the dialogue

are grouped together to obtain suitable estimates.The sum of rewards gives an unbi-

ased estimate of the sum of advantages and initial value function. If the approximate

advantage function Âw(b, a) is chosen such that

Âw(b, a) = Oθlogπ(a|b, θ) . w (3.13)

where w minimises the average squared approximation error i.e.

∂

∂w

∫
B

dπ(b)

∫
A

π(a|b, θ)(Aθ(b,m) − Âw(b, a)2 da db = 0 (3.14)

then the required natural gradient is given by

G−1θ OθV (b0, θ) = w. (3.15)

The gradient has been used in the algorithm which is known as Natural Critic Algo-

rithm that iterates between the evaluation step also known as critic step wherein the

approximate advantage function is estimated and improving step wherein the actor

improvement is done by changing the parameters by a multiple of natural gradient.

The algorithm is sure to converge to a local maximum of the value function if the

requirements are satisfied.
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Algorithm 3.3 Natural Actor Critic Algorithm

for each dialogue, n do

Execute the dialogue according to the current policy π

Obtain the sequence of states bn,t and machine actions an,t

Compute the statistics for the dialogue

ψn =

[
Tn∑
t=0

Oθlog π(an,t|bn,t, θ)T , 1

]T

Rn =
Tn∑
t=0

r(bn,t|an,t)

Critic Evaluation

Choose w to minimize
∑

n(ψTnw − Rn)2

Actor Improvement

Update the policy parameters

θn+1 = θn + w0wherew
T = [wT0 , J ].

Propagate the impact and deweight the previous dialogue’s

Ri ← γRi, ψi ← γψi for all i ≤ n

end for

53



3. DIALOGUE, REPRESENTATION, INFERENCE AND LEARNING
STRATEGIES

3.10 Evaluation

To evaluate the algorithm and the optimization of dialogues, a large number of human

users dialogues are required which is prohibitive. Instead a simulator of the envi-

ronment of the dialogue system is built and the system’s policy can be optimized by

interacting with the simulator instead of the human users. Optimum policies which are

trained on the simulator are then used to bootstrap a policy which are further trained

by interacting with the human user in the real world. The simulator includes both the

user simulator, i.e. how the user behaves and responds when using the system and the

error simulator i.e. how confusions are generated.

Figure 3.6: Plot showing the trend in the reward during policy training with

a sample 100 dialogues -

3.11 Conclusion

The chapter has discussed the various methods to model and update the various states

in a dialogue process. Bayesian Networks is an efficient and effective structure for
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modelling the various states in a spoken dialogue system which can be used by the

dialogue manager for effective responding during the system’s turn as its beliefs are

updated with an approximated posteriori marginal distribution by the Loopy Belief

Propagation algorithm which makes the system tractable by exploiting the conditional

independence assumptions and limiting the time-slices for which the approximations

are made in the factor graph. The chapter also shows how Natural Critic Algorithm

can be used to learn the policy which tends to converge optimally. It has also been

checked that this framework work well with human users as well as simulators.
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LANGUAGE MODELS
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Spoken dialogue system has an uncertain parameter during the speech recognition

which controls its performance that vary for the different users as well as for the same

user during multiple repetitions of even the same dialogue. This chapter discusses how

recognition errors in the users utterances can be handled by making use of language

models. Language models can be improved over the stochastic language model for

developing a syntactic structure based on word dependencies in local and non local

domain The improved model copes with the issues of limited amount of training mate-

rial and the exploitation of the linguistic constraints of the language.In this chapter we

present how the proposed framework based on dynamic probabilistic model uses word

dependencies based on their part of speech tags along with the tri-gram Model but also

takes care of the influence of the word which are very far from the word being consid-

ered in a text and stores the word history in a dynamic cache for information mining

using long distance dependency. The model based on second order Hidden Markov

Model has been used and an improvement of 2% has been observed in the word error

rate and 4% reduction in the perplexity when compared to the normal tri-gram model

4.1 Language Models

Language models captures the properties of a language and helps to predict a next

word in the word sequence given the probabilities of the predecessor words which are

calculated based on some given training text. The language model forms a very critical

component for any spoken dialogue system as it defines the coverage and accuracy

with which the system can understand what the user speaks and thus improving the

performance of the dialogue manager. Statistical Language models also known as n-

gram Language models characterize the word sequence as a Markov Process [Bahl

et al., 1983] meaning the probability of a word given all previous words depends on

the immediately preceding words. A n-gram is a sequence of n symbols (e.g words,

syntactic categories etc) for some n ≥ 1. When n= 2 it is known as bi-gram language

model i.e in a word sequence w1, w2, ...wi...wn the word wi is conditionally independent

of the word history w1, w2, wi−2 given the preceding word wi−1.

P (wi|wi−1, wi−2, ..., 1) = P (wi|wi−1) (4.1)

57



4. LANGUAGE MODELS

In this case the probability of the word sequence Pw1, w2, ...wi...wn can be decomposed

as the product of the conditional probabilities

P (w1, w2, ..., wn) =
n∏
i=1

P (wi|wi−1) (4.2)

Estimates of Probabilities in n-gram models are commonly based on maximum like-

lihood estimates i.e. by counting the words in the document on some given training

text. The conditional context component also referred to as history can be extended

to consider more than one word e.g trigram language model which is given by the

following equation

P (w1, w2, ..., wn) =
n∏
i=1

P (wi|wi−1, wi−2) (4.3)

The number of parameters in Markov Model is |V |n where V is the set of words and

|V | size of the vocabulary and the order of the Markov process is n-1. The Markov

parameters are typically estimated using in-domain text and the problem of storage

space and attaching a reasonable degree of confidence to the derived estimates are to be

considered. In most of the research domains a vocabulary size of 65000 words and n=3

also referred as trigram language models have given successful results but the related

used words outside this two word context are not taken into consideration which can

lead to improvement in the perplexity of the model.

4.2 Historical background

The term language models originates from probabilistic models of language generation

developed for automatic speech recognition systems in the early 1980s̀ [Jelinek, 1997].

Speech recognition systems use a language model to complement the results of the

acoustic model which models the relation between words (or parts of words called

phonemes) and the acoustic signal. The history of language models, however, goes back

to beginning of the 20th century when Andrei Markov used language models (Markov

models) to model letter sequences in works of Russian literature [Basharin et al., 2004].

Another famous application of language models are Claude Shannons̀ models of letter

sequences and word sequences, which he used to illustrate the implications of coding

and information theory [17]. In the 1990s̀ language models were applied as a general

tool for several natural language processing applications, such as part-of-speech tagging,
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machine translation, and optical character recognition. Language models were applied

to information retrieval by a number of research groups in the late 1990s̀ [4, 7, 14, 15].

They became rapidly popular in information retrieval research. By 2001, the ACM

SIGIR conference had two separate sessions on language models containing 5 papers

in total [13]. In 2003, a group of leading information retrieval researchers published a

research roadmap ’́Challenges in Information Retrieval and Language Modeling ’́ [1],

indicating that the future of information retrieval and the future of language modelling

can not be seen apart from each other.

4.3 Statistical Language Modelling

Statistical Language Modeling is to build a statistical language model that can esti-

mate the distribution of natural language as accurate as possible. A statistical language

model (SLM) is a probability distribution P(s) over strings S that attempts to reflect

how frequently a string S occurs as a sentence.By expressing various language phenom-

ena in terms of simple parameters in a statistical model, SLMs provide an easy way

to deal with complex natural language in computer science.The important application

of SLMs is speech recognition, but SLMs also play a vital role in various other nat-

ural language applications as diverse as machine translation, part-of-speech tagging,

intelligent input method and Text To Speech system.

4.4 Statistics Language Modelling techniques

1 N-gram model and variants

N-gram model is the most widely used SLM today. Without loss of generality we

can express the probability p(s) of a string s as

p(s) = p(w1)p(w2|w1)p(w3|w1w2)...p(wl|w1...wl − 1)

4.5 Class based Semantic n-gram Model

Due to the sparse training text, we make use of Equivalence class based n-gram model

where the probability of word is dependent on its history via the words semantic class

[Solsona et al., 1993], groups of words that share a semantic category relevant to the
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spoken dialogue task. Considering some words as equivalent helps to reduce the word

history equivalence classes to be modelled in the n-gram model. This is implemented by

mapping a set of words to a word class by using a classification function. The domain

knowledge can also be incorporated by classifying the relevant words into classes which

may have some common feature e.g. In a medical assistance system, the user may select

from a number of diseases which may be diagnosed based on a set of symptoms. In this

case we first select a set of semantic classes< diseases >,< symptoms > etc containing

all the relevant diseases names and relevant symptoms appropriate for the domain and

we then annotate the language model training corpus with the semantic classes: the

training corpus is parsed with our natural language understanding grammar we find

the constituents corresponding to the chosen semantic classes [Fosler-Lussier and Kuo,

2001]. And then compute the probability distributions e.g P (w| < disease >) over

all the words in the class. Consider a word sequence W = w1, w2, ...wi...wn the word

C(wi) and let be the class to which a word wi belongs. The probability will be unique

if the class are non overlapping else the probability P (W ) of the word sequence using

a trigram semantic class model[Brown et al., 1992] is given by

P (w1, w2, ..., wn) =
n∏
i=1

P (wi|C(wi))P (C(wi)|C(wi−1), C(wi−2)) (4.4)

where P (wi|C(wi)) is the probability of the word wi occurring in the semantic class

C(wi). The probability distribution P(w—C(w)) depends on the semantic class. For

instance, for the < month > class we use the uniform distribution, but for the <

disease > class it is a function of the number of cases reported in the hospital

4.6 Proposed Model Description

Part of speech tagging is the act of assigning each word in a sentence a tag that describes

how that word is used in the sentence. Typically, these tags indicate syntactic cate-

gories, such as noun or verb, and occasionally include additional feature information,

such as number (singular or plural) and verb tense. Part of Speech Language Models

have been used in speech recognition systems earlier [Dumouchel et al., 1988],[Jelinek

et al., 1991] where the parameters are calculated using annotated training corpus.

Cache language model uses a window of the ‘n‘ most recent words to determine the

probability distribution of the next word. To achieve the dynamic behavior the recent
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Figure 4.1: Semantic Parsing Example - The figure shows semantic parsing equiv-

alent in Kashmiri and English

history has been stored and statistically evaluated in the caches earlier also [Kuhn,

1988],[Kupiec, 1989],. In the dynamic component,[Kuhn, 1988] used the a predicted

POS in a trigram language model to adjust the probability of the next word. Each POS

has a separate cache where the frequencies of all the word that occurred with a POS

is used for the evaluation of the conditional probability of the next word. As a word

is observed it is tagged and the appropriate POS cache is updated. The POS based

Cache Semantic Model helps to identify the local dependencies between the words in

a sequence based on the part of speech (POS) categories. The Parameters of POS

model are of the form P (wi|S(wi))× P (S(wi)|S(wi−2), S(wi−1)) which means that the

POS category S(wi) is first determined for a word at position ’i’ based on the POS

category of the two words S(wi−2), S(wi−1) that precede it. First the various POS

Categories are defined in the form of a vector which can be enhanced later. Then the

model is to be trained for which a large training text corpus is required along with

each words all possible POS categories that the word can take. Various words of the

suitably sized training text are annotated with the unambiguous part of speech(POS)

categories since many words can have multiple POS categories depending upon their

role in the text. Estimates of the frequency of the words in the vocabulary for setting

the initial probability in the model [Levinson et al., 1983]. Hidden Markov models

(HMM) are stochastic models capable of statistical learning and classification. They
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have been applied in speech recognition and handwriting recognition because of their

great adaptability and versatility in handling sequential signals [Thede and Harper,

1999]. So we use second order Hidden Markov models where the states correspond to

POS categories and are labeled by the category they represent. The A matrix contains

state transition probabilities, the B matrix contains output symbol distributions, and

the C matrix contains unknown word distributions.The Parameters of POS model are

of the form P (wi|S(wi))× P (S(wi)|S(wi−2), S(wi−1)) which means that the POS cat-

egory S(wi) is first determined for a word at position ’i’ is based on the POS category

of the two words S(wi−2), S(wi−1) that precede it. The probability of transitioning

to a new state depends not only on the current state, but also on the previous state.

This allows a more realistic context-dependence for the word tags than the first-order

model. The elements of the output matrix have been assigned to word equivalence

classes rather than the individual words which aid the estimation of the required num-

ber of parameters which is very large especially in different word types. Within these

classes word have an uneven distribution and the transition matrix is set so that all

the state transitions have an equal probability. The output matrix probability is based

on the word occurrence probability P (Vi) which is then converted to probabilities of

the word equivalence classes P (Wk). The probability of each equivalence class Wk is

then divided equally among the POS categories that are in the equivalence class to

give weights F (Wk, Ci). This reflects the assumption that all words in an equivalence

class can initially function equiv-probably as any POS category of the class. The out-

put matrix elements for each state are constructed using the various F (Wk, Ci). For

each state, the elements are then normalized to sum to unity. The HMM model is

then trained using Baum-Welch algorithm [Baum, 1972]. The algorithm (BW) is used

for estimating the parameter values that maximize the likelihood of the training text

belongs to a family of algorithms called Expectation Maximization (EM) algorithms.

They all work by guessing initial parameter values, then estimating the likelihood of the

data under the current parameters. These likelihoods can then be used to re-estimate

the parameters, iteratively until a local maximum is reached. To determine the most

likely state sequence Viterbi algorithm [Viterbi, 1967] has been used which maximizes

the probability of seeing the test sentence.

The static language model has a probability distribution for the next word condi-

tioned on the previous words which is obtained by taking mean over many documents.

The static model has a problem that some words or word sequence are more likely to
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happen within a specific context can not depend on average over other documents. So

to overcome this, we make use of a ”dynamic” model based on a word cache which

contains frequency ordered linked list of words occurring in the previous text history.

In a specific topic various words tend to be repeated as such there frequency count is

incremented or if the word is not in the list, the list is updated with a initial count

of 1. These counts are used to determine the conditional probabilities of words in the

dynamic cache which participates in determining the correlation with the previous two

words.

4.7 Experiment

We tested our model on a collection of test data sets (1) Academic speech for ad-

vising(The MICASE corpus) from University of Michigan and (2) The Trains corpus

from University of Rochester were download and used for the study. The experiments

were conducted to check the performance of Adaptive Hybid POS language model over

tri-gram language model using word error rate (WER) and perplexity (PP) reduction

as our measure.

4.8 Result and Discussion

Table 3.1 shows the perplexity of the static tri-gram language model and Adaptive

Hybid POS language model over for the the test sets. The cache size was 1000 words

and was updated word synchronously. The Adaptive Hybid POS language model yields

from 8% to 12% reduction in perplexity, with the larger reduction occurring with the

test sets with larger perplexity.

Test Data Set Tri-gram Model Adaptive Model

MICASE Corpus 95 90

TRAINS Corpus 167 126

Table 4.1: Perplexity of Static and Adaptive Model.

It was observed that an improvement of 2% has been observed in the word error

rate and 4% reduction in the perplexity when compared to the normal tri-gram model.
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Cache Size 0 500 1000

Perplexity 167 152 126

Table 4.2: Influence of Cache Size on perplexity of TRAINS Corpus
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Spoken Language Understanding has been a challenge in the design of the spoken

dialogue system where the intention of the speaker has to be identified from the words

used in his utterances. Typically a spoken dialogue system comprises a four main

components an automatic speech recognition system (ASR), Spoken language under-

standing component (SLU), Dialogue manager (DM) and an Speech synthesis system

which converts the text to speech (TTS). Spoken Language understanding deals with

understanding the intent from the words of the speakers utterances. The accuracy of

the speech recognition system is questionable and researchers have provided various

solutions to the problem and classifying the information may actually guide the dia-

logue manager in framing a response. Many models both statistical as well as empirical

methods have been suggested for extracting information from text by automatically

generating a language model after training from the annotated corpus.[Tur et al., 2005]

When Statistical classifiers are used for classification they have to be trained using a

large amount of task data which is usually transcribed and then assigned one or more

predefined type to each utterance by humans, a very expensive and laborious pro-

cess[Zhou et al., 2007]. But they do not perform well due to the lack of large scale

richly annotated corpora. [Seymore et al., 1999] extracted the important information

from the headers of computer science research papers by making use of Hidden Markov

models. A statistical method based on HVS has been proposed to automatically ex-

tract information related to protein ? protein interactions from biomedical literature

[Zhou et al., 2006]

5.0.1 Machine Learning

Learning as per the dictionary may be defined as ‘to gain knowledge or understanding

of’ or ‘skill in by study,instruction or experience and ‘modification of a behavioural ten-

dency by experience’. Herbert Simon defined Machine Learning as “Learning denotes

changes in the system that are adaptive in the sense that they enable the system to do

the same task or tasks drawn from the same population more effectively the next time”.

When a computer is programmed such that it optimizes its performance criterion P for

a set of tasks T with respects to the changes in the environment E using example data

or past experience. Computer Programs which can program themselves in different
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situations are then said to have learn from its previous experiences. Machine learning

is used for

• Understanding and improving efficiency of human learning in complex systems.

For example, In Computer-aided instruction we use machine learning to improve

methods for teaching and tutoring people depending upon their pace and interest.

• Filling in skeletal or incomplete specifications about a complex large domain Arti-

ficial Intelligent system which cannot be completely derived by hand and require

dynamic updating to incorporate new information. Learning new characteristics

expands the domain or expertise and lessens the ”brittleness” of the system.

• Discover new things or structure that is unknown to humans for example, Data

mining. . . .

Semi-supervised learning uses both supervised and unsupervised learning to learn

from both annotated and unannotated sentences for classifications, clustering and so

on. [Nigam et al., 2000] used Expectation-Maximization algorithm with a nave Bayes

classifier on multiple mixture components for text classification. Small amount of

labeled data is used to first build a model which is then used to annotate the instances

of the unlabeled instances. The instance along with identified label which posses the

more confidence measure are then added to the training set and participate in retraining

of the model for the left out instances. The process is continued for the training of the

remaining of the un-annotated sentences.

5.1 The Hidden Vector State Model

The basic hidden vector state model is a discrete Hidden Markov Model in which each

HMM state represents the state of a push down automaton which encodes history in a

fixed dimension stack. Each state consists of a stack where each element of the stack

is a label chosen from a finite set of cardinality M+1,C = {c1, .., cM , c6=}. A HVS

model state of depth D can be characterized by a vector of dimension D with most

recently pushed element at index 1 and the oldest at index D. Each vector state is like

a snapshot of the stack in the push-down automaton and transitions between states

can be factored into a stack shift by n positions followed by a push of one or more new
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pre-terminal semantic concepts. The number of new concepts to be pushed is limited

to one. The joint probability P (W,C,N |λ) of a sequence of stack pop operations, word

sequence W and concept vector sequence C is approximated as

P (W,C,N) =
T∏
t=1

P (nt|W t−1
1 , Ct−1

1 ).P (Ct|W t−1
1 , nt).P (Ct|W t−1

1 , nt) (5.1)

with the assumptions as

P (nt|W t−1
1 , Ct−1

1 ) ≈ P (nt|ct−1)

P (Ct[1]|W t−1
1 , nt) ≈ P (ct[1]|ct[2?Dt])

P (Ct[1]|W t−1
1 , nt) ≈ P (wi|ci)

so we have

P (W,C,N) =
T∏
t=1

P (nt|ct−1).P (ct[1]|ct[2, . . . , Dt]).P (wi|ci) (5.2)

Where

(a) ct denotes the vector state at word position t, which consists of Dt semantic concept

labels (tags) i.e. ct = {ct[1], ct[2], ..., ct[Dt]} wherect[1] is the preterminal root and

ct[Dt] is the root concept normally represented by SS (Sentence Start)

(b) nt is the vector stack shift operation and takes values in the range of 0 . . .Dt−1

where Dt−1 is the stack size at word position t− 1.

(c) ct[1] = cwt is the new preterminal semantic tag assigned to word wt at word position

t.

The key feature of the HVS model is its ability for representing hierarchical informa-

tion in a constrained way which can be trained from only lightly annotated data. The

generative process associated with HVS model consists of three steps for each position

t :

(1) Choose a value for nt.

(2) Select preterminal concept tag ct[1].
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(3) Select a word wt.

A set of domain specific lexical classes and abstract semantic annotations which

limit the forward and backward search to include only those states which are consistent

with these constraints for the model training must be provided for each sentence.

5.2 Semi-Supervised Learning

The main aim of the semi-supervised learning is to utilize the labelled utterances for

annotating the unlabelled utterances in order to improve the performance of a classifier

and reducing the human labelling effort. The semi-supervised learning technique used

is as follows, Initially the human labeled task data is used to train the initial model

which is used then to classify the unlabelled utterances. The machine labeled utterances

whose confidence score value is above a threshold so that the noise due to classifier

errors is reduced are added to the training data. If the input space is X and the output

is Y = {−1, 1} it is known as binary classification. . Suppose EL is the small set of

labeled sentences EL = {< s1, a1 >,< s2, a2 >, ..., < si, ai >} where S = {s1, s2, .., si}
is the set of sentences and A = {a1, a2, .., ai} is the set of corresponding annotation for

each sentence. And EU is the large set of unlabelled data EU = {si+1, si+2, ?..si+u}.
The process of predicting the labels AU of the unlabelled data SU is known as the

transduction. The process of constructing a classifier f : X = {−1, 1} on the whole

input space using the unlabeled data comes under the purview of semi-supervised

learning

5.3 Related Work

In Language Processing framework there are two approaches viz certainty based ap-

proaches and committee based approaches of having control over the type of inputs

on which it trains.In certainty based approaches, a small set of annotated examples is

used to train the system, the system then labels the unannotated sentences and deter-

mines the confidence for each of its prediction. The sentences with lower confidence are

then presented to the labelers for annotation. In Committee based methods, a small

set of annotated sentences are used to create a disjoint set of classifiers, which are

then used to classify the unannotated sentences. The sentences where the classification
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differ much are manually annotated. [Nigam et al., 2000]learned from both labeled

and unlabelled data based on combination of Expectation Maximization and a Nave

Bayes classifier on multiple mixture components per class for task of text classifica-

tion. [Yarowsky, 1995] used self training for word sense disambiguation. Rosenberg et

al [Rosenberg et al., 2005] applied self training to object detection from images. Self

training builds a model based on the small amount of labeled data and then uses the

model to label instances in the unlabeled data. The most confident instances together

with their labels participate in the training set to retrain the model. [Ghani, 2002]

proposed an algorithm for exploiting the labeled as well as un- labeled data using the

co training with Expectation Maximization(CO-EM). [Allen et al., 2002] used semi-

supervised learning for automation speech recognition and have shown improvements

for statistical language modeling where they exploited confidence scores for words and

utterances computed from ASR word lattices.

5.4 Proposed Framework

A probabilistic framework is used to describe the nature of sentences and their anno-

tations where semantic annotations are considered as the class label g ∈ G for each

sentence with the following two assumptions

(a) If |G| is the number of distinct annotations in the labeled setEL whereEL =

{(s1, a1), (s2, a2), ?., (sL, aL)} then the data are produced by |G| is the number

of distinct annotations in the labeled set probability models.

(b) There is a one to one correspondence between probability components and classes.

Considering the each individual annotation as a class, the likelihood of a sentencesi

is given by

P (si|λ) = P (ai = gj|λ)P (si|ai = gj, λ) (5.3)

Where gj is the annotation of the sentence si and λ represents the complete set of HVS

model parameters. Since the domain of possible training examples is s|L|+|U | and the

binary indicators are known for the sentences in EL and unknown for the sentences in

EU . The class labels of the sentences are represented as the matrix of binary indicators

Z where

Zij = {+1 ifai = gj0 otherwise
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Then we have

P (si|λ) =

|G|∑
j=1

zijP (gj|λ)P (si|gj, λ) (5.4)

Calculating the maximum likelihood estimate of the parameters λ i.e. argmaxλP (W,C,N |λ)

for learning the HVS model. The annotation A for the word sequence W can be de-

termined by {C,N} i.e the concept vector sequence C and the series of stack shift

operations N and {C,N} can be inferred from A.Thus argmaxλP (W,C,N |λ) can be

rewritten as argmaxλP (W,A|λ) which can further be rewritten as argmaxλP (E|λ)

which is the product over all the sentences assuming each sentence is independent of

each other. The probability of the data is given by

P (E|λ, Z) =
∏
Si∈E

|G|∑
j=1

ZijP (gj|λ)P (si|gj, λ) (5.5)

The complete log likelihood of the parameters lg(E|λ, Z) can be expressed as

lg(E|λ, Z) =
∑
si∈E

|G|∑
j=1

ZijlogP (gj|λ)P (si|gj), λ) (5.6)

To improve the performance of classifier, the methods used are based on classifi-

cation and Expectation Maximization. Both the methods assume that there is some

training data available for the initial classifier. The main aim is to use this classifier to

label the unlabelled data automatically and to then improve the classifier performance

using machine labeled utterances. Semi-supervised learning based on classification

measures the edit distance between the POS tag sequences of the sentences in EL and

POS tag sequences of sentences in EU to automatically generate the annotation for

the unlabelled sentences. The edit distance or Levenshtein distance of two strings, s1

and s2, is defined as the minimum number of point mutations required to change s1

into s2, where a point mutation can be either changing a letter or inserting a letter or

deleting a letter.If X and Y are two pos tag sequences of length n and m respectively,

a tabular computation which contains the score of the optimal alignment between the

initial segment from X and the initial segment from Y is calculated using the following

algorithm.
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Algorithm 5.1 Minimum Edit Distance Algorithm

Intialize : Set D(i, 0) = 0 and D(0, j) = 0.

for each i from 1 to m do

for each j from 1 to n do

D(i, j) = D(i− 1, j) + 1

D(i, j) = D(i, j − 1) + 1

if X(i)= Y (j) then

D(i, j) = D(i− 1, j − 1)

else

D(i, j) = D(i− 1, j − 1) + 2

end if

end for

end for

Dynamic programming which solves problems by combining solutions to sub prob-

lems is used comprising of edit distance matrix D(i, j). By this technique we first cal-

culate D(i, j) for smaller i, jand compute larger D(i, j)based on the previous computed

smaller values i.e compute D(i, j) for all 0 < i < n and 0 < j < m. Given two sentences

Si, Sj and their corresponding POS tag sequences Ti = a1a2..ani and Tj = a1a2..anj,

the distance between the two sentences is defined as Dist(Si, Sj) = −D(ni, nj) where

D(ni, nj) is the distance measure of optimal alignment between two POS tag sequences

Ti and Tj.

5.5 Distance-Weighted Nearest Neighbour Algorithm

Classification a spoken dialogue learning uses a finite number of labeled examples and

selects a hypothesis is expected to generate few errors on the future examples. In case of

spoken dialogue systems human labeling of the the spoken utterances has a wide impact

on the quality of the machine labeling of the unlabeled sentences. The basic elements

to handle by classification algorithm are word lattices which may contain a single word

or a collection of words with some weight or probability [Blum and Mitchell, 1998]. The

technique which we have used for classification is Distance-Weighted Nearest Neighbour

Algorithm. Since the training Input variables consists of the set ¡X,Y¿ where X contains

represents the word and Y represents its semantic annotation, the algorithm finds the
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training points which have the closest edit distance to the queried word. It assigns

weights to the neighbours based on their d̀istancèfrom the query point, the Weight are

inverse square of the distances. and then classifies according to the mean value of the

k̀ǹearest training examples. All the training points influence a particular instance.

5.6 Semi-supervised Learning based on expectation

maximization

The EM algorithm is an efficient iterative procedure to compute the Maximum like-

lihood (ML) estimate in the presence of missing or hidden data. In ML estimation,

we wish to estimate the model parameter(s) for which the observed data are the most

likely. So we cluster the sentences in EL and EU . The original model will contain

more sentences since some sentences in EU will have the similar semantic structure

with those sentences in EL which have been used to train the HVS Model but adding

should be based on some confidence measure so that the performance of the model is

improved. To do this a parameter DGf which represents the degree of fitness is to be

used for selecting the sentences based on parsing information Ip, structural information

Is and complexity information Ic[2]. These parameters of a sentence are defined as

Parsing information Ip describes the information in the parsing result and is defined

as

Ip = 1−
∑n

j=1KEY I(Sij)∑n
j=1KEY (Sij)

Where ǹ d̀enotes the length of the sentence si, sijdenotes the jth word of the sentence

si and the functions KEY I(sij) is equal to 1 if s(ij)is a word in the EL and 0 other-

wise. KEY (sij) is 1 if KEY I(sij) is 1 and the semantic tag of sij is not known and 0

otherwise.

Structure information Is is a measure of similarity between the structure informa-

tion of a sentence si and the sentences sj in EL which is given by

Is = 1− min ?(Dist(si, sj))

max (Dist(sk, sj))
+
NUM(C(si))

|EL|

Where sj ∈ EL and sk ∈ EU , C(si) denotes the cluster where siis located, Dist(si, sj)

is the edit distance measure between sentence si and sj. NUM(C(si)) is the number

of sentences in the cluster C(si).
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Complexity information Ic is based on the length of the sentence si and the max

length of the sentence sj where sj ∈ EL ∪ EU . Icis given by

Ic = 1− length(si
max?(length(sj)|sj ∈ EL ∪ EU)

Since the measure of selecting a sentence is based on the degree of fitness DGf which

is given by

DGf = βpIp + βsIs + βcIc + βo

The coefficients β = (βp, βs, βc, βo) are calculated using the method of least squares

and β is selected to minimize the residual sum of squares.

RSS(β) =
N∑
i=1

(DG
′

f −DGf )
2

The parameter β is estimated from the ǹ s̀et of training data, DG
′

f is the estimated

value and DGf is the observed value. First a sample corpus of words are identified from

the travel domain. Then a semantic tag based on the class is attached for identifying

interactions. The vertibi decoding algorithm is used to parse the sentences of the EL.

For the sentences in EU selection is done based on the parameters i.e. DGf . Thus the

sentences in EU would be added to the set of sentences with annotation and participate

in further automatically annotating sentences in EU .

5.7 Experimental Evaluation

.

5.7.1 Methodology

To evaluate the proposed model the training data was split into two data sets corpus I

comprising of 200 sentences out of which 100 sentences with manual annotation from

travel domain are added toEL for training the HVS model and 100 sentences were added

to EU . First clusters are created from the learned sentences based on the edit distance

measure and then semi supervised learning based on expectation maximization was

applied to the sentences in EU The corpus II comprised of the 250 sentences which

incremented the 200 sentences by 50 more sentences with annotation for learning the
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HVS model. And then out of 100 sentences 47 sentences were semantic annotated

successfully with out any human labeling by the algorithm.

5.7.2 Results

. The experimental results for the baseline HVS model trained on sentences in EL

contained 74 classes when classification was performed. 8 Experiments were performed

for subset of sentences in EU with the k = 1,2,3 based on Distance-Weighted Nearest

Algorithm. The overall precision was calculated by

OP =
NSc

NSc +NSic

where

• Number of sentences for which annotation was done correctly

• Number. of sentences for which annotation was done Incorrectly

based on classification. The overall precision in the travel domain data set was observed

at 65.4% with k=3 when only sentences from EL were used. The HVS Model was

incrementally trained with these newly added sentences from EU based on the sentence

selection based on expectation maximization which improved the performance by 4.6%

Experiment Precision %(EL) Precision %(EL + EU) ?

1 54.3 62.1

2 58.7 59.6

3 59.9 61.7

4 64.1 65.4

5 65.7 59.2

6 57.1 68.7

4 58.2 65.8

5 52.3 67.3

Table 5.1: Precision %age of Semi-Supervised Learning on Labeled and using

labeled training data for unlabeled data set
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Figure 5.1: Semantic Parsing Example - The figure shows semantic parsing equiv-

alent in Kashmiri and English

5.8 Conclusion

In this chapter we have used two semi-supervised learning techniques which have made

use of both labeled and unlabeled data to improve the performance of the HVS model.

The overall performance was improved by nearly 4-5%. In future we will use the ma-

chine learning technique like SVM or Kernels for dealing with problems where minimum

labeled data is available.
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Utterances used by a human while framing a response during the interaction with

a software agent like spoken dialogue system(SDS) has valuable information as regards

internal mental state of the user is concerned. Sentiment analysis is an analysis of the

mental state of a person, his opinion, appraisal or emotion towards an event, entities

or their attributes. The users level of certainty about a topic could be determined by

the analysis not only of the text used in the utterance but by studying the prosody

information structure. Prosody reveals Information about the context by highlighting

information structure and aspects of the speaker hearer relationship. Most often it is

observed that the speakers internal state is not depicted by the words he uses but by

the tone of his utterance or facial expression of the user.

The dialogue cycle for more general human-computer interactions include infor-

mation other than speech which need some method for its identification and then using

these non-speech inputs so that they can included by adding inputs to and outputs

from the dialogue manager. This does not break the dialogue cycle structure since

the dialogue manager can extend its definition of state to include this extra informa-

tion. Similarly, the output from the dialogue manager can be extended to include

more than a dialogue act and could include other actions as well. [Bohus and Horvitz,

2009] provides an example of a spoken dialogue system with multiple parties and vi-

sual sensory inputs. In this chapter we had analyzed a sample of student conversations

after a lecture on operating system subject and based on prosodic features during few

questions determine whether they were certain, uncertain or neutral about the lecture

contents. This paper uses PRATT a tool for speech analysis which uses 15 acoustic

features to determine the certainty of the responses of the user through classification by

RAPIDMINER based on the prosody information which will actually aid the dialogue

management component of the Spoken Dialogue System in framing a better dialogue

strategy.

6.1 Introduction

Spoken language is an intuitive form of interaction between humans and computers.

Spoken Language Understand has been a challenge in the design of the spoken dialogue

system where the intention of the speaker has to be identified from the words used in

his utterances. Typically a spoken dialogue system comprises a four main components
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an automatic speech recognition system (ASR),Spoken language understanding com-

ponent (SLU), Dialogue manager (DM) and an Speech synthesis system which converts

the text to speech (TTS). Spoken Language understanding deals with understanding

the intent from the words of the speakers utterances. The accuracy of the speech

recognition system is questionable and researchers have provided various solutions to

the problem of automatic speech recognition which lagged behind human performance

[Baker et al., 2009] there have been some notable recent advances in discriminative

training [He et al., 2008] e.g., maximum mutual information (MMI) estimation [Ka-

padia et al., 1993], minimum classification error (MCE) training [Juang et al., 1997],

[McDermott et al., 2007], and minimum phone error (MPE) training [Povey and Wood-

land, 2002], [Povey, 2004]), in large-margin techniques (such as large margin estimation

[Jiang and Li, 2007] large margin hidden Markov model (HMM) [Sha and Saul, 2006],

large-margin MCE [Yu et al., 2006], and boosted MMI [Povey et al., 2008], as well as

in novel acoustic models (such as conditional random fields (CRFs) [Hifny and Renals,

2009], hidden CRFs [Gunawardana et al., 2005] [Yu and Deng, 2010] and segmental

CRFs [Zweig and Nguyen, 2010],training densely connected, directed belief nets with

many hidden layers which learn a hierarchy of nonlinear feature detectors that can cap-

ture complex statistical patterns in data [Hinton et al., 2006]. There are many cases

of experiences by the users when the computers either do not understand the intended

meaning of the user even after correctly recognizing the spoken utterances. One of the

reason may be that in a face to face human conversation, there are contextual, audio

and visual cues [Krahmer and Swerts, 2005] which aid the knowledge requirements of

the users for the efficient communication as the users other than the contextual are

able to sense the mood and tone of the user by which they come to know whether

the speaker is certain or not. This is, absent in a dialogue between a computer and a

human because in many potential applications there is only audio input and no video

input. If the Spoken Dialogue Systems are improved to use the prosodic information

from the spoken utterance they will definitely benefit from the level of certainty of the

user [Heather et al., 2011] such as spoken tutorial dialogue systems [Forbes-Riley and

Litman, 2009], language learning systems [Alwan et al., 2007] and voice search applica-

tions [Paek and Ju, 2008]. Our primary goal is to make use of prosodic information for

aiding the dialogue manager in selecting the dialogue strategy for effective interaction

and influencing the final outcome. Technically Prosody is defined as the rhythm, stress,

and intonation of speech which reflect various features such as emotional state of the
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speaker, the form of the utterance (statement, question, or command, the presence of

irony or sarcasm, ; emphasis, contrast, and focus or other elements of language that

may not be encoded by grammar or choice of vocabulary Prosodic information of an

utterance can be used to determine how certain a speaker is and hence the internal

state of mind [Lee and Narayanan, 2005] which can be used for tasks from detecting

frustration [Ang et al., 2002], to detecting flirtation [Ranganath et al., 2009] and other

intentions. The model proposed that uses prosodic information to classify utterances

has effectively coloured the system responses in a travel based information system and

performed better than a trivial non-prosodic baseline model. In the context of human

computer interaction, the study of prosodic information has been aimed at extract-

ing mood features in order to be able to dynamically adapt a dialog strategy by the

automatic SDS.

6.2 Corpus and Certainty annotation

It is very important to understand that not only what words are spoken by a speaker in

his utterance but how the words are spoken along with the certainty factor can actually

guide the dialogue process between the machine and the user. The spoken utterance

may be perceived as uncertain, certain, neutral or mixed which helps the dialogue

system to make a guess about the mental state of the user about the utterance or

about the concept about which he is speaking about. In this paper we examine impact

of a lecture and certainty of students as it is expressed within the context of a spoken

dialogue.

AGENT : What is an operating system.

STUDENT :It is a set of software or hardware may be (UNCERTAIN).

AGENT : Is it hardware or software.

STUDENT :software(CERTAIN)

AGENT : What do you know about round robin scheduling.

STUDENT : Uh-uhh (NEUTRAL)
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A corpus of 15 lecture related dialogues are selected and after listening each sentence

of the student is labeled by an annotator with either certain or uncertain or neutral.

The dialog were also lexically annotated based on the words used as certain, uncertain

and neutral. The percentage of sentences with certainty, uncertainty and neutral for

the auditory and lexical conditions are shown in the table 6.1.

Condition Certain Uncertain Neutral ?

Auditory 22.3 18.4 59.3

Lexical 12.1 11.7 76.2

Table 6.1: Percentage of corpus with different levels of certainty, annotated

by listening to the audio of the dialogue context and annotated based on the

lexical structure of the dialogues.

It was observed that 40.7% non-neutral corpus could be decided as certain or un-

certain based on the audio and the dialog context compared to the 23.8 % based on

the lexical information. As such we used the acoustic-prosody features for further

information about the certainty or uncertainty.

6.3 Prosodic Model

For the basic model we compute values for 15 prosodic features as given in the table 6.2

for each utterance in the corpus of the student lecture set using PRATT ( a program

for speech analysis and synthesis)[Boersma, 2002] and wavesurfer for extracting the

f0 contour. Feature values are represented as zscores normalized by speaker. The

temporal features like voice breaks, unvoiced frames, degree of voice breaks, Total

duration are not normalized.

The set of features were selected in order to be comparable with Liscombe et

al [Liscombe et al., 2005] who used the same features along with turn related features

for classifying uncertainty. The set of features were selected in order to be comparable

with Liscombe et al [ 31] who used the same features along with turn related features

for classifying uncertainty
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Number of Features Features ?

6 Minimum, Maximum and Standard Deviation,

Relative position Min f0,

Relative position Maxf0,

Fundamental frequency (f0)(Statistics of Pitch)

4 Minimum, Maximum Mean and Standard

Deviation (RMS),(Statistics of Intensity)

1 Ratio of voiced frames to total frames in the

speech signal as an approximation of speaking rate

2 Total silence, Percent silence

2 Speaking duration, Total duration.

Table 6.2: Extracted and selected features.

6.4 Classification Results

The features extracted are used as input variables to RAPID MINER machine learning

software which built C4.5 decision tree models which iteratively builds weak models

and combines them to form a better model to predict the classification of unseen data.

As an initial model we train a single decision tree using the selected 15 features as

listed in Table 6.2. The model was evaluated over all the utterances of the corpus and

it classified within the classification classes, certain, uncertain and neutral and cross

validated with an accuracy of 65% as compared to the non-prosodic model which had

a an classification accuracy of 51.1%.
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Figure 6.1: Undiscretized Data Decision Tree
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Figure 6.2: Decision tree obtained after data discretisation
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Figure 6.3: Figure indicating the Pitch versus the output of different samples
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Figure 6.4: Figure indicating the maximum intensity versus the maximum pitch of

different samples
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Figure 6.5: Performance Statistics
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7.1 Conclusions Drawn

This thesis has shown that the representing the dialogue using Bayesian approaches

provides an efficient and effective solution for handling the inherent uncertainty and

also enable the dialogue history to be taken into consideration when the design of the

dialogue manager is to be considered. Various algorithms both for exact as well as for

approximate updates for highly complex real-world systems were developed and tested

on the sample. The parameters for the belief updating models can be learned on data

that is not annotated for dialogue state, which makes the application of such models

for new tasks relatively simple. Using machine learning techniques, the system can

learn optimal policies and use that for its strategy formulation for a given task.These

policies don’t require any human intervention, since all policy decisions are learned

automatically. This also simplifies the design process of a dialogue system for new

domains.

Experiments have shown that the various approaches presented in this thesis

outperform traditional approaches. The proposed framework which includes Semi-

Supervised learning of Hidden Vector State model and utilizing prosodic information

results in improved handling of uncertainty, improved re-scoring ability of the user

model, improved decision making of the policy and finally improved overall perfor-

mance of the dialogue system. In summary, the approaches described here have several

key advantages when compared to alternative approaches. When compared to tradi-

tional hand-crafted approaches there are following advantages:

• The system becomes flexible to handle noise.

• The system learns the policies using the reinforcement learning techniques auto-

matically and as such relieves the system designer from additional effort.

• Belief updates are done using possible efficient strategy based on classes and

hence happen to computationally efficient.

• Enables building complex spoken dialogue systems.

• More flexibility is allowed e.g User goal can change during the dialogue process.

• Parameters can be learned without annotations of dialogue state
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Chapter 3 is an exploratory work which identifies current issues in spoken dialogue

representation. Thereafter, we propose a framework which aim at mitigating the cur-

rent issues in dialogue representation and an efficient inferencing. In addition to this,

a set of factors are also presented which can help us in choosing appropriate learning

technique which aids in automatically policy formulation for the dialogue manager.

Chapter 4 presents how Language Modelling using adaptive hybrid POS cache

model can help in confidence scoring for handling errors during the automatic spoken

recognition.The model proposed using a window based tri-gram language model which

is capable or re utilizing the information for better scoring in future to correct the

wrongly identified words by the ASR. The perplexity as well as Word Error Rate had

improved over the traditional approaches

Chapter 5 presents an empirical study of how semi-supervised learning using Hidden

Vector State Model can also aid in effective learning.We have used two semi-supervised

learning techniques which have made use of both labeled and unlabeled data to improve

the performance of the HVS model. The overall performance was improved by nearly

4-5%.

Chapter 6 presents an empricial study to show that prosodic information can be

used to identify the intention as well as the mental structure which is normally not given

by the words that the speaker speaks and is used in human to human conversations

for responding. The results show that it can be determined that whether the speaker

is certain, uncertain or neutral about a subject based on the evaluation of prosodic

information, like frequency, pitch or intensity etc.

7.2 Future Work

There are some limitations in the present research that stem from the particular re-

search focus and scope that have been chosen. With so many modelling techniques and

the very inadequate quantitative and qualitative knowledge about them, we strongly

believe that there is a need of much more research and evidence in the spoken dialogue

systems. The work in this thesis can be extended or replicated further to produce more

realistic, generalized and implementable results.

The work in the thesis can be extended in the following ways:
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1. The system design has to have the knowledge of the domain for which the spoken

dialogue system is to be designed and has to embed the knowledge using ontolo-

gies about the concepts. Future work will need this to be done automatically by

discovering the structure of the problem using machine learning.

2. To evaluate the policy learning it has to be tested with a dialogue simulator.

Current simulation techniques require large amounts of development time, which

makes changing the domain of a system difficult. Future work will develop meth-

ods for automatic learning of the system’s user model which could then be ex-

tended to user simulation and also evaluate the simulation.

3. To use the non-verbal cues like gestures for framing the dialogue strategy in

addition to prosodic information and use kernel methods for this process

4. Refining the proposed framework, if required.

End
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