2,726 research outputs found

    DETECTION AND HANDLING EXCEPTIONS IN BUSINESS PROCESS MANAGEMENT SYSTEMS USING ACTIVE SEMANTIC MODEL

    Get PDF
    Although business process management systems (BPM) have been used over the years, their performance in unpredicted situations has not been adequately solved. In these cases, it is common to request user assistance or invoke predefined procedures. In this paper, we propose using the Active Semantic Model (ASM) to detect and handle exceptions. This is a specifically developed semantic network model for modeling of semantic features of the business processes. ASM is capable of classifying new situations based on their similarities with existing ones. Within BPM systems this is then used to classify new situations as exceptions and to handle the exceptions by changing the process based on ASM’s previous experience. This enables automatic detection and handling of exceptions which significantly improves the performance of bpm systems

    An improved approach for automatic process plan generation of complex borings

    Get PDF
    The authors are grateful for funding provided to this project by the French Ministry of Industry, Dassault Aviation, Dassault Systemes, and F. Vernadat for his review and recommendations.The research concerns automated generation of process plans using knowledge formalization and capitalization. Tools allowing designers to deal with issues and specifications of the machining domain are taken into account. The main objective of the current work is to prevent designers from designing solutions that would be expensive and difficult to machine. Among all available solutions to achieve this goal, two are distinguished: the generative approach and the analogy approach. The generative approach is more adapted to generate the machining plans of parts composed of numerous boring operations in interaction. However, generative systems have two major problems: proposed solutions are often too numerous and are only geometrically but not technologically relevant. In order to overcome these drawbacks, two new concepts of feature and three control algorithms are developed. The paper presents the two new features: the Machining Enabled Geometrical Feature (MEGF) and the Machinable Features (MbF). This development is the result of the separation of the geometrical and the technological data contained in one machining feature. The second objective of the paper is to improve the current Process Ascending Generation (PAG) system with control algorithms in order to limit the combinatorial explosion and disable the generation of unusable or not machinable solutions

    Critical Foundations of the Contextual Theory of Mind

    Get PDF
    The contextual mind is found attested in various usages of the term complement, in the background of Kant. The difficulties of Kant's intuitionism are taken up through Quine, but referential opacity is resolved as semantic presence in lived context. A further critique of rationalist linguistics is developed from Jakobson, showing generic functions in thought supporting abstraction, binding and thereby semantic categories. Thus Bolzano's influential philosophy of mathematics and science gives way to a critical view of the ancient heritage acknowledged by Plato.\ud \u

    Facets and Levels of Mathematical Abstraction

    Get PDF
    International audienceMathematical abstraction is the process of considering and manipulating operations, rules, methods and concepts divested from their reference to real world phenomena and circumstances, and also deprived from the content connected to particular applications. There is no one single way of performing mathematical abstraction. The term "abstraction" does not name a unique procedure but a general process, which goes many ways that are mostly simultaneous and intertwined ; in particular, the process does not amount only to logical subsumption. I will consider comparatively how philosophers consider abstraction and how mathematicians perform it, with the aim to bring to light the fundamental thinking processes at play, and to illustrate by significant examples how much intricate and multi-leveled may be the combination of typical mathematical techniques which include axiomatic method, invarianceprinciples, equivalence relations and functional correspondences.L'abstraction mathématique consiste en la considération et la manipulation d'opérations, règles et concepts indépendamment du contenu dont les nantissent des applications particulières et du rapport qu'ils peuvent avoir avec les phénomènes et les circonstances du monde réel. L'abstraction mathématique emprunte diverses voies. Le terme " abstraction " ne désigne pasune procédure unique, mais un processus général où s'entrecroisent divers procédés employés successivement ou simultanément. En particulier, l'abstraction mathématique ne se réduit pas à la subsomption logique. Je vais étudier comparativement en quels termes les philosophes expliquent l'abstraction et par quels moyens les mathématiciens la mettent en oeuvre. Je voudrais parlà mettre en lumière les principaux processus de pensée en jeu et illustrer par des exemples divers niveaux d'intrication de techniques mathématiques récurrentes, qui incluent notamment la méthode axiomatique, les principes d'invariance, les relations d'équivalence et les correspondances fonctionnelles

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    A knowledge-based approach for the extraction of machining features from solid models

    Get PDF
    Computer understanding of machining features such as holes and pockets is essential for bridging the communication gap between Computer Aided Design and Computer Aided Manufacture. This thesis describes a prototype machining feature extraction system that is implemented by integrating the VAX-OPS5 rule-based artificial intelligence environment with the PADL-2 solid modeller. Specification of original stock and finished part geometry within the solid modeller is followed by determination of the nominal surface boundary of the corresponding cavity volume model by means of Boolean subtraction and boundary evaluation. The boundary model of the cavity volume is managed by using winged-edge and frame-based data structures. Machining features are extracted using two methods : (1) automatic feature recognition, and (2) machine learning of features for subsequent recognition. [Continues.
    corecore