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We address the problem of inferring a speaker’s level of certainty based on prosodic information in the speech signal, which has
application in speech-based dialogue systems. We show that using phrase-level prosodic features centered around the phrases
causing uncertainty, in addition to utterance-level prosodic features, improves our model’s level of certainty classification. In
addition, our models can be used to predict which phrase a person is uncertain about. These results rely on a novel method for
eliciting utterances of varying levels of certainty that allows us to compare the utility of contextually-based feature sets. We elicit
level of certainty ratings from both the speakers themselves and a panel of listeners, finding that there is often a mismatch between
speakers’ internal states and their perceived states, and highlighting the importance of this distinction.

1. Introduction

Speech-based technology has become a familiar part of
our everyday lives. Yet, while most people can think of
an instance where they have interacted with a call-center
dialogue system, or command-based smartphone applica-
tion, few would argue that the experience was as natural
or as efficient as conversing with another human. To build
computer systems that can communicate with humans using
natural language, we need to know more than just the words
a person is saying; we need to have an understanding of his
or her internal mental state.

Level of certainty is an important component of internal
state. When people are conversing face to face, listeners are
able to sense whether the speaker is certain or uncertain
through contextual, visual, and auditory cues [1]. If we
enable computers to do the same, we can improve how
applications such as spoken tutorial dialogue systems [2],
language learning systems [3], and voice search applications
[4] interact with users.

Although humans can convey their level of certainty
through audio and visual channels, we focus on the
audio (the speaker’s prosody) because in many potential
applications, there is audio input but no visual input. On
tasks ranging from detecting frustration [5] to detecting
flirtation [6], prosody has been shown to convey information
about a speaker’s emotional and mental state [7] and about

their social intentions. Our work builds upon this, as well as
a small body of work on identifying prosodic cues to level
of certainty [1] and classifying a speaker’s certainty [8]. The
intended application of such work is for dialogue systems
to appropriately respond to a speaker based on their level
of certainty as exposed in their prosody, for example, by
altering the content of system responses [9] or by altering the
emotional coloring of system responses [10].

Our primary goal is to determine whether prosodic
information from a spoken utterance can be used to
determine how certain a speaker is. We argue that speech-
based applications will benefit from knowing the speaker’s
level of certainty. But “level of certainty” has multiple
interpretations. It may refer to how certain a person sounds,
the perceived level of certainty. This definition is reasonable
because we are looking for prosodic cues—we want our
system to hear whatever it is that humans hear. Not
surprisingly, this is the definition that has been assumed in
previous work on classifying level of certainty [8]. However,
in applications such as spoken tutoring systems [9] and
second language learning systems [3], we would like to know
how certain speakers actually are—their internal level of
certainty, in addition to how certain they are perceived to
be. This knowledge affects the inferences such systems can
make about the speaker’s internal state, for example, whether
the speaker has a misconception, makes a lucky guess, or
might benefit from some encouragement. Getting a ground
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truth measurement of a speaker’s internal level of certainty
is nearly impossible, though by asking speakers to rate their
own level of certainty, we can get a good approximation, the
self-reported level of certainty, which we use as a proxy for
internal level of certainty in this paper.

In the past work on using prosody to classify level
of certainty, no one has attempted to classify a person’s
internal level of certainty. Therefore, one novel contribution
of our work is that we collect self-reported level of certainty
assessments from the speakers, in addition to collecting
perceived level of certainty judgements from a set of listeners.
We look at whether simple machine learning models can
classify self-reported level of certainty based on the prosody
of an utterance. We also show that knowing the utterance’s
perceived level of certainty helps make more accurate
predictions about the self-reported level of certainty.

Returning to the problem of classifying perceived level
of certainty, we present a basic model that uses prosodic
information to classify utterances as certain, uncertain, or
neutral. This model performs better than a trivial baseline
model (choosing the most common class), corroborating
results of prior work, but we also show for the first time
that the prosody is crucial in achieving this performance by
comparing to a substantive nonprosodic baseline.

In some applications, for instance, language learning and
other tutorial systems, we have information as to which
phrase in an utterance is the probable source of uncertainty.
We ask whether we can improve upon the basic model by
taking advantage of this information. We show that the
prosody of this phrase and of its surrounding regions help
make better certainty classifications. Conversely, we show
that our models can be used to make an informed guess
about which phrase a person is uncertain about when we do
not know which phrase is the probable source of uncertainty.

Because existing speech corpora are not sufficient for
answering such questions, we designed a novel method for
eliciting utterances of varying levels of certainty. Our corpus
contains sets of utterances that are lexically identical but
differ in their level of certainty; thus, any differences in
prosody can be attributed to the speaker’s level of certainty.
Further, we control which words or phrases within an
utterance are responsible for variations in the speaker’s level
of certainty. We collect level of certainty self-reports from
the speakers and perceived level of certainty ratings from
five human judges. This corpus enables us to address the
questions above.

The four main contributions of this work are

(i) a methodology for collecting uncertainty data, plus
an annotated corpus;

(ii) an examination of the differences between perceived
uncertainty and self-reported uncertainty;

(iii) corroboration and extension of previous results in
predicting perceived uncertainty;

(iv) a technique for computing prosodic features from
utterance segments that both improves uncertainty
classification and can be used to determine the cause
of uncertainty.

Our data collection methodology is described in
Section 2. We find that perceived certainty accurately reflects
self-reported certainty for only half of the utterances in our
corpus. In Section 3, we discuss this difference and highlight
the importance of collecting both quantities. We then present
a model for classifying a person’s self-reported certainty in
Section 4. In Section 5, we describe a basic classifier that
uses prosodic features computed at the utterance level to
classify how certain a person is perceived with an accuracy
of 69%. The performance of the basic classifier compares
well to prior work [8]. We go beyond prior work by showing
improvement over a nonprosodic baseline. We improve upon
this basic model by identifying salient prosodic features from
utterance segments that correspond to the probable source
of uncertainty. We show, in Section 6, that models trained on
such features reach a classification accuracy of 75%. Lastly, in
Section 7, we explain how the models from Section 6 can be
used to determine which of two phrases within an utterance
is the cause of a speaker’s uncertainty with an accuracy of
over 90%.

2. Methodology for Creating
an Uncertainty Corpus

Our results are enabled by a data collection method that is
motivated by four main criteria.

(1) For each speaker, we want to elicit utterances of
varying levels of certainty.

(2) We want to isolate the words or phrases within
an utterance that could cause the speaker to be
uncertain.

(3) To ensure that differences in prosody are not due to
the particular phonemes in the words or the number
of words in the sentence, we want to collect utterances
across speakers that are lexically similar.

(4) We want the corpus to contain multiple instances of
the same word or phrase in different contexts.

Prior work on certainty prediction used spontaneous
speech in the context of a human-computer dialogue system.
Such a corpus cannot be carefully controlled to satisfy these
criteria. For this reason, we developed a novel data collection
method based on nonspontaneous read speech with speaker
options.

Because we want consistency across utterances
(criterion 3), we collect nonspontaneous as opposed to
spontaneous speech. Although spontaneous speech is more
natural, we found in pilot experiments that the same
set of acoustic features were significantly correlated with
perceived level of certainty in both spontaneous speech
and nonspontaneous speech conditions. To ensure varying
levels of certainty (criterion 1), we could not have speakers
just read a given sentence. Instead, the speakers are given
multiple options of what to read and thus are forced to make
a decision. Because we want to isolate the phrases causing
uncertainty (criterion 2), the multiple options to choose
among occur at the word or phrase level, and the rest of the
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sentence is fixed. Consider the example below, in the domain
of answering questions about using public transportation in
Boston.

Q: How can I get from Harvard to the Silver Line?

A: Take the red line to .

(a) South Station
(b) Downtown Crossing

In this example, the experimenter first asks a question aloud,
How can I get from Harvard to the Silver Line? Without seeing
the options for filling in the slot, the speakers see the fixed
part of the response, Take the red line to , which we
refer to as the context. They have unlimited time to read over
the context. Upon a keypress, South Station and Downtown
Crossing, which we refer to as the target words, are displayed
below the context. Speakers are instructed to choose the best
answer and read the full sentence aloud upon hearing a beep,
which is played 1.5 seconds after the target words appear.
This forces them to make their decisions quickly. Because the
speakers have unlimited time to read over the context before
seeing the target words, the target word corresponds to the
decision the speakers have to make, and we consider it to be
the source of the uncertainty. In this way, we are able to isolate
the phrases causing uncertainty (criterion 2).

To elicit both certain and uncertain utterances from
each speaker (criterion 1), the transit questions differ in
the amount of real-world knowledge needed to answer the
question correctly. Some of the hardest items contain two
or three slots to be filled. Because we want the corpus to
contain multiple instances of the same word in different
contexts (criterion 4), the potential target words are repeated
throughout the experiment. This allows us to see whether
individual speakers have systematic ways of conveying their
level of certainty.

In addition to the public transportation utterances, we
elicited utterances in a second domain: choosing vocabulary
words to complete a sentence. An example item is shown
below.

Only the workers in the office laughed at all of
the manager’s bad jokes.

(a) pugnacious
(b) craven
(c) sycophantic
(d) spoffish

In the vocabulary domain, speakers are instructed to choose
the word that best completes the sentence. To ensure that
even the most well-read participants would be uncertain at
times (criterion 1), the potential target words include three
extremely infrequent words (e.g., spoffish), and in five of the
20 items, none of the potential target words fit well in the
context, generating further speaker uncertainty.

The corpus contains 10 items in the transit domain and
20 items in the vocabulary domain, each spoken by 20 adult
native English speakers, for a total of 600 utterances. The

mean and standard deviation of the age of the speakers was
22.35± 3.13. After each utterance, the speakers rated their
own level of certainty on a 5-point scale, where 1 is labeled
as “very uncertain” and 5 is labeled as “very certain.” We will
refer to this rating as the “self-reported level of certainty.” As
we show in the next section by examining these self-reports
of certainty, our data collection methodology fulfills the
crucial criterion (1) of generating a broad range of certainty
levels.

In addition, five human judges listened to the utterances
and judged how certain the speaker sounded, using the same
5-point scale (where 1 is labeled as “very uncertain” and 5 is
labeled as “very certain”). The mean and standard deviation
of the age of the listeners was 21.20± 0.84. The listeners did
not have any background in linguistics or speech annotation.
They listened to the utterances in a random order and had no
knowledge of the target words, the questions for the transit
items, or the instructions that the speakers were given. The
average interannotator agreement (Kappa) was 0.45, which is
on par with past work in emotion detection [7, 8]. We refer
to the mean of the five listeners’ ratings for an utterance as
the “perceived level of certainty.”

The data collection materials, level of certainty anno-
tations, and prosodic and nonprosodic feature values for
this corpus will be made available through the Dataverse
Network: http://dvn.iq.harvard.edu/dvn/dv/ponbarry/.

3. Self-Reported versus Perceived
Level of Certainty

Since we elicit both self-reported and perceived level of
certainty judgments, we are able to assess whether perceived
level of certainty is an accurate reflection of a person’s inter-
nal level of certainty. In our corpus, we find that this is not
the case. As illustrated in Figure 1, the distribution of self-
ratings is more heavily concentrated on the uncertain side
(mean 2.6± 1.4), whereas the annotators’ ratings are more
heavily concentrated on the certain side (mean 3.5± 1.1).
Correlation between the two measures of uncertainty is
0.42. Furthermore, the heat map in Figure 1 demonstrates
that this discrepancy is not random; the concentration of
darker squares above the diagonal shows that listeners rated
speakers as being more certain than they actually were more
often than the reverse case. Of the 600 utterances, 41% had
perceived ratings that were more than one unit greater than
the self-reported rating and only 8% had perceived ratings
were more than one unit less than the self-reported rating.
Thus, perceived level of certainty is not an ideal measure of
the self-reports, our proxy for internal level of certainty.

Previous work on level of certainty classification has
focused on classifying an utterance’s perceived level of
certainty. However, in many applications such as spoken
tutoring systems [9] and second language learning systems
[3], we would like to know how certain speakers actually are
in addition to how certain they are perceived to be. To illus-
trate why it is important to have both measures of certainty,
we define two new categories pertaining to level of certainty:
self-awareness and transparency. Knowing whether speakers
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Figure 1: (a) Histograms illustrating the distribution of self-reported certainty and (quantized) perceived certainty in our corpus; (b) heat
map illustrating the relative frequencies of utterances grouped according to both self-reported certainty and (quantized) perceived certainty
(darker means more frequent).

are self-aware or whether they are transparent affects the
inferences speech systems can make about speakers’ internal
states, for example, whether they have a misconception, make
a lucky guess, or might benefit from some encouragement.

3.1. Self-Awareness. The concept of self-awareness applies
to utterances whose correctness can be determined. We
consider speakers to be self-aware if they feel certain when
correct and feel uncertain when incorrect. The four possible
combinations of correctness versus internal level of certainty
are illustrated in Figure 2. Self-awareness is similar (though
not identical) to the “feeling of knowing” measure of Smith

and Clark [11]. In conversational, question-answering set-
tings, speakers systematically convey their feeling of knowing
through both auditory and visual prosodic cues [12].

For educational applications, systems that can assess
self-awareness can assess whether or not the user is at a
learning impasse [9]. We claim that the most serious learning
impasses correspond to the cases where a speaker is not self-
aware. If a speaker feels certain and is incorrect, then it is
likely that they have some kind of misconception. If a speaker
feels uncertain and is correct, they either lack confidence or
made a lucky guess. A followup question could be asked by
the system to determine whether or not the user made a lucky
guess.
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Incorrect Correct

Non-self-aware
(misconception)

Non-self-aware
(lacks confidence
or lucky guess)

Self-aware

Self-aware

UNC

CER

Self

Correctness

Figure 2: Self-awareness: we consider speakers to be self-aware
if their internal level of certainty reflects the correctness of their
utterance.

For these purposes, we require a binary classification
of the levels of certainty and correctness. For both self-
reported rating and perceived rating, we map values less than
3 to “uncertain” and values greater than or equal to 3 to
“certain.” To compute correctness, we code each multiple
choice answer or answer tuple as “incorrect” or “correct.”
Based on this encoding, in our corpus, speakers were self-
aware for 73% of the utterances.

3.2. Transparency. The concept of speaker transparency is
independent of an utterance’s correctness. We consider
speakers to be transparent if they are perceived as certain
when they feel certain and are perceived as uncertain when
they feel uncertain. The four possible combinations of
perceived versus internal level of certainty are illustrated
in Figure 3. If a system uses perceived level of certainty
to determine what kind of feedback to give the user, then
it will give inappropriate feedback to users who are not
transparent. In our corpus, speakers were transparent in
64% of the utterances. We observed that some speakers
acted like radio broadcasters; they sounded very certain
even when they felt uncertain. Other speakers had very
meek manners of speaking and were perceived as uncertain
despite feeling certain. While some speakers consistently fell
into one of these categories, others had mixed degrees of
transparency. We believe there are many factors that can
affect how transparent a speaker is, for example, related
work in psychology argues that speakers’ beliefs about their
transparency and thus the emotions they convey are highly
dependent on the context of the interaction [13].

A concept closely related to transparency is the “feeling
of another’s knowing” [14]—a listener’s perception of a
speaker’s feeling of knowing [11]. This is especially relevant
because recent work indicates that spoken tutorial dialogue
systems can predict student learning gains better by moni-
toring the feeling of another’s knowing than by monitoring
only the correctness of the student’s answers [15].

3.3. Summary. Our corpus demonstrates that there are
systematic differences between perceived certainty and self-
reported certainty. Research that treats them as equivalent
quantities may be overlooking significant issues. By consid-
ering the concepts of self-awareness and transparency, we
see how a speech-based system that can estimate both the

UNC CER

Opaque
(meek speaker)

Opaque
(broadcaster)

Transparent

Transparent

UNC

CER

Self

Perceived

Figure 3: Transparency: we consider speakers to be transparent
if their internal level of certainty reflects their perceived level of
certainty.

speaker’s perceived and self-reported levels of certainty could
make nuanced inferences about the speaker’s internal state.

4. Modeling Self-Reported Level of Certainty

The ability to sense when speakers are or are not self-aware or
transparent allows dialogue systems to give more appropriate
feedback. In order to make inferences about self-awareness
and transparency, we need to model speakers’ internal level
of certainty. As stated before, getting a measurement of inter-
nal certainty is nearly impossible, so we use self-reported
certainty as an approximation. An intriguing possibility is to
use information gleaned from perceived level of certainty to
more accurately model the self-reported level. This idea bears
promise especially given the potential, pursued by ourselves
(Section 5) and others [8], of inferring the perceived level
of certainty directly from prosodic information. We pursue
this idea in this section, showing that a kind of triage
on the perceived level of certainty can improve self-report
predictions.

4.1. Prosodic Features. The prosodic features we use as input
in this experiment and reference throughout the paper are
listed in Table 1. This set of features was selected in order
to be comparable with Liscombe et al. [8], who use these
same prosodic features plus dialogue turn-related features
in their work on classifying level of certainty. Other recent
work on classifying level of certainty uses similar pitch and
energy features, plus a few additional f0 features to better
approximate the pitch contour, in addition to nonprosodic
word-position features [16]. Related research on classifying
positive and negative emotion in speech uses a similar
set of prosodic features, with the addition of formant-
related features, in conjunction with nonprosodic lexical and
discourse features [7].

We use WaveSurfer (http://www.speech.kth.se/wavesurf-
er/) and Praat (http://www.fon.hum.uva.nl/praat/) to com-
pute the feature values. The pitch and intensity features are
represented as z-scores normalized by speaker; the temporal
features are not normalized. The f0 contour is extracted using
WaveSurfer’s ESPS method. We compute speaking rate as
number of syllables divided by speaking duration.

4.2. Constructing a Model for Self-Reported Certainty.
We build C4.5 decision tree models, using the Weka



6 EURASIP Journal on Advances in Signal Processing

Table 1: In our experiments, we use a standard set of pitch,
intensity, and temporal prosodic features.

Pitch min f0 relative position min f0
max f0 relative position max f0
mean f0 absolute slope (Hz)
stdev f0 absolute slope (Semi)
range f0

Intensity min RMS relative position min RMS
max RMS relative position max RMS
mean RMS stdev RMS

Temporal total silence percent silence
total duration speaking duration
speaking rate

Table 2: Accuracies for classifying self-reported level of certainty
for the initial prosody decision tree model and two baselines. The
prosody decision tree model is better than choosing the majority
class and better than assigning the level to be the same as the
perceived level.

Model Accuracy

Baseline 1: majority class 52.30
Baseline 2: assign perceived level 63.67
Single prosody decision tree 66.33

(http://www.cs.waikato.ac.nz/ml/weka/) toolkit to classify
self-reported level of certainty based on an utterance’s
prosody. We code the perceived and self-reported levels
of certainty and correctness as binary features as per
Section 3.1.

As an initial model, we train a single decision tree using
the 20 prosodic features listed in Table 1. Using a 20-fold
leave-one-speaker-out cross-validation approach to evaluate
this model over all the utterances in our corpus, we find
that it classifies self-reports with an accuracy of 66.33%. As
shown in Table 2, the single decision tree model does better
than the naive baseline of choosing the most-common class,
which has an accuracy of 52.30%, and marginally better than
assigning the self-reported certainty to be the same as the
perceived certainty, which has an accuracy of 63.67%. Still,
we would like to know if we could do better than 66.33%.

As an alternative approach, suppose we know an
utterance’s perceived level of certainty. Could we use this
knowledge, along with the prosody of the utterance to better
predict the self-reported certainty? To test this, we divide the
data into four subsets (see Figure 4) corresponding to the
correctness of the answer and the perceived level of certainty.

In subset A′, the distribution of self-reports is heavily
skewed; 84% of the utterances in subset A′ are self-reported
as uncertain. This imbalance is intuitive; someone who
is incorrect and perceived as uncertain most likely feels
uncertain too. Likewise, in subset B′, the distribution of
self-reports is skewed in the other direction; 76% of the
utterances in this subset are self-reported as certain. This too
is intuitive; someone who is correct and perceived as certain
most likely feels certain as well. Therefore, we hypothesize

Correctness

Incorrect Correct

Perceived Perceived

UNC CER UNC CER

A′ A B B′

Figure 4: We divide the utterances into four subsets and train a
separate classifier for each subset.

Table 3: Accuracies for classifying self-reported level of certainty for
the prosodic decision tree models trained separately on each of the
four subsets of utterances. For subsets A and B, the decision trees
perform better than assigning the subset-majority class, while for
subsets A′ and B′, the decision trees do no better than assigning
the subset-majority class. The combined decision tree model has
an overall accuracy of 75.30%, significantly better than the single-
decision tree (66.33%).

Subset Accuracy
(subset majority)

Accuracy
(prosody decision tree)

A 65.19 68.99
B 53.52 69.01
A′ 84.35 84.35
B′ 75.89 75.89
Overall 72.49 75.30

that for subsets A′ and B′, classification models trained on
prosodic features will do no better than choosing the subset-
specific majority class.

Subsets A and B are the more interesting cases; they
are the subsets where the perceived level of certainty is
not aligned with the correctness. The self-reported levels of
certainty for these subsets are less skewed: 65% uncertain
for subset A and 54% certain for subset B. We hypothesize
that for subsets A and B, decision tree models trained on
prosodic features will be more accurate than selecting the
subset-specific majority class. For each subset, we perform
a k-fold cross-validation, where we leave one speaker out of
each fold. Because not all speakers have utterances in every
subset, k ranges from 18 to 20.

4.3. Results. For subset A, the decision tree accuracy in
classifying the self-reported level of certainty is 68.99%,
while assigning the subset-majority class (uncertain) results
in an accuracy of 65.19%. For subset B, the decision tree
accuracy is 69.01%, while assigning the subset-majority class
(certain) results in an accuracy of 53.52%. Thus, for these
two subsets, the prosody of the utterance is more informative
than the majority-class baseline. As expected, for subsets A′

and B′, the decision tree models do no better than assigning
the subset-majority class. These results are summarized in
Table 3.

The combined decision tree model has an overall accu-
racy of 75.30%, significantly better than the single-decision



EURASIP Journal on Advances in Signal Processing 7

tree model (66.33%), which assumed no knowledge of the
correctness or the perceived level of certainty. Our combined
decision tree model also outperforms the decision tree that
has knowledge of prosody and of correctness but lacks
knowledge of the perceived certainty; this tree ignores the
prosody and splits only on correctness (72.49%). Therefore,
if we know an utterance’s perceived level of certainty, we can
use that information to much more accurately model the
self-reported level of certainty.

5. Modeling Perceived Level of Certainty

We saw in Section 4 that knowing whether an utterance
was perceived as certain or uncertain allows us to make
better predictions about the speaker’s actual level of certainty.
Furthermore, as discussed in Section 1, perceived level of
certainty is in and of itself useful in dialogue applications.
So, we would like to have a model that tells us how certain a
person sounds to an average listener, which we turn to now.

5.1. Basic Prosody Model. For the basic model, we compute
values for the 20 prosodic features listed in Table 1 for each
utterance in the corpus. We use these features as input
variables to a simple linear regression model for predicting
perceived level of certainty scores (on the 1 to 5 scale). To
evaluate our model, we divide the data into 20 folds (one fold
per speaker) and perform a 20-fold cross-validation. That is,
we fit a model using data from 19 speakers and test on the
remaining speaker. Thus, when we test our models, we are
testing the ability to classify utterances of an unseen speaker.

5.2. Nonprosodic Model. We want to ensure that the predic-
tions our prosodic models make are not able to be explained
by nonprosodic features such as a word’s length, familiarity,
or part of speech, or an utterance’s position in the data
collection materials. Therefore, we train a linear regression
model on a set of nonprosodic features to serve as a baseline.

Our nonprosodic model has 20 features. Many of these
features assume knowledge of the utterance’s target word, the
word or phrase that is the probable source of uncertainty.
Because the basic prosody model does not assume knowledge
of the target word, we consider this to be a generous baseline
for this experiment. (In Section 6, we present a prosody
model that does assume knowledge of the target word.)

The part-of-speech features include binary features
for the possible parts of speech of the target word and
of its immediately preceding word. Utterance position is
represented as the utterance’s ordinal position among the
sequence of items. (The order varied for each speaker.)
Word position features include the target word’s index from
the start of the utterance, index from the end, and relative
position (index from start/total words in utterance). The
word length features include the number of characters,
phonemes, and syllables in the target word. To account
for familiarity, we include a feature for how many times
during the experiment the speaker has previously uttered
the target word. To approximate word frequency, we use
the log probability based on British National Corpus counts

Table 4: Our basic prosody model uses utterance-level prosodic
features to fit a linear regression (LR) model. This set of input
variables performs significantly better than a linear regression
model trained on nonprosodic features, as well as the naive baseline
of choosing the most common class. The improvement over this
naive baseline is on par with prior work.

RMS error
(LR model)

Accuracy
(LR model)

Accuracy
(prior work)

Naive baseline — 56.25 66.00
Nonprosodic
baseline

1.059 51.00 —

Utterance-level
prosody

0.738 68.96 76.42

where available. For words that do not appear in the
British National corpus, we estimate feature values by using
web-based counts (Google hits) to interpolate unigram
frequencies. It has been demonstrated that using web-based
counts is a reliable method for estimating unseen n-gram
frequencies [17].

5.3. Results. Since our basic prosody model and our non-
prosodic baseline model are linear regression models, com-
paring root-mean-squared (RMS) error of the two models
tells us how well they fit the data. We find that our basic
prosody model has lower RMS error than the nonprosodic
baseline model: 0.738 compared to 1.059. Table 4 shows
the results comparing our basic prosody model against the
nonprosodic mdoel.

We also compare our basic prosody model to the prior
work of Liscombe et al. [8], whose prosodic input variables
are similar to our basic model’s input variables. However,
we note that our evaluation is more rigorous. While we test
our model using a leave-one-speaker-out cross-validation
approach, Liscombe et al. randomly divide their data into
training and test sets, so that the test data includes utterances
from speakers in the training set, and they run only a single
split, so their reported accuracy may not be indicative of the
entire data set.

Our model outputs a real-valued score; the model of
Liscombe et al. [8] outputs one of three classes: certain,
uncertain, or neutral. To compare our model against theirs,
we convert our scores into three classes by first rounding to
the nearest integer, and then coding 1 and 2 as uncertain, 3
as neutral, and 4 and 5 as certain. (This partition of the 1–5
scores is the one that maximizes interannotator agreement
among the five human judges.) Table 4 shows the results
comparing our basic prosody model against this prior work.

Liscombe et al. [8] compare their model against the
naive baseline of choosing the most common class. For
their corpus, this baseline was 66.00%. In our corpus,
choosing the most-common class gives an accuracy of
56.25%. Our model’s classification accuracy is 68.96%, a
12.71% difference from the naive baseline, corresponding
to a 29.05% reduction in error. Liscombe et al. [8] report
an accuracy of 76.42%, a 10.42% difference from the naive
baseline, and 30.65% reduction in error. Thus, our basic
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model’s improvement over the naive baseline is on par with
prior work.

In summary, our basic prosody model, which uses
utterance-level prosodic features as input, performs better
than a substantive nonprosodic baseline model, and also
better than a naive baseline model (choosing the majority
class), on par with the classification results of prior work.

6. Feature Selection for Modeling Perceived
Level of Certainty

In the previous section, we showed that our basic prosody
model performs better than two baseline models and on
par with previous work. In this section, we show how to
improve upon our basic prosody model through context-
based feature selection. Because the nature of our corpus (see
Section 2) makes it possible to isolate a single word or phrase
responsible for variations in a speaker’s level of certainty, we
have good reason to consider using prosodic features not
only at the utterance level, but also at the word and phrase
level.

6.1. Utterance, Context, and Target Word Prosodic Features.
For each utterance, we compute three values for each of the
20 prosodic features listed in Table 1: one value for the whole
utterance, one for the context segment, and one for the target
word segment, resulting in a total of 60 prosodic features
per utterance. Target word segmentation was done manually;
pauses are considered part of the word that they precede.
While the 20 features listed in Table 1 are comparable to
those used in previous uncertainty classification experiments
[8], to our knowledge, no previous work has used features
extracted from context or target word segments.

6.2. Correlations. To aid our feature selection decisions, we
examine the correlations between an utterance’s perceived
level of certainty and the 60 prosodic features described in
Section 6.1. Correlations are reported for 480 of the 600
utterances in the corpus, those which contain exactly one
target word. (Some of the items had two or three slots for
target words.) The correlation coefficients are reported in
Table 5. While some prosodic cues to level of certainty, such
as total silence, are strongest in the whole utterance, others are
stronger in the context or the target word segments, such as
range f0 and speaking rate. These results suggest that models
trained on prosodic features of the context and target word
may be better than those trained on only whole utterance
features.

6.3. Feature Sets. We build linear regression level-of-
certainty classifiers in the same way as our basic prosody
model, only now we consider different sets of prosodic input
features. We call the set of 20 whole utterance features from
the basic model set A. Set B contains only target word
features. Set C contains only context features. Set D is the
union of A, B, and C. And lastly, set E is the “combination”
feature set—a set of 20 features that we designed based on
our correlation results (see Section 6.2). For each prosodic

Table 5: Correlations between mean perceived rating and prosodic
features for whole utterances, contexts, and target words, N = 480
(note: ∗indicates significant at P < .05; ∗∗indicates significant at
P < .01).

Feature
Whole

Context
Target

utterance word

Min f0 0.107∗ 0.119∗ 0.041∗∗

Max f0 −0.073 −0.153∗∗ −0.045
Mean f0 0.033 0.070 −0.004
Stdev f0 −0.035 −0.047 −0.043
Range f0 −0.128∗∗ −0.211∗∗ −0.075
Rel. position min f0 0.042 0.022 0.046
Rel. position max f0 0.015 0.008 0.001
Absolute slope f0 0.275∗∗ 0.180∗∗ 0.191∗∗

Min RMS 0.101∗ 0.172∗∗ 0.027
Max RMS −0.091∗ −0.110∗ −0.034
Mean RMS −0.012 0.039 −0.031
Stdev RMS −0.002 −0.003 −0.019
Rel. position min RMS 0.101∗ 0.172∗∗ 0.027
Rel. position max RMS −0.039 −0.028 −0.007
Total silence −0.643∗∗ −0.507∗∗ −0.495∗∗

Percent silence −0.455∗∗ −0.225∗∗ −0.532∗∗

Total duration −0.592∗∗ −0.502∗∗ −0.590∗∗

Speaking duration −0.430∗∗ −0.390∗∗ −0.386∗∗

Speaking rate 0.090∗ 0.014 0.136∗∗

feature type (i.e., each row in Table 5), we select either the
whole utterance feature, the context feature, or the target
word feature, whichever one has the strongest correlation
with perceived level of certainty. The features comprising the
combination set are listed below.

(1) Whole Utterance. total silence, total duration, speak-
ing duration, relative position max f0, relative posi-
tion max RMS, absolute slope (Hz), and absolute
slope (semitones).

(2) Context. min f0, max f0, mean f0, stdev f0, range
f0, min RMS, max RMS, mean RMS, and relative
position min RMS.

(3) Target Word. percent silence, speaking rate, relative
position min f0, and stdev RMS.

For each set of input features, we evaluate the model by
dividing the data into 20 folds and performing a leave-one-
speaker-out cross-validation, as in Section 5.1.

6.4. Results. Table 6 shows the accuracies of the models
trained on the five subsets of features. The numbers reported
are averages of the 20 cross-validation accuracies. To com-
pare these results with those in Table 4, we convert the linear
regression output to certain, uncertain, and neutral classes,
as described in Section 5.3. As before, the naive baseline is
the accuracy that would be achieved by always choosing the
most common class, and the nonprosodic baseline model is
the same as described in Section 5.2.
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Table 6: Average classification accuracies for the linear regression
models trained on five subsets of prosodic features. The model
trained on the combination feature set performs significantly better
than the utterance, target word, and context feature sets.

Feature set Num. features Accuracy

Naive baseline N/A 56.25
Nonprosodic baseline 20 51.00

(A) Utterance 20 68.96
(B) Target word 20 68.96
(C) Context 20 67.50
(D) All 60 74.58
(E) Combination 20 74.79

6.5. Discussion. The key comparison to notice is that the
combination feature set E, with only 20 features, yields
higher average accuracies than the utterance feature set A: a
difference of 5.83%. This suggests that using a combination
of features from the context and target word in addition to
features from the whole utterance leads to better prediction
of the perceived level of certainty than using features from
only the whole utterance.

One might argue that these differences are just due to
noise. To address this issue, we compare the prediction
accuracies of sets A and E per fold. Each fold in our cross-
validation corresponds to a different speaker, so the folds
are not identically distributed, and we do not expect each
fold to yield the same prediction accuracy. That means
that we should compare predictions of the two feature sets
within folds rather than between folds. Figure 5 shows the
correlations between the predicted and perceived levels of
certainty for the models trained on sets A and E. The
combination set E predictions were more strongly correlated
than whole utterance set A predictions in 16 out of 20 folds.
This result supports our claim that using a combination of
features from the context and target word in addition to
features from the whole utterance leads to better prediction
of level of certainty.

Figure 5 also shows that one speaker (the 17th fold) is
an outlier—for this speaker, our model’s level of certainty
predictions are less correlated with the perceived levels
of certainty than for all other speakers. Most likely, this
results from nonprosodic cues of uncertainty present in the
utterances of this speaker (e.g., disfluencies). Removing this
speaker from our training data did not improve the overall
performance of our models.

These results suggest a better predictive model of level of
certainty for systems where words or phrases likely to cause
uncertainty are known ahead of time. Without increasing the
total number of features, combining select prosodic features
from the target word, the surrounding context and the whole
utterance lead to better prediction of level of certainty than
using features from the whole utterance only.

7. Detecting Uncertainty at the Phrase Level

In Section 6, we showed that incorporating the prosody of
the target word and of its context into our level of certainty
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Figure 5: Correlations with perceived level of certainty per fold for
the combination (O) and the utterance (X) feature set predictions,
sorted by the size of the difference. In 16 of the 20 experiments, the
correlation coefficients for the combination feature set are greater
than those of the utterance feature set.

models improves classification accuracy. In this section, we
show that our models can be used to make an informed guess
about which phrase a person is uncertain about, when we do
not know which phrase is the probable source of uncertainty.
As an initial step towards the problem of identifying one
phrase out of all possible phrases, we ask a simpler question:
given two phrases, one that the speaker is uncertain about
(the target word), and another phrase that they are not
uncertain about (a control word), can our models determine
which phrase is causing the uncertainty? Using the prosody-
based level-of-certainty classification models described in
Section 6.3, we compare the predicted level of certainty
using the actual target word segmentation with the predicted
level using an alternative segmentation with a control word
as the proposed target word. Our best model is able to
identify the correct segmentation 91% of the time, a 71%
error reduction over the baseline model trained on only
nonprosodic features.

7.1. Experiment Design. For a subset of utterances that were
perceived to be uncertain (perceived level of certainty less
than 2.5), we identify a control word—a content word
roughly the same length as the potential target words and if
possible, the same part of speech. In the example item shown
below, the control word used was abrasive.

Mahler’s revolutionary music, abrasive personality,
and writings about art and life divided the city
into warring factions.

(a) officious
(b) trenchant
(c) spoffish
(d) pugnacious

We balance the set of control words for position in the
utterance relative to the position of the slot; half of the
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Table 7: Accuracies on the task of identifying the word or phrase causing uncertainty when choosing between the actual word and a control
word. The model that was trained on the set of target word features and nonprosodic features achieves 91% accuracy.

Feature set Num. features Detection accuracy

Nonprosodic baseline 20 67.44

Target word, nonprosodic 40 90.70
Target word 20 86.05
Target word, context, utterance 60 79.07
Target word, context, utterance, nonprosodic 80 76.74
Target word, utterance 40 69.77
Combination set (target word) 4 72.09
Combination set (target word, context, utterance) 20 72.09
Context 20 48.84

control words appear before the slot location and half appear
after. After filtering utterances based on level of certainty
and presence of an appropriate control word, 43 utterances
remain. This is our test set.

We then compare the predicted level of certainty for two
segmentations of the utterance: (a) the correct segmentation
with the slot-filling word as the proposed “target word”
and (b) an alternative segmentation with the control word
as the proposed “target word.” Thus, the prosodic features
extracted from the target word and from the context will
be different in these two segmentations, while the features
extracted from the utterance will be the same. The hypothesis
we test in this experiment is that our models should predict a
lower level of certainty when the prosodic features are taken
from segmentation (a) rather than segmentation (b), thereby
identifying the slot-filling word as the source of the speaker’s
uncertainty.

Our models are the same ones described in Section 6.3.
They are trained on the same 60 prosodic features from each
whole utterance, context, and target word (see Section 6.1)
and evaluated with a leave-one-speaker-out cross-validation
as before. We use the nonprosodic model described in
Section 5.2 as a baseline for this experiment.

7.2. Results. Our models yield accuracies as high as 91% on
the task of identifying the word or phrase causing uncertainty
when choosing between the actual word and a control word.
Table 7 shows the linear regression accuracies for a variety of
feature sets. The models trained on the nonprosodic features
provide a baseline from which to compare the performance
of the models trained on prosodic features. This baseline
accuracy is 67%.

The linear regression model trained on the target word
feature set had the highest accuracy among the purely
prosodic models, 86%. The highest overall accuracy, 91%,
was achieved on the model trained on the target word
features plus the nonprosodic features from the baseline set.
We also trained support vector machine models using the
same feature sets. The accuracy of these models was on par
with or lower than the linear regression models [18].

7.3. Discussion. This experiment shows that prosodic level-
of-certainty models are useful in detecting uncertainty at

the word level. Our best model, the one that uses target
word prosodic features plus the nonprosodic features from
the baseline set identifies the correct word 91% of the
time whereas the baseline model using only nonprosodic
features is accurate just 67% of the time. This is an absolute
difference of 23% and an error reduction of 71%. This large
improvement over the nonprosodic baseline model implies
that prosodic features are crucial in word-level uncertainty
detection.

In creating the nonprosodic feature set for this experi-
ment, we wanted to account for the most obvious differences
between the target words and the control words. The baseline
model’s low accuracy on this task is to be expected because
the nonprosodic features are not good at explaining the vari-
ance in the response variable (perceived level of certainty):
the correlation coefficient for the baseline linear regression
model is only 0.27. (As a comparison, the coefficient for the
target word linear regression model is 0.67.)

The combination feature set, which had high accuracy in
classifying an utterance’s overall level of certainty, did not
perform as well as the other feature sets for this detection
task. We speculate that this may have to do with the context
features. While the prosodic features we extracted from the
context are beneficial in classifying an utterance’s overall level
of certainty, the low accuracies for the context feature set
in Table 7 suggest that they are detrimental in determining
which word a speaker is uncertain about, using our proposed
method. The task we examine in this section, distinguishing
the actual target word from a control word, is different
from the task the models are trained on (predicting a real-
valued level of certainty); therefore, we do not expect the
models with the highest classification accuracy to necessarily
perform well on the task of identifying the word causing
uncertainty.

8. Conclusion

Imagine a computer tutor that engages in conversation with
a student about particular topics. Adapting the tutor’s future
behaviors based on knowledge of whether the student is
confident in his or her responses could benefit both the stu-
dent’s learning gain and satisfaction with the interaction [2].
A student’s response to a question, incorporating language
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from the question augmented by a student-generated phrase
or two, incorporates phrase-level prosodic information that
provides clues to the internal level of certainty of the
student. The results we have presented provide some first
indications that knowledge of which phrases were likely to
have engendered uncertainty can significantly enhance the
system’s ability to predict level of certainty, and even to select
which phrase is the source of uncertainty.

Overall, our results suggest that we can get a good
estimate of a speaker’s level of certainty based on only
prosodic features. In our experiments, we used a small
set of the many possible prosodic features that have been
examined in related work. Because these features proved
beneficial in recognizing uncertainty, we believe that using
an expanded set of prosodic features might be even more
beneficial. In natural conversation, people also convey
uncertainty through other channels such as body language,
facial gestures, and word choice. Further work is needed to
understand how to integrate cues from multiple modalities,
when these other modes of input are available.

Our results were enabled by a novel methodology for col-
lecting uncertainty data that allowed us to isolate the phrase
causing uncertainty. We also addressed a question that is
important to all research regarding mental or emotional state
modeling—the difference between a person’s self-reported
state and an outsider’s perception of that state. In our corpus,
these two quantities are aligned for approximately one-
half of the utterances and mismatched for the remaining
half, suggesting that classifiers trained on only perceived
judgements of certainty may end up missing actual instances
of uncertainty. This highlights the importance of collecting
data in ways that maximize our ability to externally control
or ensure access to a person’s internal mental state. It also
raises the question of whether computers may even surpass
humans at classifying a speaker’s internal level of certainty.
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