e, DAC no'— DX A0S TAA

L.OUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY

AUTHOR/FILING TITLE

- ———— ——— " T 1 T e S S D S S ——— o T — ——

ACCESSION/COPY NO.

__________________ OteoRiaat
VOL. NO. CLASS MARK
Lot coby

-1 JUL 1934

2105
4
, 3__ Uk .95

21 MAR 1997
14-3AN2000

07 04h 1994

i

A Knowledge-based Approach for the

Extraction of Machining Features from Solid Models

by

CHAN, Kit-Wah Alex

A Doctoral Thesis
Submitted in partial fulfilment of the requirements

for the award of
Doctor of Philosophy of the

Loughborough University of Technology

May 1993

© by CHAN, Kit-Wah Alex, 1993.

Loughborough University 1

of Technology Library

Date ic G
Class |
e I
Mo B%iaqw

nqaL) &Y

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Dr. Keith Case, my research
principal supervisor, for his expert guidance, considerate support and continual
encouragement throughout my doctoral studies. His enlightening suggestions and

earnest comments were invaluable to the development of this thesis.

I am also greatly indebted to Dr. S.T. Tan, my research co-supervisor, for his

stimulating advice, thoughtful assistance and constant encouragement.

I sincerely acknowledge Dr. N.N.Z. Gindy, Prof. J.L. Murray and Prof. D.J.
Williams for serving on my doctoral committee and for their valuable comments on

my research.

My thanks are extended to the staff members and students of the CAD/CAM
group of the department for their kindness and readiness to help at all times. In
particular, I am grateful to Dr. K.C. Chan, Dr. K,C. Hui, Dr. K.Y. Hung, Mr. W.S,
Sze, Mr, K.W. Wong, Mr. W.Y, Wong, Mr. W.K. Yeung, Dr. K.M. Yu and Dr.

M.F. Yuen for sharing their experience and insight with me,

The Department of Mechanical Engineering of the University of Hong Kong
has provided a friendly and supportive environment which helped to foster much of
this research. The availability of the PADL-2 solid modelling system from Prof, H.B.
Voelcker of Cornell University, is thankfully acknowledged.

Finally, I express my heartfelt appreciation to my wife, Tania, and my family,
without whose understanding and encouragement I would never have attained this level

of educational development. It is to them that I dedicate this work.

SYNOPSIS

Computer understanding of machining features such as holes and pockets is
essential for bridging the communication gap between Computer Aided Design and
Computer Aided Manufacture. This thesis describes a prototype machining feature
extraction system that is implemented by integrating the VAX-OPS5 rule-based
artificial intelligence environment with the PADL-2 solid modeller, Specification of
original stock and finished part geometry within the solid modeller is followed by
determination of the nominal surface boundary of the corresponding cavity volume
model by means of Boolean subtraction and boundary evaluation. The boundary model
of the cavity volume is managed by using winged-edge and frame-based data
structures. Machining features are extracted using two methods : (1) automatic feature
recognition, and (2) machine learning of features for subsequent recognition.

In the first method, a machining feature recognition procedure which employs
rule-based and procedural programming techniques has been devised. The feature
recognizer uses built-in heuristics and tool accessibility analysis to identify and extract
2.5D machining features from a cavity volume. The tool accessibility analysis is based
on a ray-casting technique, and the results are propagated into a frame-based data
structure which acts as an agenda for guiding feature searching, A recognized
machining feature is represented in terms of its tool entrance face and part face
identities that are used in its winged-edge boundary model.

In the second method, a machine learning approach allows the user to interact
with the wireframe display to define tool entrance and part faces of the cavity volume.
These taught faces together with the boundary description of the cavity volume are
converted into production rules. These new rules are incorporated into the knowledge
base allowing subsequent recognition of similarly shaped cavity volumes and hence
the generation of appropriate machining faces. This method is intended for
customization to handle factory dependent machining features or machining features
that cannot be machined by simple cylindrical cutters such as end-mills.

The validity and practical usefulness of the approach is demonstrated by the
inclusion of a numerical control (NC) cutter path generating module that utilizes the
winged-edge data structure for the post-processing of the extracted machining features
into NC part programs.

i

CONTENTS

Page
ACKNOWLEGEMENTS i i it e i i
SYNOPSIS e e R {1
CHAPTER 1 INTRODUCTION.....................1
1.1 Computersin Manufacturingttt ittt 1
1.2 Moving towards Computer-Integrated Manufacturing 3
1.3 Features : a Methodology for Integrating CADand CAM 4
1.4 Principles of Existing Feature Modelling Approaches 7
1.5 Motivationof Researcho vt i i i it i e i i e s e e 8
1.6 Research Objectives v v e vt i it ceineneeennonnans 9
1.7 Research Methodologiesco it iivnenernnns 10
CHAPTER 2 LITERATUREREVIEW 12
2.1 Geometric Modelling Methodscco.... 12
2.1.1 Constructive Solid Geometry (CSG) 14
2.1.2 Boundary Representation (B-rep) 17
2.2 Feature Modelling Methods e 20
2.2.1 Human-Assisted Feature Definition v o v v v e v v v 20
2.2.2 Designby Featureso v ittt ittt it et 21
2.2.3 Automatic Feature Recognition 24
2.2.3.1 Recognition withCSGModels 24
2.2.3.2 Recognition withB-repModels 27
23 Concluding Remarks v v v i v vt ettt it ettt ie s et 36
CHAPTER 3 ARTIFICIAL INTELLIGENCE
TECHNIQUES 39
3.1 Knowledge-Based Systems (KBS)ot i i it iinnnnnnnn 39
3.2 Problem-Solving Techniques v i ivennnns 41
3.2.1 Knowledge Representation0 0., 42
3211 ProductionRulesc.iiiiiiin., 42
3.21.2 Semantic NetS v ittt i it et e 44
3213 Frameso i ittt et e e e 45
3.2.1.4 ObjectOrientationttt e neennnnn- 46

iii

322 Search Techniques v o v vttt i ittt i ie s e 47
3.2.2.1 State-Space Approachttt 47
3.2.22 HillClimbing Approach v, 48
3.2.2.3 Constraint Satisfaction Approach e 48

33 MachineLearningot i v ittt ittt it eteena e 49

3.3.1 Leamningby Rote v v i ittt i i i 49

3.3.2 Learning from Instructiont v et e an 50

3.33 Learning from Examples v v v v it i it i e e 50

334 Learningby Analogy ittt it 52

3.4 Al-based Manufacturing Researchest vu oo 52
35 Concluding Remarks oo v ittt it i it i s s it a e e as 55

CHAPTER 4 MACHINING FEATURE
DEFINITION AND REPRESENTATION .. 56

41 Parts DOMain . . o v v v v vttt e e e e e s 56
42 TheCavityVolumeModel v i 57
4,3 The Boundary of the Cavity Volume 58
4.4 Machining Feature Representation vv v o, 62
4.5 Concluding Remarks i it ittt ittt i eneneans 70

CHAPTER 5 MACHINING FEATURE

RECOGNITION ALGORITHM 71
5.1 Criteria for Recognizable Machining Features 71
5.2 Overviewofthe Algorithm 73
5.3 Recognition of Machining Features from the Subvolume 1. 79
5.3.1 Machining Heuristics v v v vt i vttt v it en e ne s 79
5.3.2 Selection of the Group(1) Faces 82
5.3.3 Geometric Reasoning for the Group(1) Faces 82
5.3.3.1 The First Geometric Test for the Group(l) Faces 82
5.3.3.2 The Second Geometric Test for the Group(1) Faces 84
5.3.3.3 The Third Geometric Test for the Group(l) Faces 89
5.3.4 Utilization of the Group(l) Face Testing Results 92
5.3.5 Selection of the Group(2) Faces e e e 94
5.3.6 Geometric Reasoning for the Group(2) Faces 95
5.3.6.1 The First and Second Geometric Tests for the Group(2) Faces 95
5.3.6.2 Utilization of the Group(2) Face Testing Results 97
5.3.6.3 Analysis of the Remaining Group(2) Faces 98

5.3.7 Selection of the Group(3) Faces 101

5.3.8 Geometric Reasoning for the Group(3) Faces 102

5.3.9 Utilization of the Group(3) Face Testing Results 104

5.4 Recognition of Machining Features from the Subvolume 2 105

5.5 Concluding Remarks v v i i v vttt ittt e it et m oo tanennn 111

iv

_ ' Page
CHAPTER 6 MACHINE LEARNING OF FEATURES

FORRECOGNITION................. 113

6.1 The Role of the Machine Learning Approach 113
6.2 The Methodology of the Approach 114
6.2.1 Boundary Characteristics vann. 116
6.2.2 Teaching a Feature Description v v v v v v v e v v v us 118
6.2.3 Memorizing the Taught Featureot nn.s 121
6.2.4 Recollecting the Learnt Feature vv... 122

6.3 Concluding Remarks ittt ittt it i ennenannnns 123
CHAPTER7 IMPLEMENTATION.................. 124
7.1 The Solid Modelling Systemo v i i i i i i i i oo 124
7.2 The VAX-OPSS5 AT Environment cvvv it iv i vanenn. 125
7.2.1 The Recognize-act Cyclettt enns 125
7.2.2 The Command Interpretero vt i i v vt v oo enns 127
7.2.3 TheRun-time Compiler 127

7.3 Linking PADL-2and VAX-OPSS 128
7.4 Implementation of the Feature Recognition Approach 129
7.4.1 Establishing Boundary Information 130
7.4.1.2 Boundary Representation of the Stock and Part Models 132
7.4.1.3 Boundary Representation of the Cavity Volume Model 134

7.4.2 Describing Cavity Subvolumes in VAX-OPS5 140
7.4.3 Recognizing Machining Features 143

7.5 Implementation of the Feature Learning Approach 151
7.5.1 Teaching Feature Description v 151
7.5.2 Memorizing the Taught Feature cv... 154
7.5.3 Recollectingthe Learnt Feature o vt v i e v .. 157

T.6 DiSCUSSION & & . v v v vt ittt s it e n st s tane s it 160
7.6.1 The Feature Recognition Approach 160
7.6.2 The Feature Learning Approach 164
CHAPTER 8 VERIFICATIONOFWORK............ 166
8.1 Grouping and Ordering Machining Features 166
8.1.1 Retrieving Machining Features 167
8.1.2 Grouping the Machining Features 167
8.1.3 Resolving Identical Features Condition 170
8.1.4 Sequencing Machining Features 171

82 CutterPathGeneration v i it in ittt i ineeneesnn 173
8.3 Examplest iii ittt ettt e e e 178
8.4 ConcludingRemarksttt ennnninennenn 188

Page

CHAPTER 9 CONCLUSIONS AND FUTURE WORK. . . 189

9.1 Conclusionsot vttt it ittt e e s e 189
9.2 ContributionstoKnowledge 191
93 Future WorK . . . o v i i ittt ittt i i e e e 192
9.3.1 Feature Classification00v s 192
9.3.2 Alternative Cutter Access Vectors v oo v v v v e v 193
9.3.3 Instructing Multiple Features« v vt v v vt v v i e e e vnn 194
0.3.4 Learning Technique Enhancement 194
9.3.5 General Research Directions cvvev v e s 196
REFERENCES i e i 197
APPENDICES
Appendix A : Derivation of the cavity volume boundary expression 210
Appendix B : Feature Representation - Illustrated Examples 213
Appendix C : Line/surface Intersection 218
Appendix D : Line/polygon Intersection 220
Appendix E : The Modified Winged-edge Data Structure 222
Appendix F : Aligning the Cutter Axis Vector with the Z-axis 226

vi

Chapter 1

CHAPTER 1
INTRODUCTION

1.1 Computers in Manufacturing

During the past four decades, major developments in the type and extent of
manufac‘turing automation were made possible largely through rapid advances in the
capacity and sophistication of computers. The significant stages of progress in the
exploitation of computers in mechanical parts manufacturing industries is summarized

in Fig. 1.1.

Time Design Aspect Process Planning Aspect Production Aspect

Group Technelogy
1080 o ——— —————————— e e ———— e ———— e ~£)

Numerical Contrel (NC}

Independent, Nou—interactive
Design Analysis Automatically Programmed Tools (APT)

Wireframe Modelling

Surface Modelling ’
Maes Property Calculations
NC Tape Generation/Verification

Behind-tapo-reader

1870 ————— - == o —ms oo ——m— o ——— e ——— =~~~ Direct Numerical Contral ™~
Enrianl;'e Typn:ded Pr Planning (CAPP) Computer Numerical Control
Bolid Modelling omputer— ocess Plann . trol
Finits Element Modellng/Analysis Distributed Numerical Contro!
Mass Property Calculations . Flexible Manufacturing Cell
1000 NG, Tepe Gonteation fVerfieation___Generative Typa crp T e
B
l'ca:::'elsy u.:g:mnn“ Using Al Techniques in CAPP Flexible Manufacturing System

Using Feature Concept in CAPP

Nen-manifold Solld Modelling

Figure 1.1 : Major developments of computer-based manufacturing automation.

As shown in the figure, the use of computers in design activities has evolved
from non-interactive design analysis through simple wire-frame drafting to solid
modelling and analysis. Non-manifold geometric modelling technologies [Weiler88] are
also emerging. These technologies will have high potential value for applications such

as laminate materials stress analysis.

Chapter 1

A considerable research effort has been conducted to automate process planning
which is the traditional link between design and manufacturing. The development of
Computer-Aided Process Planning (CAPP) systems has advanced from the group
technology [Gallagher73] coding based systems to the highly automatic systems that
emphasize the integration with solid modellérs for obtaining part description and the

incorporation of planning logic using artificial intelligence (AI) techniques [Alting89].

The technology of computer control of production machines has progressed
remarkably since the demonstration of the first stand-alone numerically controlled (NC)
milling machine in 1952 at Massachusetts Institute of Technology [Pressman77].
Subsequently, the need for using large NC part programs has led to the development
of direct numerical control technology by which NC part programs are transmitted
directly from a central computer to serve a group of NC machines. The rapid
technological advancement in manufacturing micro-electronic devices has accelerated
the development and application of sophisticated computer numerical control (CNC)
machines. Installation of highly computerized manufacturing systems, known as Flexible
Manufacturing Systems (FMS), are proliferating throughout the world [Kochan86].
These systems have high adaptability to changes of manufacturing conditions, and hence
they represent a strategy to increase productivity of batch production. Many
conventional production management techniques are implemented as computer programs
for enhancing the performance of various production functions such as production
planning, material requirements planning, plant layout, and cost accounting. To strive
for higher productivity and flexibility, modern factories have utilized computer-network
based systems in the planning, management, and operational control functions through

either direct or indirect computer interfaces with manufacturing resources.

In retrospect, it is found that much outstanding progress has been made in a
variety of Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM)
applications. However, the past CAD/CAM development effort tended to be dispersed,
and consequently, productivity improvement has been localized in individual 'islands

of automation’'.

Chapter 1

1.2 Moving Towards Computer-Integrated Manufacturing

The type of manufacturing business environment that is of main concern today
consists of a highly competitive, rapidly evolving market. Stringent customer
expectations of faster delivery, shorter product life cycle, higher quality and less
expensive products have made manufacturing support issues, such as the reduction of
manufacturing lead times and the integrity of product information for efficient and
effective sharing amongst various manufacturing functions, become more and more
critical, In the ultimate effect, the hostile market environment has caused a change in
manufacturing cost patterns such that direct manufacturing costs, such as material and
labour costs, often represent only a small percentage of total production cost and
indirect or manufacturing support costs are a very large portion of total cost
[Thomson86].

Hence, to improve manufacturing productivity it is necessary to reduce heavy
manufacturing support costs. The reduction of heavy manufacturing support costs is not
to be accomplished by merely automating each step of the design and manufacturing
cycle. It is also necessary to improve coordination and control between the automated
steps of the entire manufacturing business. For instance, CAD technology has improved
design productivity in terms of decreasing the product innovation lead times and costs.
However, if the CAD information can also be utilized directly by other manufacturing
functions such as process planning and inventory planning, any sudden design changes
can then be propagated quickly and accurately throughout the manufacturing system.
Appropriate corrective actions such as using alternative process plans can then be taken
swiftly to bring the manufacturing system back to a stable condition. In effect, the
overall productivity gain will be much more significant. Thus the trend in
manufacturing automation is towards total factory automation or Computer-Integrated
Manufacturing (CIM) which promotes the computer-integrated coordination of overall

design and manufacturing functions.

Achievement of the goal of CIM requires a genuine integration of CAD and

CAM into an integral computer-driven manufacturing system. However, the main

-3-

Chapter 1

problem of combining these two principal manufacturing functions is in the
communication of information between them. Although methods [Baer79, Requicha80]
of developing CAD systems [Requicha82] that could manipulate modelled objects as
complete geometric and topological solids are available, the diversities of CAM
activities, such as process planning and automatic assembly, still cannot make full use
of the CAD-generated object definition because it exists in terms of low-level
geometric/topological data. Consequently, the current inter-linking of CAD and CAM
has had to seek recourse to human assistance for confirming design purpose and

manufacturing methods from the CAD models.

1.3 Features : a Methodology for Integrating CAD and CAM

Years of research and development experience in the CAD/CAM research
community has led to a consensus that a higher level of abstraction of design entities
is needed for tightly coupling CAD and CAM. Such a collection of enhanced

representations of design entities are generally referred to as "features”.

There have been many different feature definitions found in the literature
[Shah88a]. A feature definition given by an author basically reflects the insight,
research approach and application context of that author. For instance, Henderson
[Henderson84] identified and extracted manufacturing features, such as holes and
pockets, from the boundary database of part models, and thus he defined a feature as
: "a set of connected faces related to a specific manufacturing process". Cunningham
and Dixon [Cunningham88] advocated design directly from features and saw a feature
as : "a geometric form of entity that is used in reasoning in one or more design or
manufacturing activities”. To encompass the design-oriented and manufacturing-oriented
views of features, Wilson and Pratt [Wilson88] gave a traditional and broad definition

as : "a feature is a region of interest in a part model".

Chapter 1

It is difficult to define features precisely because the interpretation of a feature
is strongly associated with the feature's application and parameters. As illustrated in
Fig. 1.2, applications are heterogeneous tasks in areas of activity, such as design,
analysis, and manufacturing, within different engineering disciplines such as mechanical
and electronic engineering. Parameters are attributes, such as dimensions, tolerances,

and surface conditions, for supporting applications.

Enginearing Areas of
Disciplines Activity Applications Parameters
Mechanical Sand cast parts design - guomatry/tapology

Design
Electronic \ Machined parts design ¢

= nominal dimenslons

Civil ete. tolerances
ete, Analysie Btress analysis R ‘;“‘.,.-.:'- surface conditions
N QY
. v,

Mould flaw analysis

etc. machining datums

Manufacturing Y Process planning ste,

NC cuiter path generation

ete, ete,

Figure 1.2 : The concept of application dependence of features.

For instance, in the mechanical engineering discipline, the feature "A" shown
in Fig. 1.3(a) is generally considered to be a slot. In the eye of a designer, the slot may
be viewed as one kind of functional feature that can be used to restrain the movement
of a mating part. To a machinist however, the observation of the slot may stimulate the

thinking of a slot machining operation.

To illustrate the significance of feature parameters on feature interpretation, the
geometric aspect of the part shown in Fig. 1.3(a} is modified to become the part shown
in Fig. 1.3(b). Many design/manufacturing engineers would now prefer to call the

feature "B" as a notch or non-corner notch [Butterfield87]. However, the criteria, such

-5-

Chapter 1

as the range of dimensional parameter values, for uniquely differentiating a notch from

a slot are elusive.

Feature "A” Feature "B"

(a)) (b)

Figure 1.3 : Multiple views of features.

Another example, borrowed from the ideas of Pratt [Pratt87], is illustrated in
Fig. 1.4.

Depressions

Figure 1.4 : Design oriented view and manufacturing oriented view of features. -

As shown in the figure, if a machining-oriented interpretation is adopted, the
three depressions "C" would be considered as three disjoint machining pockets.
However, if the interpretation is design-oriented, the same depressions could be deemed
as the web space formed within the boundaries of reinforcing ribs. With this form
(basic geometry and topology) feature oriented interpretation, a variety of
manufacturing processes such as casting; forging; sintering; chemical milling; etc.,

could also be conceived for creating the shape of the part (the two words, "form" and

-6 -

Chapter I

"shape", will be used synonymously in this thesis). However, if the part is to be
produced by a chemical milling process or attributes such as surface texture and over-
etch factor are specified, then interpretation will be more certain in the sense that the
depressions signify the design intent of increasing the strength/weight ratio of the part
and that the formation of the depressions is likely to be due to the removal of material

by the etching action of a chemical milling operation.

Thus the absence of a precise definition of features is very much due to the
problems arising from the wide ranging applications in which different specialists share
the same design model but reason about it using their own vocabulary. Nevertheless,
features can be comprehended from the computer standpoint as some intelligent
constructs of data and algorithms such that when the data/algorithms are processed by
computer, they have the subtle effect of interpreting, generating, and propagating design
purpose and manufacturing semantics amongst computer application modules. This
important capability of conveying and manipulating design and manufacturing
knowledge is fundamental to the objectives of linking CAD and CAM. In other words,
a feature representation of manufacturing products can significantly enhance the
integrity and semantics of product information so that it can bé utilized as a common

database to support a diversity of CAD/CAM applications.

1.4 Principles of Existing Feature Modelling Approaches

The approaches adopted by researchers for achieving a feature representation
can be classified into three basic types : (i) human-assisted feature definition; (ii)

‘automatic feature recognition; and (iii) design by features.

The human-assisted feature definition approach usually involves the construction
of a 2D/3D wireframe or boundary database of solid model. The boundary database
created is then rendered as an image of the model on a cathode-ray-tube display to
allow the user to interactively pick topological entities, such as edges and faces, needed

to define a feature such as a hole.

Chapter 1

The automatic feature recognition approach simulates human
design/manufacturing behaviour in interpreting the design information of a part through
the implementation of reasoning abilities in computer programs to identify and extract
relevant feature data from the part model database or some transformed version of the

part model database.

The design by features approach aims to devise a feature-based modelling
environment for design engineers to create part models directly from features right from
the beginning of design. Generic feature definitions are maintained in a library from
which features are instanced by specifying various parameters such as dimensions and

locations.

1.5 Motivation of Research

The human-assisted feature definition approach has been a traditional method
used for inputting data for applications such as defining machining faces for NC cutter
path generation. However, due to the need for human intervention, using this approach

alone is not promising towards the goal of CIM.

The design by features approach is in agreement with the simultaneous
engineering concept as the simultaneously enhanced feature model can retain design
intent and manufacturing purpose for the concurrent support of other applications.
However, the need for feature reasoning still exists because feature interpretation is
application specific as discussed earlier. Moreover, feature characteristics may change
when features interact during the design process. For instance, spatial interactions
between the generic features that exist in the feature database can result in non-generic
shapes. To reduce the complexity of these problems, many feature-based modelling
systems have been implemented based on manufacturing-oriented features and restrictive
criteria of feature interaction. As manufacturing features may not be compatible with
design features, these systems have drawbacks such as low autonomy of design for

function, limited choice of manufacturing processes, and problems related to the

-8-

Chapter 1

determination of the level of abstraction and operations of the set of generic features.

The automatic feature recognition approach is attractive partly because it is
automatic in nature and partly because the feature recognition algorithm can be
constructed to suit different applications. Nevertheless, in the context of recognizing
machining features such as holes and pockets from mechanical parts, the following

drawbacks of the existing recognition technology have been identified :

1. Existing methods have not sufficiently exploited the tool accessibility
information and machining heuristics (rules of thumb) in the process of feature

recognition.

2. Shape complexity of both the machining features and mechanical parts

considered tends to be relatively simple.

3. The 'recognizing intelligence' in the recognition algorithm is usually rigidly
implemented with respect to the characteristics of a predefined set of feature
primitive templates, and thus the approach has frequently been hindered by the

limited range and complexity of features that can be recognized.

1.6 Research Objectives
The specific problems stated above initiate two general research objectives :

1. The first objective is to devise a feature recognition procedure-that exploits the tool
accessibility information and machining heuristics as clues for recognizing 2.5D
machining features that exist in reasonably complex machining part designs such as
those illustrated in Fig. 1.5.

2. The second objective is to devise a machine learning [Cohen83] approach by means

of which the recognizing intelligence of the machining feature extraction system

-9-

Chapter 1

developed in the first objective can be increased during the system service life.

Four holes at Two holes intesect

gt;ea c;;lg;léi orthogonally

Figure 1.5 : Examples of complex machining parts to be handled.

1.7 Research Methodologies

The research methodologies employed involve the implementation of a prototype
knowledge-based machining feature extraction system which is constructed by
integrating the VAX-OPS5 [Forgy77] rule-based AI environment with the PADL-2
[Brown82] solid modeller. Specification of original stock and finished part geometry
within the solid modeller is followed by determination of the nominal surface boundary
of the corresponding machining volume model by means of Boolean subtraction and
boundary evaluation [Requicha85a). The bdundary model of the machining volume is
managed by using winged-edge [Baumgart74, Weiler85] and frame-based [Minsky75]

data structures.

For the achievement of the first objective, a machining feature recognition
procedure which employs rule-based and procedural programming techniques has been
devised. The feature recognizer uses built-in machining heuristics and tool accessibility
analysis to identify and extract 2.5D machining features from a machining volume. The
tool accessibility analysis is based on ray-casting technique, and the results are
propagated into a frame-based data structure which acts as an agenda for guiding

feature searching. Instead of rigidly classifying the feature type, a recognized machining

- 10 -

Chapter 1

feature is represented in terms of its tool entry face and part face identities that are used

in its winged-edge boundary model.

For the achievement of the second objective, a machine learning approach is
adopted by means of which the user is allowed to interact with the wireframe display
to define tool entry and part faces of the machining volume. These taught faces together
with the boundary description of the machining volume are converted into production
rules. These new rules are incorporated into the knowledge base allowing subsequent
recognition of similarly shaped machining volumes and hence the generation of
appropriate machining faces. This method is intended for customization to handle
factory dependent machining features or machining features that cannot be machined

by simple cylindrical cutters such as end-mills.

The validity and practical usefulness of the approach is demonstrated by the
inclusion of an NC cutter path generating module that utilizes the winged-edge data
structure for the post-processing of the extracted machining features into NC part

programs.

-11 -

Chapter 2

CHAPTER 2
LITERATURE REVIEW

Most feature modelling methods are based on a geometric modelling concept.
Thus prior to the review of previous works on feature modelling, the geometric

modelling methods are overviewed.

2.1 Geometric Modelling Methods

The geometric information of a solid part can be classified into two aspects :
basic and variational. The basic geometric information refers to the ideal geometric
(metric information) and topological configuration (shape information) of the part, while
the variational geometric information refers to the allowable deviations of the ideal
nominal shape such as geometrical tolerance and surface finish, The two approaches
commonly used to model variational geometric information are parametrization and
offsetting. Parametrization is done by using basic parameters to model the nominal
geometry of a part. In turn, the basic parameters are associated with limiting parameters
that correspond to the permissible variations of the basic shape. Offsetting is a non-
parametric approach where the boundary of the nominal part is offset by the amount of

the specified tolerances to generate the limiting parts,

Undoubtedly, variational geometric information is of paramount importance in
the CAD/CAM context as many valuable design and manufacturing clues can be
implied. Nevertheless, the formal study of representing variational geometric
information is still an independent research issue [Requicha83, Juster92]. Most state-of-
the-art geometric modelling systems still treat variational geometric information as
precision features which are augmented in the basic geometric model as attributes based
on the principle of the human-assisted feature definition approach. In this thesis, interest

is focused on extracting machining features based on nominal shape information, and

12 -

Chapter 2

hence only basic geometric information is considered.

There are three basic geometric modelling approaches : (1) 2D/3D wireframe

modelling, (2) surface modelling, and (3) solid modelling.

Wireframe modelling only models the basic geometric framework of a solid
part. For instance, a rotational part can be modelled by describing its surface profile
as a 2D wireframe contour, while a prismatic part can be represented by its vertices
and the edges joining the vertices. Thus wireframe representations do not provide a
complete surface and volumetric description of physical parts, and hence human
interpretation is necessary to define the missing information. Despite this, wireframe
modelling is still an important basis for feature modelling. For example, 2D wireframe
representations are often used for representing and extracting features of rotational parts
fJoseph90] whereas 3D wireframe models are popularly adopted for quick display and
verification of the geometry of feature models [Luby86].

Surface models take the modelling of an object one step beyond wireframe
models by providing information on surfaces connecting the object edges. Typically,
a surface model consists of wireframe entities that form the basis to create surface
entities which can be analytic or synthetic. Analytic surface entities include planar
surface, ruled surface, surface of revolution, etc.,, while synthetic surface entities
include the bicubic Hermite spline surface, B-spline surface, rectangular and triangular
Bezier patches, etc. [Rogers89]. As surface information is included, surface models are
less ambiguous. They have been utilized in representing complex feature geometry such
as in mould/die surface modelling, NC path generation, and interference detections
[Choi88, Gandhig9].

Solid modelling is the highest level of geometric modelling technology in the
sense that it can provide complete and unambiguous geometric and topological
information of a part. Historically, several different solid modelling methods have been

developed. The following five are typical :

-13 -

Chapter 2

(1) Parametrized Shapes;

(2) Spatial Occupancy Enumeration;

(3) Sweep Representation;

(4) Constructive Solid Geometry (CSG); and
(5) Boundary Representation (B-rep).

CSG and B-rep are the best understood among these methods. They form the
basis of most of the contemporary solid modelling systems and are widely used in
feature modelling work. More importantly, they are also involved in this research, and
hence their modelling principles and properties are briefly described below, For a
formal discussion of solid modelling technologies, the reader is recommended to study

references such as {Baer79, Requicha80 and Requicha82].

2.1.1 Constructive Solid Geometry (CSG)

In CSG modelling, an object is represented as an ordered, binary tree of
primitives and regularized Boolean set-operations [Requicha78]. As shown in Fig. 2.1,
the terminal nodes of a CSG tree are primitives, while the non-terminal nodes represent
regularized Boolean set-operations applied to the two sub-nodes. The primitives can be
solid primitives or half-spaces that are associated with necessary rigid-body

transformations for achieving the desired position and orientation.

Commonly used solid primitives are blocks, cylinders, spheres, wedges, cones
and tori. Each solid primitive is internally predefined as the volume bounded by a set
of half-spaces which are closed (continuous without breaks) and orientable (side-wise
distinguishable) surfaces such as planar and cylindrical surfaces. For instance, a
cylinder primitive can be defined as the volume formed by the regularized intersection
of two planar half-spaces and one positive cylindrical half-space as illustrated in Fig.
2.2. Some CSG-based systems, such as PADL-2 [Brown82] and TIPS-1 [Okino73],

allow the use of both solid primitives and half-spaces to create solid models.

-14 -

\~/ Chapter 2

leference

X

nder_1

Cyh
z x Ay
Umon °°L3 x
y VN
Block .1 Block_2 |

Unmn

Azl AX2 and Ayl are
rigid-body translation
parameters

Figure 2.1 : CSG tree representation.

_ r-e——Radius R

\{<M%P1anar half-space H2 = {(x, y, z) | z < Hi}
-I;\

‘y\Cylinder = Ht {(~) H2 {~} H3 where (~) = regularized intersection

Planar half-space H1 = §{x, y. z) | z = 0}

' |
e X

Cylindrical half-space H3 = {(x, y, z) | X+ y2£ Rei

Figure 2.2 : Construction of cylinder primitive by using half-spaces.

The regularized Boolean set-operations are union, intersection, and difference
which can be considered as the 3D versions of their respective conventional Boolean
algebra counterparts, i.e. OR, AND, and NOT AND. Regularized Boolean set-
operations are used to ensure that CSG objects are homogeneous solids which will not

contain awkward components such as dangling faces and edges as illustrated in Fig,
2.3.

-15 -

\ / Chapter 2

% %

Conventional Boolean Regularized Boolean
set—operations ' set—operations

A union B \ C = A <union> B
N R
A difference B § D

A intersection B REY E = A <intergection> B

|
-

A <difference> B

.

d

dangling edge

E

W

Figure 2.3 : Regularized Boolean operations ensure modelled solids are 'true’ solids.

CSG representations are informationally complete but they do not provide the
geometric and topological information explicitly. Whenever the boundary information
is needed, the CSG representation has to be evaluated by using a procedure called
boundary evaluation [Requicha85a, Voelcker81]. This procedure is computationally
expensive but is necessary even for applications such as line drawing display of objects.
Any changes made in the boundary information cannot be transmitted backward for
updating the original CSG representations because the theories and algorithms
[Shapiro91] for converting boundary information to the corresponding CSG
representations are still not well researched. Moreover, due to the use of combinatorial
Boolean operators, CSG representations are not unique. Figure 2.4 illustrates one of the

many possible alternative CSG representations for the same object shown in Fig. 2.1.

- 16 -

Chapter 2
!l leference
leference Cylmdcr 1 Aﬂ
BloclLl mmLz ‘ =
s AZI

Figure 2.4 : Alternative CSG representation of the part shown in Figure 2.1.

2.1.2 Boundary Representation (B-rep)

In B-rep modelling, an object is represented in terms of its boundary faces. A
face is conceived as a bounded region of a closed and orientable surface. It is usually
defined in terms of its surface definition and bounding curves that are known as edges.
In turn, each edge is expressed in terms of its curve definition and ending points that
are known as vertices. Thus the database of a B-rep model basically contains the
model's geometric entities, topological entities, and topological relationships as
illustrated in Fig. 2.5. Strictly speaking, data such as surface equations of bounding
faces and their spatial locations are referred to as geometric entitites. Topological
entities include faces, edges, vertices, etc., whereas topological relationships are
structural connectivity pointers that specify how the geometric/topological entities are

related with each other.

-17-

Chapter 2

wurfac
lrullhrm-uunl planar surface
Snlld H otz t5 Wty nqu-uon.

fl 12 £3 4 fﬁ -———- face level -——- f1 12 13 t& 15

el e4 eS eB &7 eB el -———- edge level ~~~-- el ed o3 e 5 e e7 eB ed

4 e
vl v2 ¥v3 v4 6 v8 ——mrwertex level-———- 1 vl wvi v5 vB .
Topology) - 1“/\ /\ /\ /\ /\ Goometry

nl.nl.nl and points coordinatas

Figure 2.5 : B-rep of a polyhedral object.

Creation and manipulation of geometric/toplogical entities involve Euclidean
(3D) geometry calculations and Euler operations. Euler operations [Eastman79] are

based on the Euler-Poincare formula whose general form is :

v-e+f=2-h+r

where ¥ = number of vertices;
e = number of edges;
S = number of faces;
s = number of shells (disconnected components);
h = number of holes through the modelled solid; and
r = number of rings (cavities) in faces.

This Euler-Poincare formula relates the number of basic topological entities in
a polyhedral object and, consequently, is useful for checking the validity of B-rep
models. In B-rep systems such as BUILD-2 and ROMULUS [Hillyard82], the rather

- 18 -

Chapter 2

unintuitive Euler operations are upgraded to user-oriented operations such as chamfering
and tweaking as illustrated in Fig. 2.6. The Boolean operations used in CSG systems
are also_used in B-rep systems to combine individual objects together to form a
composite object. While the object modelling is performed incrementally via the use of
these operations, the object's B-rep is constantly updated, and hence users can

appreciate the instant change of shape of the modelled object.

P &

Figure 2.6 : Higher level B-rep operations.

Due to the provision of explicit boundary information, B-rep modelling schemes
are very useful for applications such as graphic display and NC cutter path generation.
Volumetric properties can also be computed by virtue of the Gauss divergence theorem

which relates volume integrals to surface integrals [Lee82a, Lee82b].

In summary, both CSG and B-rep solid modellers can provide a database that
describes the geometry and topology of physical objects. Nevertheless, the model
database is only sound for describing the syntactic information content and not the

semantic information content in terms of the engineering meaning of the model,

-19 -

Chapter 2

2.2 Feature Modelling Methods

As introduced in section 1.4, there have been three broad approaches adopted
by researchers for modelling engineering meaning in the product database : (1) human-
assisted feature definition, (2) automatic feature recognition, and (3) design by features.
The literature on feature modelling is voluminous. Hence it is only possible to review
a few representative examples that can help in understanding the methodologies used
~as well as possible shortcomings. As the focus of interest of this thesis is on the
automatic feature recognition approach, the related investigations will be elaborated,
while the background work of the other two approaches will only be briefly described.
For a more comprehensive literature survey and discussion of feature modelling

technologies, references such as [Pratt88, Shah88a, and Case92] can be pursued.

2.2.1 Human-Assisted Feature Definition

This approach has been widely used for augmenting data such as geometries and
tolerances in the design for facilitating process planning and NC cutter path generation.
For example, Chan [Chan82] developed a group of interactive commands on top of
those provided by the ROMULUS [Hillyard82] B-rep modeller to manipulate the
boundary model in such a way that appropriate faces and edges of a part can be tagged
for automatic generation of the APT (Automatically Programmed Tools [IIT67])
geometry statements.

In [Requicha835b], an essentially B-rep data structure called a VGraph
(variational graph) was implemented within the PADL-2 [Brown82] CSG modeller for
interactive definition of features. The VGraph is needed since CSG schemes alone
cannot support interactive manipulation of the boundary model. Features are defined in
terms of groups of faces and edges with which attributes such as toierances and datum
systems are associated. The structure is utilized in a high level machining language

called MPL (Machining Process Programming Language [Chan86]) for specifying

-20 -

Chapter 2

machining features such as holes and pockets.

2.2.2 Design by Features

Early works [Chang81, Descotte84, Berenji86] established feature model
databases for facilitating computer aided process planning in the absence of a geometric
modeller. The modelling process often involves textual input of machining features and
part geometry information using a customized feature description language. For
instance, Chang [Chang81] used a command language driven dialogue input method for
the design of parts with holes that are described in terms of parameters such as
diameter, upper chamfer, bottom chamfer and geometric tolerances. The 2D graphic
image of the defined part is rendered on a CRT display screen, and the established hole
database is processed by the APPAS [Wysk77] generative process planning system for

the generation of appropriate machining sequences and parameters.

The modern implementation of the approach is similar to that of the CSG
modelling method. It usually involves the definition of generic features in a library from
which features are instanced by specifying relevant feature parameters such as
dimension, location and various attributes for establishing the feature model of the part.
The resulting feature model can provide additional information such as feature types,
design rules, tool entrance directions and manufacturing sequences, and hence the need
for inferring such important engineering meaning from other descriptions of the part

model can be circumvented.

Most of the existent machining features based design systems [Hart86,
Cutkosky88, Chang88/Turner88, Unger88, Tsang89, Hummel89/90] are based on
Arbab's [Arbab82] 'deforming solid geometry' approach by which a part is modelled
incrementally by subtracting features from a starting base solid. For example, the
"First-Cut" system reported in [Cutkosky88] uses a solid modeller called Alpha_1 and

the starting base solids are meant to be extruded bar stocks. Design is conducted by

-21 -

Chapter 2

successively inputting a series of high-level manufacturing operation commands such
as make hole and make pocket. Internally, the commands activate the corresponding
Boolean subtractions of generic features from the based solid to yield the desired part.
The system uses the renowned GARI [Descotte84] as the underlying process planner.

NC code and inspection plans can also be generated.

Works such as [Luby86, Chung88, Cunningham88, Shah88b/Shah90] adopt a
more flexible feature modelling process that allows user to design by adding,
subtracting, and manipulating features. For example, Luby et al [Luby86] developed
a metal castings design system which allows the use of both additive and subtractive
features such as slabs, ribs and holes. Chung et al [Chung88] built a similar gating
design system for investment castings by integrating a commercia! B-rep modeller (I-
DEAS, originally GEOMOD developed by [Baumgart74]) with an expert system shell
(KEE). However, only additive features such as fillets and webs are allowed in the
system. Rules of good casting practice are embedded in the feature definitions so that
when features are instanced, the validity of the design can also be verified

automatically.

Cunningham and Dixon [Cunningham88] proposed a comprehensive set of
features based on an examination of the heuristics for a wide range of design and
manufacturing process/activities such as functional design, manufacturability evaluation,
and inspectability. The feature sets are related to a knowledge-based design by features
system architecture that is not associated with a geometric modeller. The system
basically consists of a user interface, a working features library, a feature operations
library and an operations monitor. The authors advocated that such an intelligent design
system will allow users to synthesize and transform the primary working features into
a higher level secondary features that can provide the necessary information to support

various manufacturing applications simultaneously.

Shah et al [Shah88b, Shah90, Shah91b] reported the development of a testbed

system that consists of a feature based design shell and an application mapping shell.

=22 -

Chapter 2

The design shell allows one to integrate additive/subtractive features, geometry,
topology, and design rules into a unified product description. The mapping shell
performs feature reasoning and relates the established feature information to various
applications such as manufacturability evaluation, GT coding, stress analysis, etc. A
mechanism for interactive definition/recognition of features was also reported. The
system can identify the entities that make up the features. The work for creating a

feature model from the acquired information is still in progress.

Gindy [Gindy89] emphasized the need for a structural scheme to represent and
manipulate features. He proposed a feature taxonomy where generic form features are
conceived as volumes enveloped by entry/exit and depth boundaries. The feature
classification is based on the "external access directions” (EADs) from which the
feature volume could be removed by cutting tools. For instance, a through slot feature

has three EADs whereas a step feature has four EADs as illustrated in Fig. 2.7.

3 EADs 4 EADs

threugh slot feature Step feature

Figure 2.7 : External access directions for a through slot and a step.

At the highest level of the feature taxonomy (Fig. 2.8), form features are
divided into three generic categories : protrusions, depressions and surfaces. Feature
geometry is represented by defining the EADS, the boundary wall type (open or closed)
and the exit boundary status (through or not through). Groupiﬂg feature geometry
characteristics structurally in this way produces a list of form features classes that

correspond to common geometric shapes such as bosses, pockets, holes, slots, notches,

-23 -

Chapter 2

and real and imaginary surfaces. Secondary feature forms such as gear teeth, screw
threads, and knurl can also be described by the taxonomy as specific local geometry
superimposed on the basic form feature. The feature taxonomy is useful not only to the
design by features approach for structuring design features but also to the feature
recognition approach for governing the design of feature recognition rules. In Gindy's
reported work, the taxonomy is used as a generic data structure for conveying feature

information of engineering parts to a prototype generative process planning system.

Form Features
| |

|
| Protrusions | | Depréssions' Surfaces ,

1
[i] |;| EADs 3] * !
closed closed [closed] | open | open open cloaed cloged open
I |] [

not not not not
through! | through through through through through through through through

| 1 [] ' :
[Boss | [Fooket] [(Hole | [[siot] [TSlot | [Noten] [TSter | | Sonface| |ochinary

Figure 2.8 : Gindy's form feature taxonomy,

2.2,3 Automatic Feature Recognition

This approach assumes that the geometric model contains feature information
that can be identified and exposed. The techniques used can be broadly classified into

two groups : (1) recognition with CSG models, and (2) recognition with B-rep models.

2.2.3.1 Recognition with CSG Models

One of the earliest works on feature recognition with CSG models was done by
Woo [Woo75]. He used a restricted form of CSG with only ADD and SUBTRACT

operators to define objects, and considered simple volumetric features such as slots and

-24 -

Chapter 2

holes. Features are extracted from an object's CSG representation by searching CSG
patterns that match predefined feature definitions. The program can only recognize

some elementary machining features from objects in a narrow domain.

Woo [Wo082] also used a decreasing convex hull algorithm to generate a CSG
tree of convex volumes by recursively computing the Boolean difference between an
object and its convex hull until the object equals its own convex hull. As illustrated in
Fig. 2.9, the original object can be expressed as alternating sums of volumes in the
form Po = Ho - H1 + H2 - H3. This form can be slightly rearranged as Po = Ho - (H1
- H2 + H3), where Ho represents the stock and (H1 - H2 + H3) represents a number

of removal volumes or a sequence of machining operations.

%

—a ».

convex hull H3
4
Remarks : Po = Ho — H, + H: — Hs \@<
Null

Figure 2.9 : Woo's decreasing convex hull algorithm,

However, the approach has several flaws : (1) the generation of convex volumes
is solely based on geometry computation and therefore an odd-shaped removal volume
that does not correspond to a single machining operation can result, (2) the sequence
of generating removal volumes in the algorithm may not comply with a practical

machining operation sequence, (3) the shape of the stock it assumes can be awkward

-25 -

Chapter 2

because it is simply the convex hull of the initial shape, (4) the algorithm is not purely
CSG based since B-rep is involved in the convex hull determination, and (5) the
algorithm does not converge when a null set condition does not exist. An algorithm for
detecting the nonconvergent conditions is reported in a more recent work [Tang91] but

the problem of nonconvergence still exists.

Lee and Fu [Lee87] utilized the principal axes of CSG primitives to extract
features which are defined as CSG combinations of primitives whose principal axes of
symmetry satisfy certain geometric relationships. For instance, the definition of a fillet
involves the union and appropriate positioning of two cubes and a cylinder. Once the
features are located, the CSG tree is rearranged by using tree manipulation techniques
so as to group certain CSG patterns that correspond to solid features. Only a small set
of features of very simple and restricted forms can be recognized and the non-
uniqueness of CSG representations is not tackled. The main thrust of the work is the
development of techniques for moving nodes in the CSG tree. Although a more efﬁcient
CSG tree reconstruction algorithm is subsequently reported in [Lee88], the feature

extraction and unification methods remain basically the same.

More recently, Perng et al [Perng90] described a method for extracting
machining features from CSG input. The method involves the conversion of a part's
CSG tree representation into an equivalent DSG (destructive solid geometry) tree
representation in which the part is expressed as S - E1 - E2 - E3 ... , etc., where S is
the stock in the form of a block that bounds the given part, "-" is the Boolean
difference operator, and Ei1, E2, E3, etc., are the excess material volumes contained in
the stock. The excess materials are classified into basic machining features by matching
their face patterns with those of eighteen predefined machining feature primitives such
as holes and pockets. The basic features were further grouped into composite machining
features based on their adjacency relationships. The method has several shortcomings
: (1) the original CSG tree input allows only union and difference operations, (2) the
method is also not purely CSG based because the B-rep of the object is needed both in

the CSG-DSG conversion process and in the feature recognition process, and (3) the

- 26 -

Chapter 2

recognizable machining features are limited only to the eighteen predefined feature
primitives. Further work from the same working group [Li91] reports an improvement
to the method by taking into consideration of the original stock of non-block type in the
CSG input.

2.2.3.2 Recognition with B-rep Models

The approach generally involves : (1) searching the B-rep model database to
match geometric/topological patterns, (2) extracting recognized features from the
database, and (3) organizing the recognized features to establish a corresponding feature

model database.

The B-rep model database may be represented in different forms such as
traditional hierarchical B-rep structures, Al-based representations, and boundary graphs.
More than one representations may be used concurrently. Most researchers [Grayer77,
Joshi88, etc.] recognize features directly from the finished part model, while a few
[Henderson84, CAMI-ANC85] make use of the removal volume model obtained by
subtracting the finished part model from the stock model.

Techniques for searching and matching feature patterns vary, from hard-coded,
procedural data structure traversal/entity evaluation to Al-based pattern matching and

boundary graph manipulation/matching.

Extraction of features ususally involves tagging/collecting face/edge sets of
recognized features or generation of feature volumes that correspond to the recognized
features. Organization of the recognized features often entails the enhancement of the
original database with the inferred feature information or the establishment of a new
database such as a feature graph to represent the derived engineering meanings of the

model.

-27.-

Chapter 2

For example, early work by Grayer [Grayer77] extracted machining regions by
sectioning the boundary model successively with a series of planar surfaces normal to
the machine's spindle direction such that the boundary edge loops of 2.5D machining
regions in the model can be revealed on the sectioning surfaces. The surfaces are
processed by an area clearance machining procedure for cutter path generation. The
method weakly assumes : (1) a spindle direction is given, (2) the gap increment
between the sectioning surfaces is the desired depth of cut, and (3) the part can always

be machined by a sequence of 2.5D pocket milling operations.

Kyprianou [Kyprianou80] described a syntactic pattern, edge-based recognizing
algorithm which starts by classifying the B-rep entities. Edges are classified as convex,

concave, smooth convex and smooth concave as illustrated in Fig. 2.10.

smooth convex edge

(based on local curvature)
smooth concave edge

concave edge
(360 > a > 180°)

convex edge
(180°> b > 0°)

Figure 2.10 : Concavity classification of edges.

Similarly, the vertices and the edge loops are classified depending on the
convexity/concavity of their incident edges and constituent edges respectively. Faces are
labelled as primary if they contain a concave edge or an inner edge loop. Primary faces
are further ordered based on the number of concave edgesets. A hierarchical faceset
data structure is established by processing the entity-classified B-rep. Features are

determined from the faceset data structure by using syntactic pattern parsing rules. For

-28 -

Chapter 2

instance, an inner loop of convex edges indicates a depression, and similarly, an inner
loop of concave edges signifies a protrusion.. The face set data structure is used to
generate group technology coding for classification of rotational and prismatic parts.
The method works quite well with rotational parts but when used for prismatic parts,
cannot recognize certain complex features such as T-slots. Recognized features are

marked in terms of face sets, but accessibility information is absent.

The syntactic pattern recognition technique is also used by Choi et al [Choi84]
to recognize simple features such as holes and pockets, For example, a hole is
recognized by searching for circular edges lying in a plane. However, the method fails
if a cylindrical hole opens non-orthogonally into a planar face or opens into a non-

planar face since the types of edges thus formed are not always circular.

Henderson [Henderson84] used the Al language PROLOG to implement a rather
sophisticated feature recognition algorithm that starts by subtracting the finished part
from the stock, both represented in the ROMULUS [Hillyard82] solid modeller, to
obtain the B-rep of the removal volume or cavity volume. The faces of the cavity
volume are tagged as primary or secondary entrance faces according to their
accessibility from the exterior or through other faces of the part. The B-rep of the
cavity volume is converted into an equivalent set of PROLOG assertions. Features are
face sets that satisfy relationships defined by PROLOG rules. For instance, a simple
hole must have an entrance face associated with one or more coaxial side faces, and a
bottom face. The algorithm searches for the PROLOG equivalent of the B-rep of the
cavity volume for face patterns that match the feature rules. Features are searched in
the following predetermined order : (1) slots, (2) pockets, and (3) holes. Once a feature
is found, the corresponding feature volume is extracted by subtracting it from the initial
cavity volume. This recognition procedure is applied recursively to the new cavity
volume until the cavity volume is null. The recognized features are organized into a

graph that represents the accessibility and adjacency relationships amongst the features.

-29 -

Chapter 2

In Henderson's method, the local accessibility of a feature is defined in terms
of the presence of primary or secondary entrance faces in the pattern matching
conditions of the corresponding feature rule. In order to ensure that the recognized
features are machinable, Henderson performed further accessibility analysis by
employing computationally expensive boundary intersection between the extracted
volume and the finished part. His notion was that if the intersection is null then its
removal will not gouge the finished part. However, this does not ensure global
accessibility of a feature. For example, the hole shown in Fig. 2,11 cannot be machined
by a cutting tool coming from the left hand side due to the obstruction caused by other

components of the part.

inaccessible accessible

Figure 2.11 : A hole that is not accessible by cutting tool from one end.

Another problem with his algorithm is in dealing with interacting features. When
the faces of a recognized feature do not enclose a volume, the algorithm generates
volumetric features by computing cross-sections and sweeping them along linear or
circular trajectories, The method fails in certain cases as the subtraction of features may
cause alteration of the boundary pattern of features in the remaining cavity volume, and

consequently, further recognition becomes increasingly complicated.

More recently, Dong [Dong88a, Dong88b] developed a feature extraction system
using both procedural and declarative methods. His feature recognizer starts by
converting the boundary information of the part from the PADL-2 [Brown82] CSG
modeller into a set of LISP frames. A set of machining feature templates such as slots,

pockets and holes are predefined, in terms of the feature recognition methods and the

=30 -

Chapter 2

sequénce of recognition, in a set of hierarchical frames. The procedural oriented feature
finder is a variant of Kyprianou's depression finding algorithm [Kyprianou80]. For
instance, recognition of depressions is based on detecting a sequence of convex edges
in a single face and recognition of slots is based on identifying two sets of edges that
share the same set of adjacent faces. For finding pockets however, two methods are
used. The first method looks for the pocket base that is totally enclosed by a concave
edge periphery. But when the pocket is a through pocket, the first method fails as there
is no concave edge periphery in the pocket base. The second method, searches for a set
of faces whose edges form a closed loop of convex edges on a single top face. Feature
volumes are created from the recognized features by a face extension technique which
is based on the assumption that all surfaces required to bound the feature are planar and

are present in the model.

Another part of Dong's work is the use of a declarative approach for users to
define new feature types by using a special Feature Description Language (FDL). A
FDL definition of a feature is equivalént to a semantic net, which consists of a set of
nodes of geometric entities with labelled arcs indicating the relationships between the
nodes. The FDL definitions are implemented also by LISP frames. A FDL interpreter
is used to search for patterns that satisfy a feature's FDL definition thereby finding all
the feature instances in the part model. His feature recognition algorithm can find
several types of predefined machining features but is still unable to deal with general
feature interactions. He weakly assumed that all machining features are machinable
depressions and ignored features such as slabs and profiles. His idea of providing a
means for the user to define new features is good but the definition of new features has

* to be based on the use of the non-interactive proprietary FDL.

A similar approach is also reported in [Sakurai88] where the recognizer is taught
a new feature by interactively selecting faces of an example feature. The number and
type of geometric entities as well as their connectivity are stored in a feature graph,
Feature recognition is done by matching the feature graph with the subgraphs of the B-

rep graph of the part model. However, the recognizer cannot recognize positive features

-31 -

Chapter 2

such as bosses and islands and features which can have a variable number of faces like
general pockets and holes since the definition of features has to conform to a restricted

set of feature facts. The system also has difficulty in recognizing interacting features.

Recently, quite a number of researchers have used graph-based techniques for
feature representation and recognition, For example, Falcidieno [Falcidieno87] reported
the use of a face-based B-rep called a Face Adjacency Hypergraph (FAH) for feature
recognition. The nodes of a FAH are the object faces, whereas the arcs and the
hyperarcs represent the relationships among the faces induced by sets of the edges and
the vertices. She used Kyprianou's syntactic pattern recognition algorithm to recognize
feature faces that do not form closed volumes. However, during the feature extraction
process, a set of dummy faces, edges and vertices are generated to complement the
recognized feature boundary to form volumetric features. This was achieved by
extending those edges that do not belong to the convex boundary of the feature to form
new vertices on the convex boundary. As illustrated in Fig. 2.12(a), edges el, €2 and
€3 are extended to intersect thereby forming a new vertex vl. New dummy faces can
then be formed to create a feature volume. However, as shown in Fig, 2.12(b), the

method fails when all the new vertices required cannot be generated.

v2i -~
extended edges may A
vl not intersect to form, 4 -
j e 19 |

new vertices | : p /:(71
extension of edges
el, e2 and e3 to
form new vertex vl {v)

Figure 2.12 : Forming new feature volume by extending edges.

The extracted features are further organized into a hierarchical graph called a
Structured Face Adjacency Hypergraph (SFAH) in which the nodes are a FAH

representation of recognized features, and the arcs between nodes indicate the parent-

-32 -

Chapter 2

child relationships among features. Only simple planar face objects can be handled. It

is unclear whether or not the method can be extended to cover wider part domains.

Floriani [Floriani88, Floriani89] described a B-rep structure called a Symmetric
Boundary Graph (SBG) for modelling polyhedral objects. The SBG includes additional
topological information such as face-loop and edge-loop relationships. Features such as
protrusions/depressions and through holes are recognized and extracted based on inner
loop identification and labelling of the connection faces between features. The extracted
features are described by a directed graph called an Object Decomposition Graph
(ODG). The nodes of an ODG represent the recognized features and the arcs represent
the connection faces between features. For instance, a node with a single arc incident
on it indicates the presence of a depression or protrusion, and a node with two or more
arcs incident on it indicates a through hole, a handle or a bridge. Bruzzone
[Bruzzone91] proposed another B-rep graph structure called a Face-Face Connection
(FFC) for feature modelling. The FFC model is basically an enhanced version of the
SBG and ODG.

Joshi [Joshi88] proposed the use of face-edge graphs called Attribute Adjacency
Graphs (AAGs) for feature recognition. The nodes of an AAG represent faces and the
arcs between the nodes represent edges. The attributes of the arcs can be 0 or 1 which
represent concave and convex edges respectively. There is no smooth edge case as only
polygonal features are dealt with. Features are classified into two levels. The higher
level corresponds to feature families whose topological characteristics can be described
by the characteristics of a AAG subgraph. For instance, a slot consists of three faces
with concave edges between the slot base and the slot walls. The lower level stands for
a particular feature type within a feature family, and geometric information is used to
differentiate between individual feature types. For example, if the angle between the

slot walls and the slot base is less than 90 degrees, then the slot is a dovetail slot.

Joshi's feature recognizer first uses a heuristic to dissect the AAG into simpler

subgraphs by ignoring all the faces that contain only convex edges. The use of the

-33-

Chapter 2

heuristic however, eliminates a group of features such as the top faces of islands and
bosses. Feature recognition is then performed by matching each subgraph with the
feature definitions described above in a fixed order : holes, slots, steps, pockets, blind
steps and blind slots. Unsuccessful subgraph matching implies the existence of two
types of feature interactions that must occur along a single face of one of the features
: (1) features that share common edges, and (2) features that share common faces. For
the former type, a heuristic is used to separate the interacting features by further
dissecting the AAG sub-graphs at nodes that have more than one convex arc. A feature
merge procedure is used to rejoin pairs of features that are dissected unnecessarily. For
the latter type, a heuristic is again used to isolate the faces belonging to one feature and
to combine the dissected face node pairs of an interacting feature member into a single
face node. It is unclear how the artificial boundary of the combined face node pairs is
created. Features that do not belong to the above two types are classified as virtual
pockets by patching virtual faces to the features to form a closed loop of faces. Joshi's -
intention is to recognize machining features but the graph-based heuristics have no

relationships with machining technology.

Corney and Clark, [Corney9la, Corney91b] described another graph-based
feature recognition algorithm which starts by creating a Face-Edge Graph (FEG) within
the B-rep model. The algorithm requires the specification of a ray casting vector called
the aspect vector a at the outset. The aspect vector corresponds to the orientation of the
spindle axis of a miiling machine that would be used for machining the recognized
features. Based on the relationships between the surface normal and the aspect vector
a, the faces in the FEG are classified into three types : (1) vertical faces (v_faces), (2)
parallel faces (p_faces), and (3) anti-paralle]l faces (ap_faces). The v_faces and p_faces
can be considered as the wall faces and base faces of 2.5D depressions/protrusions
respectively, whereas the ap_faces are assumed to be the remaining faces of the object
(Fig. 2.13).

-34 -

Chapter 2

-3
apect vector a

(D = ap_face
O = v_face
[] = p_tace

face—classified
Face-Edge Graph (FEG)

Figure 2.13 : Corney's face-classified Face-Edge Graph.

For exposing the features in the part model, rules are used to delete the p_faces
and ap_faces from the face-classified FEG so as to generate two subgraphs called the
Aspect Face Edge Graph (AFEG) and the UV-Graph (UVG). For instance, the AFEG
is generated by deleting all the p_faces and ap_faces together with their adjacent edges
as illustrated in Fig. 2.14. Both the AFEG and the UVG are then traversed and
manipulated to generate some 2D polygon representations (p_edge polygon) which are
basically the virtual image of the vertical wall faces when projected along the aspect
vector direction on to an imaginary plane. Each boundary segment of the p_edge
polygon is tagged with a surface normal code (either inward or outward facing) based
on the face from which the segment is derived. As a result, a p_edge polygon can be
classified as : (1) inward, (2) outward, and (3) mixed (Fig. 2.14).

‘ f1
’ = dirgction of l':anard
4
fWimrard
5]
s
(17 19 o
outward

face—classified 13
Face—Edge Graph (FEG) AFEG uvG p—edge polygon

Figure 2.14 : AFEG, UVG, and p_edge polygon representations derived from FEG.

-35 -

Chapter 2

For the extraction of features, rules are also used to classify the p_edge polygons
for representing different types of features. For instance, an inward facing p_edge
polygon of the AFEG represents a depression. By cross referencing the contents of the
p_edge polygons of the AFEG and UVG, more specific features can be inferred. For
example, if a p_edge polygon of the AFEG is classified as a depression but is not
classified as a hole in the UVG, then the corresponding polygon or cycle would
represent a pocket. The method also determines nested depressions by means of

ordering the 'depth’ of the depresgsions along the aspect vector direction.

Corney's method implicitly uses a machining heuristic in terms of specifying the
aspeét vector. Automatic determination of the many possible aspect vectors for a given
part may be difficult although the authors suggested that a heuristic based on the
presence of cylindrical faces can be used to ease the choice. The recognized features
are basically arbitrarily shaped polyh%ral pockets, protrusions, and through holes. As
the pseudo-edges do not need to be the actual edges that lie on the object, the method
of pseudo-edge polygon could be useful for dealing with feature interaction that usually

cause boundary fragmentation.

2.3 Concluding Remarks

The design by features approach is attractive from the viewpoint of concurrent
engineering. However, feature recognition is still required in the approach due to the
fact that the interpretation of features is application dependent. Thus the study of
automatic feature recognition techniques-will continue to be a crucial research activity

in the context of CAD/CAM integration.
Automatic feature recognition with CSG models has frequently been hampered

by : (1) the non-uniqueness of CSG representations, (2) the implicit description of

boundary information, and (3) the possible destruction of a feature by subsequent

. =36 -

Chaprer 2

Boolean operations, and hence searching for CSG patterns tends to be an unattractive

approach to feature recognition.

One of the major difficulties found in most recognition methods with B-rep
models is in dealing with complex shapes. To a large extent, this is due to the use of
rigid feature definitions that rely heavily on face/edge topological information. When
realistic parts and feature interactions occur, this face/edge adjacency information may
not present in exactly the same manner as predefined in the feature templates, and
hence recognition may not be reliable. Trying to fix the problems afterwards will be
difficult if not impossible because many algorithms are implemented procedurally and

also because many types of feature interactions can occur in real life parts.

Since feature interpretation is application dependent, recognition algorithms
which rely solely on form reasoning without the ingredient of application specific
information will inevitably face difficulty in handling complex feature interactions. For
design by features systems, much of the application specific information can be obtained
from the features that are instanced in the design. In a machining features recognition
context however, application specific information such as machining heuristics and tool
accessibility can be exploited and combined with form reasoning for developing more

intelligent recognition algorithms.

It is believed that the implementation of such a recognition algorithm can be
facilitated by using an integrated knowledge-based system and geometric modeller
approach. The use of a knowledge-based system allows a clear demarcation between
the feature (problem) description and the feature recognition (problem solving)
procedures, and hence makes the implementation and subsequent maintenance of the
system much easier. The tasks of searching and matching patterns involved in the
feature recognition process can also be simplified by utilizing the inherent pattern
matching mechanism of the knowledge-based system. Coupling a geometric modeller
with a knowledge-based system enables efficient sharing of part modelling and

reasoning information among the two environments. The geometric computation

-37 -

Chapter 2

routines available in the geometric modeller are also ideal tools for implementing the

geometric tests.

To further enhance the capability and viability of a feature recognition system,
the recognition power should be allowed to increase easily and perpetually. In this
connection, the traditional human-assisted feature definition approach can be improved
in such a way that the defined features are used as feature matching templates (or as
generic features in a feature based design context). Although work [Dong88b,
Sakurai88, Shah90] using this approach have been reported in recent years, the formal
techniques for implementing the idea still have not been adequately exploited. A better
scenario for the approach would be that a feature definition process based on interactive

machine learning of an example feature under reasonable machine guidance.
Before embarking on the description of the core of the thesis, an overiew of Al

techniques concerning knowledge-based system and machine learning techniques is

presented in the following chapter.

- 38 -

Chapter 3

CHAPTER 3
ARTIFICIAL INTELLIGENCE TECHNIQUES

Al, as an important subfield of computer science, has the objective of studying
and developing computer methods that solve problems in a way that would be
considered intelligent if performed by a human. As AI scientists attempted to simulate
the human thinking process, it was discovered that problem-solving techniques can be
quite general for a wide range of problem domains (areas of expertise). It was also
realized that the problem-solving power of a program mainly comes from the domain
specific knowledge it possesses. Hence, much effort has been focused on developing
generalized knowledge representations and search techniques for specialized computer

programs. This has resulted in the development of knowledge-based systems.

3.1 Knowledge-Based Systems (KBS)

A KBS is a computer program that uses domain specific knowledge and
inference procedures to solve problems that are not amenable to procedural analysis and
with incomplete information. The problem-solving knowledge is represented in an
identifiable, separate part of the system rather than being dispersed throughout it. As

illustrated in Fig. 3.1, the basic structure of a KBS consists of :

Input/Output Facility

Knowledge Base -t knowledge acquisition [s———w= Expert

]

Inference Mechanism |-

questions

explanations fe— User

Working Memory -t =] problem definition

Figure 3.1 : Major elements of a Knowledge-based system.

- 30 -

Chapter 3

(1) an Input/Output facility - The user can use this facility to : (i) input the facts
about the problem to the working memory of the KBS, (ii) edit the problem model in
the working memory, (iii) execute, control, and monitor the problem-solving process,
and (iv) receive advice, explanations, and solutions from the KBS. If the KBS has a
knowledge acquisition module, the facility will also be used to manage the knowledge

acquisition process.

(2) a Working Memory - This serves as a global database containing the input
descriptions of the problem to be solved. A subpart of the working memory is called
the State Memory which stores a sequence of snapshots of the problem solving
environment in the form of a record of the facts and rules that have been modified and

applied.

(3) a Knowlegdge Base - This contains the knowledge specific to the problem domain
of concern. Knowledge consists of symbolic descriptions about the factual relationships
(assertions) and empirical relationships (heuristics) of a problem domain, as well as the _
procedures for manipulating those descriptions. For more intelligent KBS, this also
includes a knowledge acquisition facility which enables the KBS to elicit additional

knowledge about the problem domain from experts or other sources.

(4) an Inference Mechanism - This is also called a rule interpreter in a rule-based
KBS. Basically, it utilizes the knowledge in the knowledge base to analyze the problem
mode! described in the context, makes decisions, and draws logical conclusions. During
the inference process, the problem model in the context is usually updated and a record
of execution steps is produced so as to facilitate the provision of advice and

explanations to user.

The major difference between a KBS and a conventional computer program is
in the implementation of problem-solution logic. As shown in Fig. 3.2, the problem-
solution logic in the conventional programming approach is implemented as rigid

sequential procedures which consist of the user’s predetermined problem-solution logic

- 40 -

Chapter 3

intermingled with the computer control logic. Thus a change made in the problem may
incur hectic re-analysis and costly re-coding of the program. In KBS however, the
problem-solution logic is implemented usually as decision rules stored in the knowledge
base. The coding sequence of a procedural program governs the proper execution of the
program, whereas the coding sequence of decision rules in the knowledge base does not
affect the execution of a KBS because a decision rule will be executed only when its

conditions or conclusions are satisfied.

Problem Inference Mechanism Solution

-I—ligt—* computer control logic‘m—-
Procedural Programme
Problem [ophlem—solution logic| Selution
Input _| intermingled with M— problem—aolution logic
computer control logie implemented aa
decision rules
Knowledge Base
(a) conventional programming appreach (b) KBS approach

Figure 3.2 : Difference between conventional programming and KBS approaches.

Thus the conventional programming approach is ideal when the problem-solution
procedure is of a stable and repetitive nature such as the determination of the
convexity/concavity of all the edges in a B-rep model. The KBS approach would appear
to be more attractive when it is difficult to predetermine a precise series of steps for
solving a complex and empirical problem. The recognition of complex manufacturing

features is such a problem.

3.2 Problem-Solving Techniques

The representation and retrieval of information are the two major tasks in
problem solving. In the terminology of Al, these two tasks are known as knowledge
representation and search techniques respectively. These two major components of
problem solving are overviewed in the following sections as an aid to a better
understanding of the methods employed in this thesis.

- 41 -

Chapter 3

3.2.1 Knowledge Representation

A knowledge representation is a set of syntactic and semantic conventions for
describing objects, relations and procedures of the appropriate knowledge. The four
most popular schemes in use today are : (1) production rules, (2) frames, (3) semantic

nets, and (4) object orientation.

3.2.1.1 Production Rules

Production rules [Newell72], also called if-then, condition-action, or antecedent-
consequent rules, are a natural way of expressing heuristics or procedural knowledge

because they utilize the simple IF condition THEN action format, For example,

IF the goal is to infer a face's accessibility
and the face is a machined face
and the face has a high priority ranking
THEN perform accessibility test on that face

and modify the face's accessibility status according to the test result.

The IF part, or left-hand side (LHS), of a rule represents a condition that
contains one or more clauses linked by logical connectives (AND, OR, etc.), whereas
the THEN part, or right-hand side (RHS), of the rule specifies the corresponding
consequence or action to be taken when the LHS pattern of the rule is satisfied.
Depending on the system implementation, the RHS can take many forms, such as an
interaction with the user, modification of an assertion in the working memory, addition
of a new rule in the knowledge base, etc.. Certainty factors can also be used in a rule
to indicate the degree of confidence attached to it. This enables a KBS to deal with

information which is inexact or not completely reliable.

-42 -

, Chapter 3

The mechanism for the selection and execution of rules is essentially the
inference mechanism which can be implemented based on two basic strategies : (1)
forward-chaining, and (2) backward-chaining. In forward-chaining, the contents of the
working memory represent the current state of the problem. A rule is fired when its
LHS pattern matches with the problem model data contained in the working memory.
Since the inference chain progresses from the given data to a goal, so it is also known
as data-driven or antecedent reasoning. By contrast, a backward-chaining strategy
requires the setting up a set of hypotheses or goal data in the working memory and
followed by firing of the rule whose RHS pattern matches with the goal. The LHS
pattern of the fired rule is then added to the working memory as a new subgoal. This

strategy is therefore also called goal-driven or consequent reasoning.

In general, a forward-chaining inference strategy is suitable when there is a
single initial state and many equally acceptable goal states, while backward-chaining is
appropriate for tasks that have a single goal state and considerable amount of relevant
initial information, However, the distinction between the two inference strategies is not
absolute. Many rule-based KBS systems use a mixed strategy that combines forward
and backward reasoning. No matter which strategy is used, the basic cycling function
of the inference mechanism is to recognize and act on a rule, and hence the inference

mechanism is also called the recognize-act cycle.

Unlike the IF statements of conventional programming languages such as
FORTRAN and PASCAL, the production rules are not executed in a predetermined,
sequential order, and the flow of control is not limited to branching only at pre-coded
points. The rules behave much like independent pieces of knowledge since they do not
call each other directly but communicate only by means of the data in the working
memory. This relative modularity and uniformity of rules enables easy addition and
deletion of rules in the rule base, and hence rapidly changing conditions can be better
accommodated. Moreover, production rules also provide a parallel reasoning capability
because the inference mechanism can cycle back automatically to find all the satisfied

rules. Nevertheless, production rules have some disadvantages. For instance, the

- 43 -

Chapter 3

modularity and uniformity of rules make it difficult to visualize and follow through the
flow of control logic in complicated problem solving. The recognize-act cycle
mechanism is also not efficiently responsive to predetermined sequences of situations.
Fortunately, these drawbacks can be remedied by incorporating external conventional
programs in the forms of function calls and subroutines in the production rules. This
hybrid-language programming technique is also employed in the research and is

described in more detail in chapter 7.

3.2.1,2 Semantic Nets

A semantic net [Quillian68] is a form of associational representation that is
composed of nodes, interconnected by various kinds of associative links. Each node
represents an individual object and facts about the object. Each link explicitly expresses

a relationship between a pair of objects. Fig. 3.3 illustrates the idea of a semantic net.

Figure 3.3 : Semantic network representation.

- 44 -

Chapter 3

The reasoning mechanism used by most semantic network systems is based on
matching network structures. For example, as described earlier in Dong's work
[Dong88a], a network fragment representing a matching feature pattern template is
constructed and is then matched against the network database to see if such a pattern
exists. If the matching process is successful, variable nodes in the fragment can be
determined by bounding them to appropriate values in the network. The graph-based
feature recognition methods used by Joshi and Floriani [Joshi88, Floriani88], can also

be considered as a variant of the semantic network based approach.

3.2.1.3 Frames

A frame [Minsky75] is a structured representation consisting of a set of standard
characteristics that describe an object, act or event. It is rather similar to the record-like
structure constructed in conventional programming languages. The characteristics in a
frame are denoted in terms of attributes called slots. The contents of the slots can be
either actual values or procedures for obtaining the desired values. The organization of
a frame is very much like a semantic network that has a set of nodes and relations
arranged in a hierarchical form. As an illustration, an instance of a frame representing
an object's face is shown in Fig. 3.4. A frame-based representation is suitable for

applications which are predictable because it supports the notion of standard stereotypes.

- Frame : Face

Slot Name - Contents (comments)
Slot 1 : Name 1280 face integer pointer
Slot 2 : Geometry Type PLN planar face
Slot 3 : Surface Normal Code 1 positive normal
Slot 4 : Classification TEFACE tool entrance face
Slot 5 : No. of Bounding Edges 8
Slot 6 : Status Flag NIL

Figure 3.4 : Frame representation.

- 45 -

Chapter 3

3.2.1.4 Object Orientation

This method of representing knowledge [Dahl73] is sometimes referred to as
object oriented programming since the knowledge representation and knowledge
manipulation procedures are programmed as a complete package. Objects, in the object-
oriented paradigm, are entities that combine the properties of data and procedure. For
example, the frame structure introduced above can be used to represent an object, but
the frame slot must be able to contain working procedures which can communicate
messages with other objects or frames. In most object-oriented languages such as
Smalltalk80 [Goldberg83], objects are organized in a hierarchy of classes and instances.
A class is a description of one or more similar objects. An instance is a manifestation
of a class in the form of an object. Both classes and instances have a declarative
structure that is defined in terms of object variables for storing states and methods or
procedures for responding to messages. For example, the form feature taxonomy

proposed by Gindy [Gindy89] can be implemented by using object orientation method
as shown in Fig. 3.5.

Form Features Remarks :
Slat Yalue The arrows indicate that lower objects inherit information
from parent objects. .
Class
EADs Feature Type
Boundary Slot Yalue
type -
e

Exit L
boundary
status

i Form Features

Form Features Form Features Slot Yalue
Elot Yalue Slot ¥Yalue Class Depressions
Class Protrusions Class Depressions \ EADs 1
EADs EADs 1 f;p“:‘d“-? closed
Boundary Boundary
type type Exit
boundary not through
Exit Exit status
boundary boundary
status status Type pocket
(feature instance)

Figure 3.5 : An illustration of object orientation.

- 46 -

Chapter 3

Object orientation has the profound advantage that classification and inheritance
of attributes makes the maintenance of the system knowledge domain much easier.
However, it requires a top-down design approach. Sometimes it is not clear on which
level object attributes should be defined. This decision is usually a trade off between
redundant specification of attributes at the lower levels and generic attributes which

have no meaning at the level on which they are specified.

3.2.2 Search Techniques -

Simple search techniques such as the generate-and-test method can be used for
trivial problems. For a complex problem, where the solution space is large or the
number of alternative solutions are numerous, more sophisticated heuristic search
techniques are essential. A heuristic search improves the efficiency of a searching
process by guiding the search in fruitful directions, possibly at the price of failing to
find the complete solution. However, good heuristics are just like golden rules of
thumb; on the average, they do improve the quality of the search and provide good
solutions to hard problems. Various search techniques [Nilsson71] have been developed
and employed by Al scientists and practitioners. The following sections introduce three

of the common ones,

3.2.2.1 State-Space Approach

In this popular approach, a problem is formulated with problem states, a set of
operators, a search control procedure, and the desired goal state. A problem state is a
description of a problem situation at a particular instance. An operator is a set of rules
or computations which transforms the problem from one state to another state. The state
space of a problem is conceived as all the possible states that can be reached from a
given starting state via a series of transformations. A solution to this type of problem

is obtained by following the search control procedure to successively apply the

W1

(S
- 47 -

Chapter 3

operators to the starting state to produce new states until the generated new state is
equal to the goal state. The two systematic search control procedures commonly used
are : (1) breadth-first search, where all the search paths on the same level of the
hierarchy are searched before examining any of the successor paths on the next lower
level, and (2) depth-first search, where one path on the highest level is searched and
then the successor paths immediately below that one are examined. Clearly, the
efficiency of these two search techniques is affected by the position of the solutions in
the search path hierarchy. For solving large state-space problems, a heuristic search that
employs heuristic rules to determine which path should be searched next can improve

the searching efficiency.

3.2.2.2 Hill Climbing Approach

This approach can be considered as an enhanced variant of the commonly known
generate-and-test approach that simply generates a possible search path and then tests
to see if the endpoint state of the path is actually a goal state, and so forth. The
improvement is in the test process which uses a heuristic to evaluate an estimate of how
close a generated state is to a goal state. The working principle of the heuristic is that
if a generated state is not a goal state but is better than the current state, then the
generated state will be used as the current state in the search, otherwise another new
state will be generated and similarly tested. Thus the use of a heuristic-based test

effectively injects application-specific knowledge into the search process.
3.2.2,3 Constraint Satisfaction Approach

In this approach, the goal of solving a problem is to determine some problem
state that satisfies a defined set of constraints. It consists of two major steps : (1)

constraints are determined and propagated as far as possible throughout the system, and

(2) if there is still not a solution, a heuristic search begins to generate new constraints

- 48 -

Chapter 3

which can again be proliferated in the system, and so forth. By viewing a problem as
one of constraint satisfaction, it is possible to reduce the amount of search substantially.
As a simple example, if a problem starts with the state, A = B + 2, and the constraint,
A = 6, was known, A stronger constraint on B could be propagated as B = 4.

3.3 Machine Learning

Learning [Simon83] is a general term denoting the process of improving the
long-term performance of a system. Machine learning is a subdomain of Al concerned
with developing computational theories of learning and constructing computer programs
with learning capabilities. By adding a learning mechanism to a computer system, the
system developer expects that the user can extend the system's problem-solving
capabilities through interaction with it, rather than by the process of reprogramming.
Thus it would be an important problem-solving approach when the possible situations

that a system will encounter are not known in advance.

Four basic learning strategies have been identified by Al researchers [Coheng83]
: (1) learning by rote, (2) learning from instruction, (3) learning from examples, and

(4) learning by analogy. These are introduced below.

3.3.1 Learning by Rote

This is the basic learning activity by which information provided by the
environment is stored and later on retrieved for use without much hypothesis or
computation. The intelligent chess program developed by Samuel [Samuel63] is a
typical example of this strategy. The program learns to play well by memorizing and

recalling chess board positions that had been encountered in previous games.

- 49 -

Chapter 3

3.3.2 Learning from Instruction

This refers to the process of transforming given general-purpose knowledge into
a performing program. The transformation is called operationalization which can
involve activities such as hypothesizing the missing details in the given information and
deciding when to ask for more instruction. Mostow's program FOO (First Operational
Operationalizer) [Mostow83] is one of the results of this strategy. The program makes
use of a card playing game to investigate and demonstrate the principles, problems, and

methods involved in converting general card playing advice into executable procedures.

3.3.3 Learning from Examples

This involves teaching a system how to perform (or how not to perform) a task
by presenting it with a set of training examples. Training examples are usually very
specific instances or detailed knowledge of behaviour that cannot be used efficiently by
the system. Hence, the system needs to generalize the training examples into more
general pieces of knowledge that can be used effectively. An important example of this
learning strategy is Winston's [Winston75] work on learning simple structural concept
descriptions that characterize some positive toy-block constructions and the

corresponding near-miss cases (counter-examples) as shown in Fig. 3.6.

The original line drawing representation of the toy-block assemblies is converted
into a semantic network description as illustrated in Fig. 3.7(a). His basic approach is
to use a structural description of one known instance as a coﬁcept definition for
examining other legal instances of the concept. The original structural definition is then
generalized to include them as shown in Fig. 3.7(b). When descriptions of near-miss
examples are given, the structural definition will be specialized to exclude them as

shown in Fig. 3.7(c).

-50-

Chapter 3

Concept Near Miss

House /0
Tent Ag

Arch

Figure 3.6 : Winstons's toy-block constructions and the corresponding near-miss cases.

hasg[part

supported_by suppoxted _by

(b) after generalization {c) after specialization

Figure 3.7 : Learning by generalization and specialization of concept.

-51-

Chapter 3

3.3.4 Learning by Analogy

This strategy requires the learning system to detect the similarities between the
old and the new situations, and to transform the old knowledge into analogous
knowledge that can be used in the new situation. As an éxample, a transformational
analogy presented by Anderson [Anderson79] is illustrated in Fig. 3.8. However, very
little work has been done in this area since many issues such as the exact definition of

analogy and the formal methods of recognizing analogies are still not well understood.

D 0ld Proof
B < AB = CD given)
A BC = BC reflexive)
AB + BC = BC + CD additive)
AC = BD transitive)
P Q
New Proof (by analogy)
R APOQ =AROS given)
AQOR =AQOR reflexive)
S AP0Q +AQOR =AQOR +AR0S (additive)
APOR =AQ0S (transitive)
0

Figure 3.8 : Anderson's learning by transformational analogy.

3.4 Al-based Manufacturing Researches

The rapid advent of Al technology has enabled computers to be applied to less
deterministic design tasks which require symbolic manipulation and reasoning, instead
of only routine number processing. Design is now considered as a knowledge-based
intelligent behaviour. Research interests are concentrated on how design knowledge is
acquired, represented, organized, used, and generated. The aim is to develop an
intelligent CAD system that can assist designers during the conceptual stage of design

as well as detail design, and the design model established in the computer should be

-52 -

Chapter 3

able to provide qualitative and quantitative feature information that represents design
intent and manufacturing purposes. Thus the current researches on Al-based design are
relying on the principles of feature technology and simultaneous engineering. The
literature on Al-based design research is voluminous. Some has been reviewed in the
previous chapter in the section on feature modelling methods. Interested readers may
like to refer to further references such as [Smithers89, Ishii89, Akagi91, Kroll91].

In the context of manufacturing resource planning and control, Al techniques
have been exploited in diverse investigations such as manufacturing system layout
design [Kusiak®1], machine scheduling [Bullers80], process/machine diagnostics

[Crawford87], robot-based sensory controll [Simon88], etc..

As far as process planning is concerned, almost all the contemporary research
systems use Al techniques. This is not surprising due to the fact that process planning
is a knowledge intensive activity. A few representative works are briefly described
below so as to obtain a general understanding of the techniques used and the level of

achievement that has been accomplished.

Davies [Davies84] reported the implementation of a prototype system called
EXCAP for process planning of rotational parts. Instead of conventional production
rules, EXCAP uses fuzzy rules that define the extent to which the planning decision or
hypothesis is justified when the certainty in the condition part of the rule is known. The
component and blank are defined in terms of an ordered sequence of dimensioned
features, such as face, cylinder or taper. A tree of possible operation sequences is
formed. Nodes in the tree represent various intermediate workpiece states; the root node
represents the finished part, and the terminal node represents the blank. The arcs
linking the nodes represent the operations used. Rules set at a certainty value are
attached to each operation arc for deciding the suitability for using operation. Planning
is performed as the inverse of machining, and so works backwards from the finished

part towards the blank state.

-53 -

Chapter 3

Berenji [Berenji86] used a general purpose rule-based expert system to develop
an Al-based process planning system called Hi-Mapp, where a prismatic part is
described by a set of form features such as notches, grooves, slots, and holes. The
initial state of the expert system consists of information about the geometric description
of the part in addition to the characteristics of the available machines, tools, and
materials. The goal state consists of a partial ordering of the features to be processed.
Process planning is viewed as the transformation from the initial state to the goal state.
The transformation process is effected by firing the appropriate production rules stored
in the knowledge base. The condition part of the production rules basically contains the
feature type and additional characteristics such as surface finish, while the action part

stores the recommended actions such as selection of process, machine, and operation.

More recently, Murray [Murray89] described the direct coupling of a
knowledge-based system with a formerly developed automatic machining program called
AMP, for enhancing the planning and part-programming process. Originally, AMP used
the FORTRAN language to code six modules of machining knowledge about method
of holding, blank size, profile division, bolt positioning, and ddwelling. This machining
knowledge was reformulated as a set of Prolog rules. The knowledge-based system can
directly interrogate the model so that the effect of aspects of the geometry, such as thin
walls and detachable waste, can be assessed. Another knowledge-based system to aid
assembly design was also developed. The knowledge base was constructed as a
sequence of frame-like modules. For example, the part modules define the attributes
such as type and geometry associated with an assembly component, while the relation
modules define inter-component relationship such as assembly fitting conditions. A set
of assembly design rules are stored in the rule base to assist the designer to a produce

a complete design description.

From the above, it can be appreciated that nearly all knowledge-based CAPP
systems use rules as a means of formulating the required knowledge. This is quite
natural since many of the process planning decisions involve the use of alternative rules

that can be empirical in nature. After all, a rule-based expert system is still one of the

- 54 -

Chapter 3

most sophisticated computational methodologies that computer scientists can offer today.

However, despite a series of activities on advanced knowledge-based CAPP,
there still exists some limitations in its capability and potential. These limitations are
due to two main reasons : (1) a computer representation scheme that can provide both
quantitative and qualitative information of a component is still not available, and (2) the
process planning knowledge as well as its computer representation are still not well
understood. The first obstacle has been discussed in length in the previous chapter, and
is the focus of this research. Consideration of the second obstacle is not the main
interest of this thesis although a simple machining planning and NC tool path generation
program is also developed in this thesis as a proof-of-concept to validate the extracted
feature information. Nevertheless, many other researchers [e.g. Houten90, Iwata%Q] are
working earnestly on the process planning knowledge aspect. Until these two major
obstacles are removed, a real knowledge-based CAPP system will not be established,
and consequently, the goal of CIM will not be fully realized.

3.5 Concluding Remarks

Al is actually a problem-solving methodology that can be applied to many fields
such as design, engineering and management [Harmon88]. The KBS's architecture is
very useful for manipulating the disparate information and knowledge elements typical
of a CIM environment. Its capability of separating the problem-solution logic as
knowledge from the éomputer control logic also facilitates the gradual addition of new

knowledge to the system.

In this research, a significant step is made towards machining feature recognition
by using a KBS approach which is supported by some of the general problem-solving
and machine learning techniques introduced in this chapter. The approach is explained

in detail in subsequent chapters.

- 55 -

Chapter 4

CHAPTER 4
MACHINING FEATURE DEFINITION

AND
REPRESENTATION

4.1 Parts Domain

This thesis is primarily concerned with the recognition of machining features in
non-rotational mechanical parts that are typically manufactured on 3-axis machining
centres'. These parts are usually referred to as 2.5D solids’. The finished parts as well
as their corresponding starting stocks are modelled by using the CSG method with solid
primitives that are bounded by planar and cylindrical half-spaces. In other words, the
stocks and parts are assumed to contain only planar and cylindrical faces which are
subsets of smooth and mathematically perfect surfaces without any surface irregularities
such as machining cusps and tool dwell marks. This represents an important geometric
domain as it can describe a wide range of shapes [Samuel76, Yuen88] produced by the

3-axis machining centres.

'The generic term 3-axis machines includes : (1) the 2CL (2-axis Contouring and
1-axis Linear speed control) machines which are sometimes called the 2.5-axis
machines, and (2) the 3C (3-axis Contouring) machines [BS3635]. A machine with
2CL kinematic capability controls the motions along the two orthogonal driving axes
of the machine table simultaneously so that a 2D contour can be cut on a part. For a
3C machine, the motions along the three primary axes are simultaneously controlled
so that a 'true’ 3D surface can be cut. In this thesis, the parts are assumed to be
manufactured on machines with 2CL kinematic capability.

2Solids such as the one shown in Fig. 4.1 are called 2.5D solids because the
surface normals of their side faces are free to change two-dimensionally in the x-y
plane. The surface normals however, remain unchanged in the y-z plane that is
orthogonal to the former. Hence, 2.5D solids are sometimes called prismatic (column-
like) or linearly sweepable solids.

- 56 -

~ Chaprer 4

side face

surface normal changes
two—dimensionally in

x—y plane but remains
unchanged in y-z plane

Figure 4.1 : Definition of a strictly 2.5D object.

4.2 The Cavity Volume Model

The recognition of machining features in this thesis is performed on the cavity
volume model rather than on the part model. More formally, the modelling of a cavity
volume is based on the notion that a machined part P is produced by removing a certain
amount of material from a stock S. The necessary conditions that P must not be S and
the volume of P must be smaller than the volume of S can be expressed as :

PcS | ()

where = means 'is a proper subset of'.

The cavity volume model V is the total volume of material machined from S to
produce P, which can be expressed as :
V=S<->P ¥}

where <-> is the regularized Boolean subtraction operator.

When P contains n isolated machining features such as a pattern of holes lying
on a pitch circle diameter, V will consist of the corresponding n disjoint subvolumes.

This condition can be expressed as :

n

vV=>3y | ®)

i=1

where n is the number of subvolumes, and

v; is a subvolume instance.

i

-57-

Chapter 4

There are four main reasons for using this cavity volume approach. Firstly, it
is considered that recognizing machining features in a part model in the absence of the
corresponding stock information is actually based on the assumption that the stock shape
is 2 minimum convex envelope of the part, and thus all holes and cavities contained in
the part will be recognized as machining features. Obviously, this is undesirable as a
starting base stock can contain some depression features that were produced by previous
manufacturing operations. Secondly, without the original stock information it is also
difficult to recognize features such as surface milling and profile milling. Thirdly,
feature recognition can be performed on the subvolumes one at a time, and the
boundary database of a subvolume would be simpler than that of the corresponding part.
Fourthly, obtaining the cavity volume model by means of subtraction is congenial with
the perception of machining process. The cavity volume model provides a complete
boundary description of the machining features which are actually present in the part.
Clearly, this is important for reliable feature recognition and process planning.
Although the derivation of the cavity volume requires boundary evaluation, it is not a
major shortcoming because the development of more efficient boundary evaluation
algorithms [Tilove84] and more powerful computing hardware has significantly lowered

the computational cost of boundary evaluation,

4.3 The Boundary of the Cavity Volume

The surface boundary of the cavity volume V can be simplified and expressed
formallyas : bV = b(S <-> P)
= (BS AcP) v (iS A bP) “4)
where b is a boundary operator,

<-> is aregularized Boolean subtraction operator,

~ is an intersection operator,
c is a complement operator,
v is a union operator, and

i is an interior operator.

-58 -

Chapter 4

bS bP
pa

P
(stock) (part) (cavity volume)

Figure 4.2 : The notion of the cavity volume boundary as described by expression (4).

Expression (4) is derived based on the regularized point-set theory. The
derivation is explained and illustrated in Appendix Al, while the meaning of the
expression is illustrated in Fig. 4.2. Intuitively, the first term, (bS A cP), refers to the
point set formed by the intersection between the boundary point set of S and the
complement (outside) point set of P. The second term, (iS ~ bP), refers to the point set
formed by the intersection between the interior point set of S and the boundary point
set of P,

Considering expression (4), since P = S, hence the term (S A~ cP) = 0. This
term represents the portion of the stock boundary that is outside the part. From the
machining viewpoint, it is the portion of the stock boundary through which a cutting
tool can pass through without gouging the part. Hence, this term is defined as the tool
entrance boundary, and a bounded region of this boundary is called a

tool_entrance_face.

Again, since P £ S, so the term (iS ~ bP) # 0. This term represents the portion
of the part boundary that is inside the stock. It can therefore be considered as the
portion of the part boundary that is created due to the removal of material from the
stock. So this term (S A bP) is defined as the machined boundary, and a bounded

region of this boundary is called a machined_face.

-59 -

Chapter 4

Furthermore, as described in expression (3), V may consist of several disjoint
subvolumes. In the context of topology, the subvolumes are the shells of V. Hence, the
boundary of V is equal to the sum of the boundary of all the subvolumes. This can be

expressed as :

bV = Y by; ()
where n is the number of subvolumes.

It follows that a cavity volume or each of its subvolume can be defined as a
solid bounded by a set of tool entrance faces and machined_faces, which can be

expressed as :

n

bV = ‘zl: (tool_entrance_face;)} -+ Jg (machined_face;) ©6)
where m is the number of tool_entrance faces, and

r is the number of machined_faces.

The tool_entrance faces and machined_faces of a cavity volume are like the
doors and walls of a room respectively. This means that a cutting tool can access a
cavity volume only through the tool entrance faces. Also if a portion of a cutting tool
has already entered the cavity volume, that portion of cutting tool should not go beyond

the machined_faces, otherwise gouging of the part will occur.

As the part is obtained by subtracting the cavity volume from the stock, the
machined_faces of the cavity volume are basically the ‘reverse image' of the
machined_faces of the part. This means that for every machined_face; of the cavity
volume there is a corresponding machined_facej of the part such that the two
machined_faces have identical edge loop (edge boundary) and reversed surface normals,
Using the half-space concept, this means that the half-space of machined_face; is the

complement of the half-space of machined_facej, This idea is illustrated in Fig. 4.3 and

- 60 -

Chapter 4

the condition can be expressed as :

V (machined_face;) e half-space;
P (machined_facej) € ha.lf-spacej
half-space; = c(half-space;))

where € means ' is a subset of', and

¢ is a complement operator.

~face normals_+
are reversed

e

Figure 4.3 : The reverse image notion of machined faces.

In summary, by classifying the cavity volume boundary into tool_entrance_faces
and machined_faces, the semantic content of the cavity volume model is significantly
enhanced. The geometry and topology of the tool_entrance faces are also directly

deduced from the starting stock during the Boolean subtraction operation.

In this research, the cavity volume boundary faces are further augmented with
machining process related meanings during the recognition process, and in order to
avoid confusion, this tool_entrance_face and machined_face classification will hereafter
be described as the 'nature’ of the face. The procedure for determining the nature of

the cavity volume boundary faces is described in the next chapter.

-61 -

Chapter 4

4.4 Machining Feature Representation

A machining feature is defined as a machining region on a machined part that
would be produced by a machining operation performed on a cutting machine with
2CL kinematic capability. Based on the cavity volume modelling concept discussed
above, a machining feature can equally be conceived as a machining region on a
cavity volume. Recognition of machining features is viewed as a process of identifying
and extracting machining regions from the nominal geometry model of the cavity

volume.

An extracted machining feature is represented as a set of faces on the cavity
volume boundary : (1) the part face, (2) the check face, (3) the
primary_top_entrance_face, (4) the secbndary_top_entrance_face, and (5) the

side_entrance_ face. They are explained in detail below.

(1) the Part_Face

The name is borrowed from the term 'part surface' of the APT terminology [IIT67].
It serves to provide a reference surface for defining the limiting position of the bottom
of a cutter when the represented feature is machined. Five part_face conditions are

considered :
(condition 1) - when the nature of the part_face is a tool entrance face

This means that the represented feature is a through feature such as a simple through
hole (Fig. 4.4).

pari_face
cavity nalure : tool_entrance_face
_ velume

AN X cutter overshoot amount
check_face
nature : machined_face
part with primary_top_entrance_face
simple through hole nature : tool_entrance_face

Figure 4.4 : Part_face condition 1 (orthogonal intersection with check face).

- 62 -

Chapter 4

In practice, the bottom of a cutter will overshoot the part_face by a certain
distance so that the feature can be cut through. If the part_face is a planar surface, the
amount of overshoot (x¥) can be determined based on a consideration of the cutter tip

geometry and the amount of clearance gap allowed underneath the part_face (Fig. 4.4).

If the part_face is non-planar or the intersection between the part_face and the
check_face(s) is non-orthogonal, the amount of overshoot will be (x + y) where y can
be determined by calculating the difference between the 'highest' and the 'lowest'
positions (in the direction of the machine spindle axis) on the edge loop curves formed

between the part_face and the check_face(s) (Fig. 4.5).

part with part_face
through hole nature : tool_entrance_face

highest point

lowest point

cavity E/
volume cutiter overshoot amount
check_ face

nature : machined_face

hole axis not
perpendicular to
part_face

primary_top_entrance face
nature : tool entrance_ face

Figure 4.5 : Part_face condition 1 (non_orthogonal intersection with check face).

As the part_face is a tool_entrance_face, it also means that the feature can be
machined the other way round, i.e. wusing the original part face as a
primary_top_entrance_face and the original primary_top entrance face as a part face.
The recognition of these alternative machining directions is the task of the feature
recognizer but the final interpretation or selection of a machining direction is considered

to be a duty of process planning,

- 63 -

Chapter 4

(condition 2) - when the nature of the part_face is a machined_face, and its outer
edge loop formed with the check face(s) consists of convex edges only

This means that the represented feature is a non-through feature such as a blind hole
and a pocket (Fig. 4.6). In practice, the bottom of a cutter stops on the part_face, as
in the case of blind hole drilling, or rides on the part_face, as in the case of pocket

milling.

part_face

cavit .
Y nature : machined_face

volume

convex outer edge loop)|

check_face
nature : machined_face
number of check faces : 8§

primary_top_entrance_face
nature : tool_entrance_face

Figure 4.6: Part_face condition 2.

(condition 3) - when the nature of the part_face is a machined_face, and its outer
edge loop formed with the check_face(s) consists of concave edges only

This means that the represented feature is a protrusion feature such as a boss or an
island (Fig. 4.7). In practice, the bottom of a cutter rides on the part face which is
actually the top face of the protrusion. The material surrounding a protrusion feature
will be removed in another machining operation (i.e. another machining feature) such
as surface milling (if the protrusion is on an open surface) and pocket milling (if the

protrusion is contained in a pocket).

sectional view
of cavity volume

part_face
nature : machined_face

concave outer edge loop|

part with check_face
an island cavity nature : machined_face
in a pocket volume number of check_faces : 4

primary_top_entrance_face
nature : tool_entrance_face

Figure 4.7 : Part_face condition 3.
- 64 -

Chapter 4

(condition 4) - when the nature of the part_face is a machined_face, and its outer
edge loop formed with the check_face(s) consists of both concave and convex edges
This means that the represented feature interacts with another feature either in the
manner as illustrated in Fig. 4.8 or in the manner as illustrated in Fig. 4.9, In practice,

the bottom of a cutter rides on the part_face.

concave edge (1), cavity

volume

part_face
nature : machined_face

convex edge (5)
check_face

nature : machined_face
number of check_faces : 6

part with™" primary_top_entrance_face
two interacting nature : tool_entrance_face
pockets

Figure 4.8 : Part_face condition 4 (external interaction).

part with
two interacting
pockets

sectional view of
cavity volume

cavity
volume ,concave edge (4)

check_face
nature : machined_face
number of check_faces : 7

convex
edge (3)

primary_top_entrance_face
nature : tool _entrance_face

part_face
nature : machined_face

Figure 4.9 : Part_face condition 4 (internal interaction).

- 65 -

Chapter 4

condition 5) - when the nature of the part_face is a machined face, and its edge
loop formed with the check face(s) is a concave, inner-loop

This means that the represented feature interacts with another feature in the manner as
illustrated in Fig. 4.10, forming an inner edge loop in one of the faces of the interacting
feature. In practice, the bottom of a cutter will overshoot the part_face by a distance

that can be determined similarly as described above in (condition 1).

concave inner edge loop

cutter
axis
vector

Ipart._face
nature : machined_face

primary_top_entrance_face
nature : tool_entrance_face

part with
interacting
pockets

check_face
nature : machined_face

cavity number of check_ faces : B
volume

Figure 4.10 : Part_face condition 5.

(2) the Check_Face

The name is also borrowed from the term 'check surface’ of the APT terminology
[IIT67]. The check_face can be conceived as the wall face of a machining feature. It
serves to check or limit the lateral movement of a cutter. There may be only one
check face, as in the case of a cylindrical hole, or more than one check_faces, as in
the case of a rectangular pocket. The nature of a check face can be either a
tool_entrance_face or a machined_face. A check face of tool_entrance face nature
implies that it is a side_entrance_face. The check_face is assumed to be adjacent to the
part_face. It facilitates the classification of the various part_face conditions as described

above. Moreover, it is also used to determine the orientation of the machining feature

- 66 -

Chapter 4

with respect to the spindle axis. The rule adopted is that if one of the check faces is a
cylindrical surface then the axis of the cylindrical surface is used as the cutter axis
vector, otherwise, the line vector of a linear edge made between two check_faces will
be used as the cutter axis vector (Fig. 4.10). This rule is based on the assumption that
simple cylindrical cutters such as end mills are used and the formerly stated assumption
that the machining operation is performed on a cutting machine with 2CL kinematic
capability. It is emphasized that using the surface normal of the part_face as the cutter
axis vector is unreliable because the part_face may not be planar and the intersection
between the part_face and the adjacent check face(s) may not be orthogonal as
illustrated in Fig. 4.5. '

(3) the Primary_Top Entrance Face

The nature of this face is obviously a tool_entrance_face. It represents the area through
which a cutter can enter axially into the machining feature as illustrated in the previous
figures. The distance between this face and the part_face represents the total depth of
cut required. It is assumed that a machining feature can have a cylindrical
primary_top_entrance face and or more than one primary_top_entrance_faces that are

connected together in the form of a group of face patches as illustrated in Fig, 4.11.

cavity
volume

part_face
~Inature ;: machined_face

check_face
nature : machined_face
primary_top_entrance_face

part with a nature : tool_entrance_face
blind hole 3 primary_top_entrance_faces

Figure 4.11 : A blind hole that has multiple, non-planar primary_top_ entrance_faces.

-67 -

Chapter 4

(4) the Secondary_Top_Entrance Face

The nature of this face is a machined_face. It lies between the primary_top_entrance

face and the part_face. The region within its inner edge loop or outside its outer edge

loop represents the area through which a cutter can enter axially into the machining

feature (Figs. 4.12 and 4.13). The

secondary_top_entrance face is in fact used as a

part_face by another machining feature that is above the represented feature. In other

words, when a represented feature

signifies that the represented feature

has one or more secondary_top_entrance_faces, it

can be machined after machining its upper features

whose information can be addressed through the secondary_top_entrance_faces.

cavity
volume

part with
compound
holes

part_face
nature : machined_face

check_face
nature : machined_face

secondary._top_entrance_face
nature : machined_ face

secondary_top_entrance_face
nature : machined_face

primary_top_entrance_face
nature : tool_entrance_face

Figure 4.12 : The lowest hole has two secondary_top_entrance_faces.

part with
two interacting
pockets

sectional view of
cavity volume

cavity

part_face
volume

nature : machined_face

check_face
nature : machined_face
number of check faces : 11

nature : machined_face

secondary_top_entrance_face

primary_top_entrance_face
nature : tool_entrance_face

Figure 4.13 : The lower pocket has one secondary_top_entrance face.

- 68 -

Chapter 4

(5) the Side_Entrance_Face

As mentioned above, this is a check_face of tool_entrance_face nature. It represents the
area through which a cutter can enter radially (or laterally) into the machining feature
(Fig. 4.14). A tool_entrance_face is regarded as a side_entrance_face with respect to
its adjacent recognised part_face. Although this information can be obtained by means
of interrogating the nature of the check face(s), the intention of including it is to
provide a more direct representation of the presence of side entrance face possessed
by a represented feature. For example, a feature without a side entrance face will
immediately be interpreted as a feature that has no lateral openings, such as holes, and
closed pocket, whereas features such as open slots and notches will have

side_entrance faces.

cavity

part._face

side_entrance_face
nature : tool _entrance_face

i number of side_entrance_face : 2
primary_top_entrance_face
t with nature : tool_entrance_face
art wi
g notch check_face

nature : machined_face
number of check_faces : 5

Figure 4.14 : A corner notch that has two side_entrance_faces.

Two illustrated examples are presented in Appendix B for giving a summarized

view of the feature representation scheme,

- 69 -

Chapter 4

4.5 Concluding Remarks

In essence, the proposed machining feature representation scheme collaborates
with the boundary databases of the cavity volume model to convey machining methods
and machining process geometry of a machining region which can support both high
level process planning and low level cutter path calculation. By virtue of the
secondary_top_entrance_face information and the part_face conditions 4 and 5 described

above, complex feature interactions can also be represented.

It is considered that given a feature classification taxonomy such as the one
proposed by Gindy [Gindy89] (introduced in chapter 2), a more precise feature
classification can be easily interpreted and obtained from the machining feature
representation. In fact, an interestingly close comparison can be drawn between the

feature representation adopted by Gindy and the one used in this thesis as shown below,

Feature attributes used by Gindy | Feature attributes used in this thesis

entry/exit face

| primary_top_entrance_face/part_face

boundary type (closed/open) | check_face/side entrance face

exit boundary status various part_face conditions

external access direction | cutter axis vector

depth axis distance between primary_ (or secondary)
i top_entrance_face and part_face along

| cutter axis vector
Table 4.11 : Feature attributes comparison.

Moreover, the explicit machining method and geometry information provided
by the representation scheme can facilitate the generation of non-invasive and collision
free cutter paths even for an awkward shaped machining regions that cannot be
classified into any specific feature type by a feature classification scheme. In the next
chapter, a feature recognition algorithm that is based on this representation scheme is
described.

-70 -

Chapter 5

CHAPTER 5
MACHINING FEATURE
RECOGNITION ALGORITHM

This chapter describes an algorithm for the recognition of generic 2.5D
machining features based on the feature representation scheme discussed in the last
chapter. The criteria for recognizable machining features are defined first followed by

the detailed description of the algorithm.

5.1 Criteria for Recognizable Machining Features

Criterion (1) _
To be recognizable, the machining features should satisfy any one of the five

part_face condition types described in section 4.4.

Criterion (2)

The machining features are machined by cylindrical cutters such as twist drills,
end mills and slot drills on milling machines with the use of 2CL kinematic capability.
The detailed cutter geometry such as the conical tip of a twist drill is ignored. Thus,
for non-through features, such as non-through holes and pockets, the part face is
assumed to be planar, and the edge angle between the part_face and the surrounding
check faces of machined_face nature is a right angle as illustrated in Fig. 5.6.
However, for through features, the part_face can be planar or cylindrical, and the edge
angle between the part_face and the surrounding check_faces of machined_face nature
is not necessarily a right angle (such as the situation illustrated in Fig. 4.5). If the
surrounding check_faces are of tool_entrance_face nature, the edge angle is immaterial

since the check_faces are basically side_entrance_faces.

-1 -

Chapter 5

Criterion (3)

For a cylindrical check_face of machined_face nature, the cylindrical axis must
be parallel to the cylindrical cutter axis z. For a planar check_face of machined_face
nature, the face normal must be orthogonal to z. This means that the recognizable
machining features must have non-sloping check faces of machined_face nature with

respect to the cutter axis as illustrated in Fig. 5.1.

check face fk

surface normal of planar check face fi
axig of cylindrical check face fj

surface normal of cylindrical check face fk
cutter axig vector

&

NoeR

uwnn

a and ¢ are perpendicular to z

b is parallel to z check face fi
check face fj

Figure 5.1 : Recognizable features have non-sloping check faces of machined_face nature.

The machined_face nature is emphasized because the geometric conditions need
not apply to a check_face of tool_entrance face nature (such as the situation illustrated

in Fig. 4.14) which is actually a side_entrance_face.

Criterion (4)

The volumetric space above the part_face is not interfered with by the other
faces of the part as illustrated in Fig. 5.2. This basically implies that recognized
machining feature must be accessible by an infinitely long cylindrical cutter without

gouging the part.

-72 -

Chapter 5

part face fi

volumetric space ahove
the part face fi is not
interfered with by the — ———————
-other faces of the
part

cutter axis
vector z

Figure 5.2 : Volumetric space above the part_face is not obstructed.

In summary, each recognizable machining feature can be regarded as a 2.5D
machining feature. However, the part or the cavity volume from which the machining
features are recognized may not be a 2.5D solid as it can contain faces that are
multiply-connected, i.e. with inner edge loop(s) such as the one illustrated in Fig. 4.10.
Thus, the above constraints on the geometry that can be recognized still allow for the

description of real parts which constitute a significant proportion of actuval manufacture.

5.2 Overview of the Algorithm

The recognition is based primarily on the B-rep model of the cavity volume (or
its subvolumes) obtained via Boolean subtraction between the corresponding stock and
finished part models. However, as the bounding envelope of the stock and the boundary
faces of the finished part are also utilized in the recognition i)rocess, the algorithm

actually relies on the B-reps of the stock, part and cavity volume.

This chapter focuses on the description of the recognition algorithm with the
assumption that the three B-rep models are available. In particular, if the cavity volume
contains subvolumes as described by expression(3) in chapter 4, each individual
subvolume is assumed to be addressable in terms of its complete set of boundary faces.

Moreover, the convexity of the edges is assumed to have been determined and the

- 73 -

Chapter 5

boundary faces are labelled as machined_face or tool_entrance_face as described by
expression(6) in chapter 4. Details concerning the methods of establishing the B-rep

models and the implementation of the algorithm are presented in chapter 7.

The recognition algorithm involves the geometric reasoning of three groups of

candidate faces of a cavity volume (or its subvolumes) in the following sequence :

group(l) - in which the nature of the candidate face to be analyzed is of
machined face nature and the concerned edge loop is an outer edge loop
of the candidate face. Hence, the group(l) faces are basically the part_face

condition types 2, 3, and 4 as mentioned in section 4.4,

group(2) - in which the nature of the candidate face to be analyzed is of
tool_entrance_face nature. Thus the group(2) faces represent the part_face

condition type 1,

group(3) - in which the nature of the candidate face to be analyzed is of
machined_face nature and the concerned edge loop is an inner edge loop
of the candidate face. So the group(3) faces essentially represent the

| part_face condition type 5.

The reason for analyzing the group(l) faces before the group(2) faces is
arbitrary and is based on the assumption that non-through features occur more
frequently than through features. The group(3) faces are dealt with last since the method
relies on the reasoning results of the former two groups of faces. This point is clarified

in the following description of the algorithm,

For each of the above three groups of faces, the following three major steps are
repeated until no candidate face can be selected :

(1) select a candidate face,

(2) perform geometric reasoning on the candidate face,

(3) utilize the geometric reasoning results.

-74 -

Chapter 5

An outline of the complete algorithm looks like :
Procedure Recognize_Machining_Features (cavity volumeg.,, parts,.,, stocks)
For each subvolume in the cavity volume,_.,, Repeat |

For the faces in group(l), Repeat
(1) select a candidate face
(2) perform geometric reasoning on the candidate face
(3) utilize the geometric reasoning results

Until no candidate face can be selected

For the faces in group(2), Repeat
(1) select a candidate face
(2) perform geometric reasoning on the candidate face
(3) utilize the geometric reasoning results

Until no candidate face can be selected

For the faces in group(3), Repeat
(1) select a candidate face
(2) perform geometric reasoning on the candidate face
(3) utilize the geometric reasoning results

Until no candidate face can be selected

Until no more subvolume |
End {Procedure}

Although the three major steps appear in each face group, the detailed
mechanisms of the steps for each face group have some variations. A hypothetical part

shown in Fig. 5.3 is used to explain the algorithm step by step.

-75 -

Chapter 5

subvolume_ 1

subvolume_?2

Figure 5.3 : A hypothetical part used to illustrate the explanation of the algorithm,

a hypothetical part

As can be seen in Fig. 5.3, the hypothetical part is assumed to be machined
from a starting stock in the form of a rectangular block, The cavity volume thus formed
consists of two subvolumes, i.e. the subvolume_1 and the subvolume_2. For illustration
purposes, the subvolumes are represented in Figs. 5.4 and 5.5 by means of a face-edge

graph.

In the face-edge graph, the rectangular nodes represent the boundary faces of
a subvolume, while an arc joining two face nodes represents an edge shared between
the two faces. A small circle attached to the side of a face node indicates that the face
is multiply-connected, i.e. has inner edge loop(s). Edges belonging to an inner edge
loop of a face will link to the circle rather than to the side of the rectangular face node.
Understandably, the number of circles attached to a face node indicates the number of
inner edge loops owned by the corresponding face. The 'surface type' and 'face nature'
attributes are depicted in every face node. The 'access' and 'status' attributes are utility
flags used in the recognition algorithm. The convexity of an edge is shown as an integer
code by the side of the edge arc. For the working of the algorithm, every edge also has

a status flag. The initial value of the status of every edge is nil.

- 76 -

Chapter 5

subvolume__1

face: f12
surface: planar
nature: te_face
accass: nil
status: nil
1/ a0
*
ace: f1i
urface: cylind
nature: mec..face "
ccess: nll "
tatus: nil .
face: i8
surface: planar
naoture: me_face
ol /=1 access: nll
* status: nil
1 ol
L) 1 an
face: 7
1/ surface: planar
nature: te_face
access: nil
status: nll
1/nn
ni {1
face: [13 1 face: f1
surface: planar surface: planar
noture: mc_tface ot nalure: te_face
access: nil access: nil
status: nil status: nil
ol {0 1w {{n
foce: f5 face: 14
surface: cyllnd surfaca: planor
nature: me_face nature: mc_face
access: nil o access: nll
status: nil nl status: nil
Remarks.

Edges marked with an asterisk (*) are of general

Key :
te_face : tocl entrance foce
me_face : machined foce

O : innar edge loop

accesz : ulllly flag
status : ullllfy flog
1 : convex edge
0 : smooth edge.

-1 : concave edge

face:
surfoce:
nature:
dccess:
stotus:

f10
planar
te_face
nil

nil

face; f9

surface:
nature:
loccess: nl

status: nll

face: f2

surface: planar

ol nature:
Geeess:
status:

mc_face
nil
nil

Olm

face:

surface:
0 natura:

dccess:
nit status:

cylind
me_face
nii

nl

elliptical curves formed by plane/cylinder intersection.
Other edges are of linear curves,

Figure 5.4 : The face/edge graph representation of subvolume 1.
77 -

Chapter 5

subvolume_2

15

face: f15 face: fi4 face: 113
surface: planar surface: ¢ylind surface: planar
ature: te_face [__n! - nature: mec_face nature: mec_face
access: nil 1 access! mil access: nil
status: nil status: nil gtatus: mnil

16 1 face: f17
cylind surface: planar
me_face 2l ™Npature; te_face
nil access: nil

nil status: mnil

Bemarks

The twe edges marked with an asterisk {*) are of general parametric curves
formed by orthogonal eylinder/cylinder intersection, '
Other edges are of general elliptical curves formed by plane/cylinder intersection.

Figure 5.5 : The face/edge graph of subvolume_2

-

In the context of AI problem solving, the face-edge graphs depicted in Figs. 5.4
and 5.5 can be viewed as a representation of the initial condition states of two problem
spaces. The recognition algorithm basically tries to analyze the problem states according
to the criteria described in section 5.1 by means of geometric reasoning, and to
transform the problem states by means of propagating the geometric reasoning results
as new problem states or constraints in the problem space until no more state
transformation is possible. Each intermediate transformation represents a success or a

failure of recognizing a machining feature.

-78 -

Chapter 5

5.3 Recognition of Machining Features from the Subvolume_1

Since the subvolumes are disjoint solids as described by expression(3) in section
4.2, the machining features in one subvolume will not interact geometrically with the
machining features in another subvolume. As the objective of the recognition algorithm
is to expose all the independent machining features, it is considered that the sequencing
of subvolumes for recognition is not important at this stage. However, the fact that
machining features extracted from individual subvolumes may constitute to a higher
level feature pattern, such as a pattern of holes lying on a pitch circle diameter, will be
discussed in chapter 8. For the purpose of better explaining the algorithm, the

subvolume_1 is chosen first.

5.3.1 Machining Heuristics

To facilitate the search for candidate faces, two heuristics are used to rank the
tool_entrance_faces and machined_faces in terms of their selection priority. The first
heuristic is that :

If a planar face f (of either tool entrance_face or machined face nature)
contains one or more non-linear edges in its boundary,

Then S is more likely to be used as a part_face.
This is because the presence of a non-linear edge signifies the presence of an adjacent

cylindrical check face that can be easily machined by the revolving action of a
cylindrical cutter (Fig. 5.6).

-79 -

Chapter 5

i

z: cutter axis vector
b right angle
fl: cutter flute length

w: face width along
cutter axis direction

planar machined_face

that has longer edge loop
perimeter and has
non-linear boundary edges

non-linear
edge z

convex edge angle

planar machined_face that
only has linear boundary
edges and has shorter edge
loop perimeter

planar
tool_entrance_face
that has non-linear
boundary edges

cavity volume

Figure 5.6 : Illustration of the two machining heuristics used.

The second heuristic is that :
It a planar face f has a longer edge loop perimeter,

Then S is more likely to be used as a part_face.

This implies that the adjacent faces of face f would have a shorter edge loop perimeter.
Since each of the adjacent faces shares an edge with face f, the face width of the
adjacent faces measured along the cutter axis direction is more likely to be shorter. As
cutters, such as drills and end mills, have a finite cutter flute length, it is more likely
that the adjacent faces can be machined by the cutter flutes (Fig. 5.6). These two
heuristics are applied by means of sorting the tool_entrance_faces and machined_faces
in the following manner :
{ pnel, pne2, ... pl, p2, ...cl, c2 ... }

where pnel, pne2, etc. are planar faces that contain non-linear edge(s) and the edge

loop perimeter of pnel is longer than that of pne2,

pl, p2, etc. are planar faces that do not contain non-linear edge and the edge

loop perimeter of pl is longer than that of p2, and

cl, ¢2, etc. are cylindrical faces sorted in descending order of their edge loop

perimeter.

- 80 -

Chapter 5

The procedure for sorting the tool_entrance_faces is illustrated below, while the

procedure for sorting the machined_faces is similar.

Procedure Sort_Tool_Entrance_Faces (subvolumey.,.,, {input parameter}
tool_entrance face list) {output parameter}
create a working list_1 and a working list_2
put the planar tool_entrance_faces of subvolume,, into the working list_1
put the cylindrical tool_entrance faces of subvolumey, ., into the working list_2
create a working list_3 and a working list_4
For the faces in the working list_1, Repeat
if the face contains a non-linear edge
then put the face into the working list_3
else - put the face into the working list_4
Until all the faces have been checked
sort the faces in the working list_3 in descending order of face edge loop perimeter
sort the faces in the working list_4 in descending order of face edge loop perimeter
sort the faces in the working list 2 in descending order of face edge loop perimeter
copy the faces in the working lists 3, 4, and 2 to the tool_entrance_face_list
- End {Procedure}

For the purpose of explaining the algorithm, the sorted faces are assumed to be
stored in two linear lists, i.e. a tool_entrance face list and a machined face list.
However, in the actual implementation the sorted faces are represented in the context

of a KBS as a set of frames of faces. Details about this point is described in chapter 7.
For the subvolume_1, the tool_entrance_face list contains faces arranged as :

{f1, f10, f12, £7}, while the machined_face list contains faces arranged as : {f8, f4, {2,
f6, f3, 15, 19, f11} (please refer to Fig. 5.4 for face notations).

-81-

Chapter 5

5.3.2 Selection of the Group(l) Faces

As described in section 5.2, the algorithm examines the group(l) faces first. As
the group(l) faces are of machined_face nature, the following rule is used to select a
candidate face from the machined face list :
If S is a face to be selected from the machined_face list,
S is planar,
the value of the access attribute of fis not zero, and
the value of the status attribute of f is neither 'part_face' nor 'check face’,

Then select f as the candidate face.

The first face f8 in the machined_face list satisfies the above rule. So it is selected as

a candidate face for geometric reasoning.

5.3.3 Geometric Reasoning for the Group(l) Faces

For analyzing the group(l) candidate faces, three major geometric tests are
conducted to ensure that the criteria (2), (3) and (4) described in section 5.1 are
satisfied.

5.3.3.1 The First Geometric Test for the Group(l) Faces

In the first geometric test, the edges in the outer edge loop of the candidate face
are examined in turn by the following rules :
If an edge is concave, or
an edge is convex and its adjacent face is of tool_entrance face nature,
Then no further test for the edge is necessary (since its adjacent face will not
obstruct the cutter to reach the candidate face as illustrated in Figs. 4.8, 4.9,
and 4.14)

-82-

Chapter 5

If an edge is convex and its adjacent face is of machined_face nature,

Then the convex edge angle is computed to see whether or not it is equal to a right
angle. If the convex edge angle is a right angle, then the conditions stated in
criterion (1) are satisfied and the candidate face passes the test, otherwise the

candidate face fails the test.

If an edge is smooth,
Then the candidate face fails the test (since the smooth edge signifies that the axis

of its adjacent cylindrical face is not parallel with the cutter axis.

For the candidate face f8, convex edge e6 is exempted from the convex edge

angle test since its adjacent face f7 is of tool_entrance face nature (Fig. 5.7).

subvolume_ 1

Figure 5.7 : Convex edge angles of candidate face f8 are right angles.

Convex edges el, €2, e3, e4, and e5 have edge angles equal to a right angle.
So the first test is successful and the second test can proceed. In the event that this first
test is not satisfied, the geometric reasoning for the candidate face will terminate as the

candidate face does not constitute to a valid part_face of a machining feature.

-83 -

Chapter 5

5.3.3.2 The Second Geometric Test for the Group(l) Faces

In the second test, the edges of the candidate face are slightly offset towards the

inside of the subvolume as illustrated in Fig. 5.8.

candidate
face 8

intersection [“\e
point between P P n surface normal
offset edges A\ of candidate face
d ' |
y offset edges

sampling
points

cast rays rl
parallel and opposite

to n

Figure 5.8 : Offsetting edges and casting rays r1 from candidate face 8.

When a candidate face has only one elliptical (circular) edge as in the case of
a circular hole, the edge 6ffset operation amounts to a shrinkage of the circular edge
diameter [Tiller84, Saced88]. When a candidate face has several boundary edges, the
offset edges inay intersect each other as shown in Fig, 5.8. For an offset edge that has
intersection with its adjacent edges, the portion between the intersection points is taken
as ep, otherwise, the full length of the offset edge is taken as ep. Sampling points with
equal interval between them are taken on ep. In the actual implementation, five
sampling points, including the two end points, are used. From each sampling point, a
semi-infinite line or ray rI is projected such that the ray is parallel but opposite in
direction to the surface normal of the candidate face. The cast rays rI are tested for
possible intersection with the half-spaces of the subvolume by means of a line/surface
intersection computation [Roth82). The principle of the line/surface intersection

computation is presented in Appendix C.

-84 -

Chapter 5

To speed up the test, a preliminary test is used to sort out some of the half-
spaces that do not require the line/surface intersection test. For instance, planar half-
spaces whose surface normals are perpendicular to the surface normal of the candidate
face and cylindrical half-spaces whose axes are parallel to the surface normal of the
candidate face can be excluded from the line/surface intersection test because they do
not intersect with the cast rays. In the current example, planar half-spaces whose
surface normals are square with the surface normal of the candidate face f8 are those
of faces f2, f4, f6 and f12, Cylindrical half-spaces whose axes are parallel to the
surface normal of the candidate face are those of faces f3, f5, and 9. Besides, planar
half-space of face f10 also does not intersect the cast rays because it lies 'behind' the
origins of the cast rays. As can be seen from the illustration in Fig. 5.9, all the cast
rays rl intersect the planar half-spaces of face f1 and some cast rays intersect the

cylindrical half-space of face f11.

'p: L7

277 candidate
Jo.(a«{u y
“ o 24777)

. face f8 face f1

(277

S planar halfspace
%/-of face f1

[cylindrical halfspace

face fi1

2z,

TRATRRNS

f face fi1

I/

. o
'400_(00.‘0‘(‘
cast rays rl

& intersect the halfspaces
of faces fl1 and fii

]

RSO RRVI

!

]
1]
]

Figure 5.9 : The half-spaces intersected by rays rl1 projected from face 8.

Each intersection point p formed on an intersection half-space is further tested
to see if the intersection point lies inside or outside the bounded region of the face
belonging to the intersection half-space. This is done by means of a line/polygon
intersection test [Tilove80, Tilove81], which again involves the casting of a semi-
infinite ray r2 from the intersection point p across the face boundary edges (Fig. 5.10).

The principle of the line/polygon intersection test is presented in Appendix D.

- 85 -

Chapter 5

face f1

planar halfspace
of face fl1

DR

cast ray r2 of face f1

7

g bounding rectangle

of face fl1

4

é o ; center of gravity of the
. . . i 1
intersection point ~ ? bounding rectangle
on an edge of = N\ ~-.Z p ! intersection point made
face f1 by rl on the halfspace

Figure 5.10 : Cast rays r2 projected from point p across the boundary of face f1.

If an intersection half-space is planar, ray r2 passes through a point ¢ which is

the centre of gravity of a rectangle that bounds the face belonging to the intersection

half-space (Fig. 5.10). If an intersection half-space is cylindrical, there will be two

intersection points p for each cast ray rI. The rays r2 are cast such that they are

parallel to the axis of the cylindrical half-space (Fig. 5.11).

face fi1i candidate
cast rays r2 face 18 cylindrical
parallel to the halfspace

axis of face f11

™
~—
ftty

cast rays ri

p : intersection points q : intersection points
made by rl1 on the made by r2 on the
cylindrical halfspace edges of face fi1l
of face fl11

Figure 5.11 : Cast rays r2 projected from point p across the boundary of face fl11.

- 86 -

Chapter 5

The boundary edges of the intersection face are then tested to see if they
intersect with the cast ray r2. The number of intersection points made by a cast ray r2
on the boundary edges of the intersection face are counted. If the number of intersection
points are even, then the intersection point p lies outside the intersection face, otherwise
it lies inside the intersection face. The following rules are used to handle the different

results of p :

If p lies outside an intersection face f,
And If f is planar,
the nature of fis machined face, and
the value of the status attribute of fis 'part_face’,
Then S is a secondary_top_entrance_face for the candidate face test, and
record f in the working list B,
Then Jf does not obstruct a cutter to access the candidate face, and

continue the geometric reasoning,

Else If p lies inside an intersection face f,
f is the only intersection face, and
the nature of f is tool_entrance_face,

Then fis the primary_top entrance_face for the candidate face,
record f in the working list A, and

continue the geometric reasoning,

Else If p lies inside an intersection face f, and
the nature of f is machined_face,
Then S obstructs a cutter to reach the candidate face, and

terminate the geometric reasoning.

As illustrated in Fig. 5.11, the intersection point p lies outside the cylindrical
face fl11. By the first rule above, face fl1 does not cause cutter interference and the

geometric test continues. Fig. 5.10 also shows that the intersection point p lies inside

-87 -

Chapter 5

face fl. By the second rule above, face fl is the primary_top_entrance_face for the

candidate face f8, and hence face f1 is recorded in a working list A,

The line/surface and line/polygon intersection tests are performed on ail the
sampling points, If a candidate face has multiple primary_top_entrance faces that are
connected together in the form of a patch of faces (as illustrated previously in Fig.
4.11), the patch of primary_top_entrance_faces can also be detected by the cast rays r1.
Similarly, if a candidate face has several secondary top_entrance faces, they can also

be detected by the cast rays rl.

For the current example, the intersection points lie outside face f11 and inside
face f1, implying that the entire test on the candidate face is successful. As there are
six offset edges on the candidate face f8 and five sampling points per edge used in the
implementation, there would have been 30 sampling points to test. However, if two
offset edges intersect each other, their end sampling points overlap. To avoid testing
of overlapping sampling points, the overlapped points are sorted out before carrying out
the line/surface and line/polygon intersection tests. Thus, in the current example, only
24 intersection points on the half-space of face f1 are actually tested. This also implies
that the identity (integer pointer) of face fl is recorded 24 times in the working list A.
Hence, when the test is successfully completed, an operation is performed to eliminate
duplicate integers in the working lists A and B so as to ensure that they contain only
unique integers. For the current example, the working list A contains only one integer
pointer of face f1 after the duplicate integer elimination operation. This means that face
f1 is the only primary top entrance face that can be used by a cutter to reach the

candidate face f8.

As face f11 is cylindrical, it cannot completely satisfy the above first rule. This
means that face fl11 does not cause cutter interference but is not a
secondary_top_entrance_face for the candidate face f8. So the working list B remains

empty at the end of the test.

- 88 -

Chapter §

5.3.3.3 The Third Geometric Test for the Group(l) Faces

A candidate face that has passed the above first and second geometric tests only
means : (1) that the candidate face can be used as the part_face of a machining feature,
and (2) the candidate face can be locally accessible by a cutter. However, criterion (4)
actually requires that a recognized machining feature should also be globally accessible.
A globally accessible machining feature is considered as a locally accessible machining
feature whose cutter access path is also not obstructed by any protrusions or overhangs
of the part as well as other possible obstacles in the machining environment such as
clamping and locating devices. An example of a locally accessible but not globally
~ accessible machining feature is illustrated in Fig. 2.11. In this thesis, the machining
environment is not considered. The extent of global accessibility is confined to

consideration of the part shape.

The global accessibility analysis is performed in the third test, where the cast
rays rI used in the second test are tested for intersection with the half-spaces of the
part. Like the second test, a preliminary test is performed to reduce the number of half-
spaces required for the line/surface intersection test. For the current example, the
following faces (please refer to Fig. 5.12 for face notations) are exempted from the
line/surface intersection test as there will be no intersection point formed due to the

reasons explained :

Faces Reason for Exemption from the Test

fb its half-space is complementary to the half-space of the
candidate face f8 as described by expression(7) in section 4.3,

fc, fe, fg, fl, their planar surface normals are perpendicular to the cast rays
fm, fn, fo { 71,

fd, ff, fth, fi their cylindrical surface axes are parallel to the cast rays,

fj and fp they lie behind the origins of the cast rays.
Table 5.1 : Faces exempted from the intersection test.

- 80 -

Chapter 5

Figure 5.12 : The boundary faces of the hypothetical part.

Thus, the line/surface intersection test is performed only on faces fa, fk and fq.

As illustrated in Fig. 5.13, the cast rays rI intersect the half-spaces of faces fa, fk and

fq.
Pty £
| Yy, ace fb cylindrical halfspace
/ %

face fq % of face fq

A face fk
Y =
Pofl =S4

\\\\'\“.ﬁ!i.?.

§ e
/
ANy

QA

cagt rays rl Uy,
“

{/4//%

L
eylindrical o
::11‘.'1 l:zgicgk “ e, = é planar halfspace
face fa /"’/&//&@ of face fa

Figure 5.13 ; Cast rays rl intersect with the relevant halfspaces of the part.

-9Q -

Chapter 5

For each of the three intersection faces, a line/polygon intersection test is
performed in a way similar to that used in the second test for the purpose of
determining whether the intersection point p lies inside or outside the intersection face.

For instance, the line/polygon intersection test for the intersection face fa is illustrated
in Fig. 5.14.

é bounding rectangle

P of face fa
. (7 P : intersection point

é ! i {(/(/‘(”‘4’#104,,, made by r1 on the

.g ""‘-'4'42474‘, plenar halfspace of

%

v

face fa
q : intersaction points

made by r2 on the
boundary edges of
face fa

o ! center of gravity
of bounding rectangle

-3
) /g/—face fa
4«(/@
iy, - Z
Ly ” é
g planar
{other cast rays 1 halfspace

are not shown of face fa

cast ray r2

Figure 5.14 : Cast ray r2 projected from point p across the boundary of face fa.

The following rules are used to handle the different results of p :

If p lies outside an intersection face f,

Then S does not obstruct a cutter to access the candidate face, and
continue the geometric reasoning,

Else If p lies inside an intersection face f,

Then S obstructs a cutter to access the candidate face, and
terminate the geometric reasoning,

Else computational error, and

terminate the geometric reasoning.

-91 -

Chapter 5

As can be seen in the above rules, the decision for analyzing the 'in/out'
conditions of p is straightforward since the intersection faces in this third test are the

boundary faces of the finished part rather than those of the subvolume.

With the illustration in Fig. 5.13, it can be perceived that the intersection points
lie outside faces fa, fk and fq, implying that the three faces do not cause cutter
interference. In summary, the three tests for the candidate face f8 are successful. So

the algorithm moves on to utilize the geometric reasoning results.

5.3.4 Utilization of the Group(1l) Face Testing Results
The geometric reasoning results are handled according to the following rule :

If either one of the above three geometric tests fails,
Then the value of the access attribute of the candidate face f is changed from the
string 'nil' to the integer '0’,
Else (a) generate the following feature record and top entrance face lists :
record heading : machining feature
fields 1-3 : the cutter axis vector, i.e. cast ray rI
field 4 : a constituent edge e of the outer edge loop of f
field 5 : a pointer to a primary_top_entrance face list‘
field 6 : a pointer to a secondary_top_entrance_face list
(b) primary_top_entrance face list = linear list A
(c) secondary_top_entrance face list = linear list B
(d) insert the above feature record in the machining feature list of f,
(e) change the value of the access attribute of f from 'nil’ to f,
(f) change the value of the status attribute of f from 'nil' to the string
'part_face',
(g) change the value of the status attribute of the adjacent faces of f according
to the following rule :

-92 -

Chapter 5

If the value of the status attribute of a face f is 'part_face',
edge e is an edge belonging to the outer edge loop of f,
e is convex,
the value of the status attribute of e is 'nil’,
the adjacent faces of e are f and g, and
the value of the status attribute of g is 'nil’,
Then change the value of the status attribute of g to the string

‘check_face'.

In the B-rep database of the cavity volume, every face record has a field
assigned for storing a pointer to a machining feature list. When the above three
geometric tests are satisfied, a feature record is created and appended in the machining
feature list of the candidate face, More details about the B-rep database is described in

chapter 7.

As the current candidate face f8 satisfies the three tests, the above rule records
the recognition of a valid machining feature in the B-rep database. The rule also
transforms the initial face/edge graph or problem states shown in Fig. 5.4 to the
problem states shown in Fig. 5.15.

Having completed the first problem state transformation, the algorithm recurs
to use the rule stated in section 5.3.2 to select the next candidate face from the
machined_face list for geometric reasoning. However, for the current example, no more
faces from the machined_face list can be selected as the value of the status attribute of
faces f4, f2, and f6 has been changed to 'check face', while the surface type of faces
f3, 15, 19, and f11 is cylindrical (Fig. 5.15). So the algorithm proceeds to consider the
group(2) faces.

-93 -

Chapter 5

ace: f12
surface: planar
ature: te_face
access: nil
status: nil

1/o0

RCE: fl1
urface: cylind
ature: mc_face
ccens: nil

acceas: nil
tatus: nil i

face: fi
surface: planar
nature: mc_face
*|laccess: 18

afl
sjstatus; part_face
it N1
1{an
face: 7
surface: planar | aa\1
nature: te_face
access: nil ni\ 1
#|status:check_ face
1/ni s\l
nt |1
f::;: 16 1 face: !1l face:]
surface: planar surface: planar- surface: planar
nature: mce_face mnature: te_face - nature: mc_face
access: nil access: nil 1 access: nil
[status:check face gtatus: nil %x|status: check face
nil nil
ol [0 1 ot 0)na
face: 15 face: 4 ace: 3
aurface: cylind gurface: planar gurface: eylind
mature: me_face nature: me_face ature: mc_face
access: nil 0 access: nil access: nil
% [mtatus; check face ndl »(status;check face #|status; check face
Remarks :

: attribute value modified in the recent transformation

Figure 5.15 : The first transformation of the face/edge graph of subvolume 1.

5.3.5 Selection of the Group(2) Faces

For analyzing the group(2) candidate faces, the tool_entrance face list is
relevant. The following rule is used to select a candidate face from the

tool_entrance_face list :

- 94 -

Chapter 5

If S is a face to be selected from the tool_entrance_face list,
the value of the access attribute of f is not zero, and
the value of the status attribute of f is neither 'part_face' nor 'check face',

Then select f as the candidate face.

With the tool_entrance_face list {f1, f10, f12, f7} and the problem states shown
in Fig. 5.15, the above rule selects face f1 as the candidate face.

5.3.6 Geometric Reasoning for the Group(2) Faces

For analyzing the group(2) candidate faces, two major tests similar to the
previous second and third geometric tests are conducted to ensure that the criteria (3)
and (4) described in section 5.1 are satisfied. The previous first geometric test is not
used because criterion (1) is .not necessary for group(2) faces since the intersection
between the part_face and its adjacent check_faces may not be orthogonal such as the

case illustrated in Fig. 4.5.

5.3.6.1 The First and Second Geometric Tests for the Group(2) Faces

The procedures employed in the first and second geometric test are essentially
the same as those described in sections 5.3.3.2 and 5.3.3.3 respectively. However, as
the intersection between the candidate face and its adjacent faces may not be
orthogonal, the direction of the cast rays rI is determined as follow :

If the candidate face f has an adjacent cylindrical face,

Then the cast rays #I are parallel to the axis of the cylindrical face and towards the
inside of the cavity volume as illustarted in Fig. 5.16(a),

Else the cast rays are parallel to a linear edge that is shared between two planar

adjacent faces and towards the inside of the cavity volume as illustrated in Fig.

5.16(b).

- 95 -

Chapter 5

candidate face
of tool_entrance face
nature

candidate face
of tool _entrance_face
nature

cast rays ri
parallel to Z

edge ‘e’ shared by
two adjacent faces

axis of adjacent cast rays rl
;:ylindrical gﬂ?dﬂcal parallely to e
ace
{a) with adjacent cylindrical face (b) without adjacent cylindrical face

Figure 5.16 : Determining the projection direction of cast rays rl for group (2) faces.

As illustrated in Fig. 5.17, the very first intersection point of the cast ray rf is
on the face f8 which is of machined_face nature. This implies that cutter access to the
candidate face f1 is blocked by face 8. So by the last rule stated in section 5.3.3.2, the

geometric reasoning for the candidate face f1 stops.

face 8 ays rl
] planar
candidate halfspace
face f1 oy, of face fB
"~-~-_h_:a' % cylindrical
4 | halfspace
face 111 a‘ of face f11
g
9
7 p: intersection
é‘ peint made by
4 rl on planar halfspace of
Prrnd face 18

Figure 5.17 : Cast rays r1 projected from the surface of face f1.

- 046 -

Chapter 5
5.3.6.2 Utilization of the Group(2) Face Testing Results

The geometric reasoning results for the group(2) faces are handled similarly as
described in section 5.3.4, Since the candidate face f1 fails the first geometric test, the
value of its access attribute is changed from nil to zero. As a result, the problem space

shown in Fig. 5.15 is transformed to that shown in Fig. 5.18.

surface: planar surface; planar
ature: te_face nature: te_face
access: nil
status: nil
1/
ace: 111 face: 10
urface: cylind gurface: cylind
ature: mc_face on ature: me_{face
access: nil -1 accesa: nil
status: nil status; nil

face: f
surface: planar
nature: mc_face
accean: 18

astatus: part_face

1|na

face: 17
surface: planar
nature: te_face

access: nil 1
status:check_face
nfl |1
face: face: fl face: 2
surface: plmar surface: planar surface: planar
nature: mc_face nature: te_face nfl nature: mc_face
accesgs: nil %|accens: 0 i access: nil
atatus:check face status: nil status: check face
nt1 [0 1o

face: 15 face: f4
surface: cylind gurface: planar
nature: me _face nature: mc_face
access: nil 0 accers: nil
ptatus: check face nil status:check face status: check face

Remarks :
% ¢ attribute value modified in the recent transformation

Figure 5.18 : The second transformation of the face/edge graph of subvolume 1.

-97 -

Chapter 5
5.3.6.3 Analysis of the Remaining Group(2) Faces

The algorithm loops back to use the rule stated in section 5.3.5 to select the next
candidate face from the tool_entrance face list. The second face f10 in the list satisfies
the rule and is therefore chosen for geometric reasoning. The relevant half-spaces
involved in the first and second geometric tests of the candidate face f10 are illustrated
in Fig. 5.19.

offset edge
face f1

face 18
cylindrical
‘2 : 3| halfspace
face f11—% 4 of face f11
planar
::;: ri halfapace
halfspace of face 1B

of face f1
(a) first geometric test with respect to the

relevant halfspaces of subvolume_1

face ylindrical

planar halfspace face fj
halfspace | of face fg cylindrical
of face fb i halfspace
Oof face fk
face
fq

planar
halfspace
of face fj

halfspace

of face fa

(b) second geometric test with respect to th
relevant halfspaces of the part

Figure 5.19 : The first and second geometric tests performed on face f10.

-08 -

Chapter §

With the illustration in Fig. 5.19, it can be understood that face f10 satisfies
both the first and second tests. Face f8 is recorded as a secondary_top_entrance_face
in the working list B and face f1 is recorded as a primary_top_entrance_face in the
working list A. By the rule described in section 5.3.4, the problem space shown in Fig.

5.18 is transformed to that shown in Fig. 5,20,

ace: 12 face: 110
surface: planar surface: planar
ature: te_face mature: te_face
access: nil % |access: 10
atatus: nil * ntatus; part_face
W W
ace: il ace:; b (]
ace: cylind surface: cylind
ature: me_face - ature: mc_face
ccegs: nil -1 acceas: nil
tatus: nil *|status:check_face
face:
surface: planar
nature: moc_face
access:f8
statue: part_face
1/ a0 YTy |
1|nu
face: b g4
1/ surface: planar an\1
neture: te_face
access: nil na\1
gtatus:check_face
1/a0 a1
nll |1
ace: 18 t face: f1l face: f2
surface: planar surface: planar surface: planar
ature: mc_face all nature: te_face afl nature: mc_face
access: nifl access;: O 1 access: nil
status:check face status: nil gtatus: chaclk_face
nt {0 all 1 (ot 0lan
nfl
face: ¢ face; f4 Ace: 3
surface: cylind surface: planar surface: cylind
nature: me face nature: mec_face 0 ature: me face
access: nifl 0 access: nil ccesn; nil
atatus: check face; ail status:check face nil tatus: check face
Remarks @

#* ; attribute value modified in the recent transformation

Figure 5.20 : The third transformation of the face/edge graph of subvolume 1.

-99 -

Chapter 5§

The algorithm returns to select another candidate face from the
tool_entrance_face list. This time face f12 is chosen as the candidate face. However,

face f12 does not pass the first test as face f2 causes cutter interference (Fig. 5.21).

offset edge ..—planar
3 halfspace
: of face f2
candidate ~—face f2
face f12
\) .
cast p @ intersection point
g made by rl on
g ray ri planar halfspace of
f'.s' face 2

Figure 5.21 : The first geometric test performed on face f12.

Consequently, the problem space shown in Fig. 5.20 is transformed to that
shown in Fig. 5.22.

The algorithm attempts to select the last face f7 from the tool_entrance face list.
However, face f7 does not satisfy the selection rule stated in section 5.3.5 because its
access attribute value has been modified to ‘check_face' in the previous transformation
(Fig. 5.15). As there are no more selectable candidate faces in the tool_entrance face

list, the algorithm directs the focus of interest on the group(3) faces.

- 100 -

Chapter 5

face: fi2 face: 110
gurface: planar surface: planar
ature: te_face nature: te_face
#*|access: O access: 10
atatus: nil status; part_face
%
ace; fi1 ace: 19
ace: cylind surface: cylind
ature: me_face afl ature: mec_face
access: nil -1 access: mnil
tatus: nil gtatus:check face
face: 10
surface: planar
nature: mc_face
access: 18
ptatuas: part_face
L/ en a1
1[ant
face: 7
1/an1 gurface: planar i \1
nature: te_face
access: nil ni\ 1
status:check face
1/=1 AN |
ofl [1
face: 18 1 ace: fl face: i2
surface: planar surface: planar surface: planar

ature: me_face
access: nil
status:check face

nature: te_face nit nature: me_face
access: 0 i access: nil
status: mnil atatus: check face

on1 {0 1{an O}

face: 15 face: 14 ace: 13
surface: cylind surface: planar surface: cylind

ofl

nil

nature: me_face nature: rac_face ature: mc _face

access: nil Waecens: nil accens: nil

atatun: check face nil status:check face atatuns: check face
Remarks :

: attribute value modified in the recent transformation

Figure 5.22 : The fourth transformation of the face/edge graph of subvolume 1.

5.3.7 Selection of the Group(3) Faces

After performing geometric reasoning on the groups(l) and group(2) faces, the
occurrence of the group(3) faces will be on those faces that are of machined_face
nature, have inner edge loop, and the status attribute value has been modified to

'check_face' or 'part_face' during the previous tests.

- 101 -

Chapter 5

Since the nature of the group(3) faces is machined_face, the machined_face Iist
{f8, f4, 2, f6, f3, f5, 19, f11} can be used again as an agenda for governing the
selection sequence of the candidate faces. The following rule is used to select the

group(3) candidate faces for geometric reasoning :

If S is a face to be selected from the machine face list,
the value of the status attribute of f is either 'check face' or 'part_face',
S has an inner edge loop él,
the status of the constituent edges of el is nil,
the adjacent faces of the constituent edges are gs, and
the value of the status attribute of gs is not 'check_face',

Then select f as a candidate face.

Based on the problem states shown in Fig. 5.22, the two machined_faces that
have inner edge loop are faces f8 and f6. Face f8 does not satisfy the above rule
because the adjacent face of its inner edge is f9 whose status attribute value has been
modified to "check face': Face f6, however, satisfies the above rule, and so it is chosen

as a candidate face for geometric reasoning.

5.3.8 Geometric Reasoning for the Group(3) Faces

For analyzing the group(3) candidate faces, two major geometric tests similar
to the two tests used for the groups(2) faces are conducted to ensure that the criteria (3)
and (4) described in section 5.1 are satisfied. The first geometric test used for the
group(l) faces is also not used here. This is because criterion (1) is not obligatory for
group(3) faces since the intersection between the part_face and the adjacent check_faces
may not be orthogonal. The first and second tests for the candidate face f6 is illustrated
in Fig. 5.23. Both the first and second tests are successful. During the first test, face

12 is detected as a primary_top entrance_face,

- 102 -

Chapter 5

planar halfspace
of face 12

p : intersection points
made by rl on the
halfspace of face f12

candidate
face 16

(a) first geometric test with respect to the
relevant halfspace of subvolume_1

planar halfspace of face fo

p : intersection points
made by rl on
the halfspace of
face fo

(b) second geometric test with
respect to the relevant
halfspace of the part

Figure 5.23 : The first and second geometric tests performed on face f6.

- 103 -

Chapter 5

5.3.9 [Utilization of the Group(3) Face Testing Results

For the group(3) faces, the geometric reasoning results are treated according to

the following rule :

If ecither one of the two geometric tests fails,
Then change the value of the access attribute of the candidate face f to zero, and
change the status of the constituent edges of the inner edge loop el of f from
'nil' to the string 'marked’,
Else (a) generate the following feature record and top entrance face lists :
record heading : machining feature
fields 1-3 : the cutter axis vector, i.e. cast ray rl
field 4 : a constituent edge e of the inner edge loop el
field 5 : a pointer to a primary_top_entrance face list
field 6 : a pointer to a secondary_top_entrance_face list
(b) primary_top_entrance_face list = linear list A
(c) secondary_top_entrance face list = linear list B
(d) insert the above feature record in the machining feature list of f,
(e) change the value of the status attribute of the faces adjacent to the

constituent edges of el from 'nil' to the string 'check_face'.
By the above rule, the problem state shown in Fig. 5.22 is transformed to that

shown in Fig. 5.24. As there are no more selectable group(3) faces, the algorithm

stops. Fig. 5.24 therefore also represents the final problem space of subvolume 1.

- 104 -

Chapter 5

I)

o

face: 10
surface: planar
nature: te_face
accesn: 10
atatus; part_face

1/ nit

ace: 19

aurface: cylind
ature: mc_face

accens: nil

atatus: check face

face: 12
surface: planar
nature: me_face
access: nil
astatus:check_face

0]nl

ace: f3

urface: cylind

ature: mec_face
access: nil

tatus: check_face

ace: 12
surface: planar
nature: te_face
accenss: 0
status: nil
%
ace: i1
urface: cylind
ature: me_face .
ccesn: nil -1
& ptatus:check face
[face: 18
surface: planar
nature; mc_face
an/ -1 accesa: B
astatus: part_face
L/ an
1{=nn
face: 7
1 /a0 gurface: planar
nature: te_face
access: nil
atatus: check_face
1/
nil J1
face: 18 1 ace: f1
surface: planar surface: planar
nature: mec_face ni} ature: te_face
access: nil access: (0
status:check_face status: nil
m{Q nfl 1(=n
face: 15 face; 14
surface: cylind surface: planar
nature: mc_face nature: me_face
access: nil 0 access; nil
status: check face ail status: check face
Remarks :
W : attribute value modified in the recent transformation

Figure 5.24 : The fifth transformation of the face/edge graph of subvolume 1.

5.4 Recognition of Machining Features from the Subvolume_2

The problem space of the subvolume 2 in terms of the face/edge graph shown

in Fig. 5.5 is analyzed similarly by the algorithm. By means of the heuristics-based

sorting procedures described in section 5.3.1, the tool entrance face and the

- 105 -

Chapter 5

machined_face lists are created. The tool_entrance_face list contains faces f15 and f17,
while the machined_face list contains faces f13, f14 and f16 (Fig. 5.5). By using the
rule stated in section 5.3.2, face f13 is chosen as the first candidate face for geometric

reasoning.

sampling points

candidate
face f13—.]

cylindrical
halfspace
““-a of face f16

p ! intersection points

made by rl on
planar the halfspace of
halfspace face f15
cast of face f15
rays ri

(a) first geometric test with respect to
the relevant halfspaces of subvolume_2

planar halfspace

of face fb cylindrical

halfspace
of face fq

face fk

face fa t intersection points
N made by rl on
the halfspace of
planar face fa

halfspace
of face fa

Ca . cylindrical

rays rl ' halfspace

(b) second geometric test with respect to of face fk
the relevant halfspaces of the part E

Figure 5.25 : The first and second geometric tests performed on face f13.

Face f13 passes the first test as its surface normal is parallel to the axis of its
adjacent cylindrical face fl14. The second and third tests for the candidate face f13 are
illustrated in Fig. 5.25.

- 106 -

Chapeer 5

It can be observed that face f16 does not cause cutter interference and face f15
is detected as a primary_top_entrance face. Consequently, a feature record is created
and augmented in the machining feature list of the candidate face f13. The problem

space shown in Fig. 5.5 is transformed to that shown in Fig. 5.26.

ace; 15 face: fi4 face: f13
surface: planar ault"face: cylind surface: plamar
ature: te_face ol _nature: me_face nil nature: me_face
access: il \'T/acceas: nil \T’{access:ﬂ
status: nil # |status: check_face * |status: part_face
—1\ai
* ¢ attribute value =N\7! [face: 116 face: 117
mod1fieil in ;.he " surface: cylind ! _lsurface: planar
recent transformation nature: ac_face 2 ~pature: te_face
access: nil access: nil
status: nil status: nil

Figure 5.26 : The first transformation of the face/edge graph of subvolume 2.

As the remaining faces in the machined_face list are cylindrical, they do not
satisfy the candidate face selection rule stated in section 5.3.2. Thus, the algorithm

turns to consider the group(2) faces.

According to the candidate face selection rule defined in section 5.3.5, face f15
is first selected from the tool_entrance_face list for geometric reasoning. With the
illustration in Fig. 5.27, it can be understood that the candidate face f15 faiis the first
test as described in section 5.3.6.1 due to the fact that face f13 causes cutter

interference.

P cast
%
2 ray rl
p : intersection point made by%
rl on the halfspace of
2 face f13
face 13] -
7
offset edge
sampling points
Dy, planar
candidate face f15 T halfspace
T
gz of face f13

Figure 5.27 : The first geometric test performed on face f15.
- 107 -

Chapter 5

The problem space is transformed to that shown in Fig. 5.28.

ace: f15 face: 14 face: 113
surface: planar gurface: cylind surface: planar
ature: te_face K =t nature: mc_face Q/ nature: me_face
% [access: @ 1 access; mil 1 accesa: f1
status: nil status: check_face status: part_face
-\l
* : attribute value “N\! fface: f16 face: 17

modified in the

recent transformation surface: cylind surface: planar

nature: mc_face el “Nnature: te_face
access: il access: nil
status: nil status: nil

Figure 5.28 : The second transformation of the face/edge graph of subvolume 2.

The next chosen candidate face f17 also fails the first test as face f14 causes

cutter interference (Fig. 5.29).

/ S
cast ray rl e \\
offset
edge
sampling
points
-7 candidate
cast ray ree 2.7 &—cylindrical face f17
halfspace

of face f14

pl & p?2 : intersection points made by
rl on the halfspace of face 2

q : intersection points made by
r2 on the boundary edges of
face f14

p2 outside face f14 pl inside face f14

Figure 5.29 : The first geometric test performed on face f17.

- 108 -

Chapter 5

As a result, the problem space is transformed to the one shown in Fig. 5.30.

nil

ace: 15 face: f14 face: 13
surface: planar surface: cylind gsurface: planar
ature: te_face nil _Jnature: mec_face _;.E/nnture: mec_face
access: 0 1 laccess: nil 1 access: f1 .
status: nil status: check_face status: part_face
* 3 attribute wvalue . 16 face: 17
modl.f;eg in :‘he " surface: cylind /_l\surface: planar
recent transformation nature me_face nil nature: te_face
access: nil * |access: O
status status: mnil

Figure 5.30 : The third transformation of the face/edge graph of subvolume 2

The algorithm proceeds to consider group(3) faces. By using the group(3)

candidate face selection rule described in section 5.3.7, face f14 is selected for testing.

With the illustration in Fig. 5.31, it can be perceived that face f14 passes the two tests

and face f17 is detected as a primary_top_entrance_face.

A machining feature record is created and is appended in the machining feature

list within the face record of face f14. The problem space is transformed to that shown

in Fig. 5.32. The algorithm stops since there are no more selectable group(3) faces.

- 109 -

Chapter 5

candidate
face f14

sampling
pointa planar
halfapace
g’ of face f17
P
cylinder/cylinder
intersection edges casted
; rays rl
offaet edges L\ fpce 117

p : intersection points made by rl on
the halfspsce of face 117

(a) first geometric test with respect to
ihe relevant halfspace of subvolume 2

casted
rayg rl

p : intersection points made by
rl on the halfspace of face fm

b) second geometric test with respect to 4 El:l?“nce
the relevant halfspace of the part of 1':1:33 fm

Figure 5.31 : The first and second geometric tests performed on face f14.

ace:; f15 face: fl4 face: f13
surface: planar surface: cylind surface: planar
ature: te_face nil _q{nature: mc_face Bl nature: mec_face
access: 0 1 access: nil 1 access: fl
atatus: nil status: check _face status: part_face

% : attribute value
fie face: f17
modifti'e:lr in }.he 4 surface: cylind 1 surface: planar
_recent transformation nature: me. facel ™ “nature: te_face
access: nil access: ()
% |status:check_face status: nil

Figure 5.32 : The fourth transformation of the face/edge graph of subvolume 2.

- 110 -

Chapter 5

The machining features recognized from the subvolume_1 and subvolume 2 are

summarized in Tables 5.2 and 5.3 respectively :

From the Subvolume 1

| part check primary | secondary | side

y face face top top entrance

: entrance | entrance | face
face face

| machining
} feature

Table 5.2 : The machining features recognized from the subvolume 1.

From the Subvolume_2

machining part check primary secondary | side

f feature] face face top top entrance
f entrance | entrance | face

: : face face

1 1 | 113 £14 f15 nil nil

B | f14 £16 17 nil nil

Table 5.3 : The machining features recognized from the subvolume 2.

5.5 Concluding Remarks

The devised feature recognition algorithm basically has two major steps : (1)
searching a potential part face on the cavity volume model by means of matching the
cavity volume boundary with the set of geometric and topological relationships defined
in section 5.1, and (2) performing accessibility analysis on the potential part_face by
means of the ray casting technique. Effectively, the recognized features are ensured to
be accessible 2.5D machining features. As the search for a potential part_face is also

performed on faces that have inner edge loops, the algorithm can extract 2.5D

- 111 -

Chapter 5

machining features from the reasonably complex machining features that are formed due

to feature interaction.

Understandably, machining features that violate the defined recognition
mechanism of the algorithm will not be recognized by the system. As it is not feasible
to predict and precode every possible feature pattern and recognition algorithm in a
computer program, a more desirable approach to improve the capability of the system
would be to separate feature definition from feature recognition. Attempts at using this

approach are described in the next chapter.

- 112 -

CHAPTER 6
MACHINE LEARNING OF
FEATURES FOR RECOGNITION

6.1 The Role of the Machine Learning Approach

Chapter 6

The motive for using the machine learning approach is to handle machining

features that cannot be recognized by the devised feature recognition algorithm. Figure

6.1 illustrates the working idea of the machine learning approach in relation to the

former recognition approach.

?maﬁcﬁaﬁlg —
tchable

—
| !

| I

| ;

I | non-—
L 1
|

I

|

!

L

. instruet machining feature description
interactively,

. memorize the cavity subvolume shape
together with the instructed machining
feature description as matching
template

stock & -=recognize by using K
_ L — ey @
| part B-reps | the automatic ==
cavity feature recognition — — = information
— §Eg\éolume ~ — *lalgorithm flow path
p — gction path
% : recognizable
_______ A
{ : non—recrgnizable :
I i
; I match the shape T
f of cavity subvolume machining feature
P] with the memorized description
matching templates *

Figure 6.1 : The working concept of the research system.

- 113 -

Chapter 6

The devised feature recognition algorithm is used in the front end to extract
machining features that obey the predefined feature definitions without the need of
human intervention. The machine learning approach, however, is used to learn a2 non-
recognizable machining feature as a piece of new knowledge so as to enable the system
to recognize similarly shaped machining features that would be encountered
subsequently. A non-recognizable machining feature need not be learnt if it is not
expected to be met again in the future, In that circumstance, it can be handled as a one-
off job by using the human-assisted part programming approach. The decision as to
whether or not a non-recognizable machining feature is worth learning should be made
by the user of the system. For instance, it would be useful to learn factory dependent
machining features which can be grouped into families based on their parameterizable

shapes.

6.2 The Methodology of the Approach

As introduced in section 3.3, a learning process can be conducted by using
different learning strategies, This thesis basically adopts the learning by rote strategy
as a first attempt to study the machine learning of features for recognition. According
to the principle of the learning by rote strategy, the system should be capable of
performing four major tasks : (1) acquire information and the associated actions about
an exemplary situation provided by the user, (2) memorize the acquired information and
actions as an internal representation or matching pattern in the system, (3) recognize
similarity between the memorized matching pattern and new situation, and (4) retrieve
and apply the memorized actions to the new situation. The methodology of the machine

learning approach used in this thesis is based on these four major learning activities.

The first task represents the use of an exemplary cavity volume V that cannot
be handled by the recognition algorithm for the user to instruct the corresponding
feature description F in terms of the machining face scheme adopted in the first

approach.

- 114 -

Chapter 6

The second task involves the conversion of the boundary characteristics of V
together with the instructed feature description F into a set of production rules which
represent a memorized matching pattern. The definition of boundary characteristics will
be discussed later on. Symbolically, the first and second tasks can be expressed as :

{)[V] + F} => M

where b[V] = the boundary characteristics of cavity volume V
+ = association of a feature description instructed by user
F = the instructed feature description
=> = conversion from B-rep data to production rules
M = matching pattern rules

The third task is performed when the system subsequently encounters a new
cavity volume W whose cavity volume boundary characteristics match with the
conditions of the memorized set of production rules. This can be expressed as :

b[W] <> M(b[V])

where b[W] = the boundary characteristics of cavity volume W
<> = successful pattern matching
M([V]) = the boundary characteristics portion of matching pattern rules M

The last task is performed at the result of firing the set of production rules M
whose actions lead to the retrieval and substitution of the previously instructed feature

description F to the new feature cavity volume W, i.e.

M®F) -> W
where M(F) = the feature description portion of matching pattern rules M
-> = retrieval and substitution of feature description

Two major issues arise from the third task : the definition of boundary
characteristics (or shape), and the conditions for testing shape similarity. These two

issues are elaborated below.

- 115 -

Chapter 6

6.2.1 Boundary Characteristics

The boundary bV of cavity volume V is considered to be composed of m
number of faces and n number of edges as :
bV = {fV] + fV2 + fV3 + ... fVm} + {CV] + €Vy + €vy + .. eVn}

For a face f, a set of characteristic conditions {or constraints) g can be defined.
Symbolically, the set of constraints g of a face f is expressed as f[g]. For instance, the
set of face conditions considered in this approach are :

(1) face type (planar or cylindrical),

(2) face nature (machined_face or tool_entrance face),

(3) number of boundary edges, and

(4) instructed machining feature description (part_face, side entrance_face, or

primary_top_entrance_face),

Similarly, a set of conditions h can be defined for an edge e. For example, the
set of edge conditions used in this approach are :
(1) edge type (line, ellipse (including circular), or general cylinder/cylinder
intersection parametric curve),
(2) convexity (convex, concave, or smooth),
(3) left adjacent face (face identity used in the winged-edge B-rep database), and
(4) right adjacent face (face identity).

The first two conditions are basically geometric information of the edge,
whereas the last two conditions are topological information that help to define the

'shape’ of the object. Symbolically, the conditions of an edge is expressed as e[h].

- 116 -

Chapter 6

In the approach, the boundary characteristics b[V] of a cavity volume V are
expressed as a combination of the following conditions :
(1) the number of boundary faces m,
(2) the number of boundary edges n,
3) the geometric conditions of each face, i.e.
{fvilgl, fvalgl, ... fvylel}, and
(4) the geometric and topological conditions of each edge, i.e.
{ev[h], ev,[h], ... evy[h]}

Two candidate cavity volumes V and W are considered to be similar in shape

if their boundary characteristics are identical, i.e.

b{V] = b{W]

This implies that the following four conditions are satisfied :

1) {tvile], fwlgl, ... fvlell <> {fwilg], fwylgl], ... fwylgl}
@) {evilh], eva[h], ... evg[h]} <> {ew[h], ewy[h], ... ewy[h]}

3 m=p
4 n=gq

where p = the number of faces of cavity volume W,
q = the number of edges of cavity volume W,
<> = successful pattern matching,
fw = face of cavity volume W, and
ew = edge of cavity volume W,

Hence, the test for shape similarity performed in the third task is to test whether
or not the above four conditions of a previously learnt feature can match the
corresponding conditions of a new feature. The question of whether such a set of

matching conditions are sufficient for a reliable shape comparison will be discussed in

the next chapter.

- 117 -

Chapter 6

With the help of a hypothetical part shown in Fig. 6.2, the approach is now
further elaborated based on three main steps : (1) teaching a feature description, (2)

memorizing the taught feature, and (3) recollecting the learnt feature.

a hypothetical part cavity volume X’

Figure 6.2 : A hypothetical part for explaining the machine learning approach.

6.2.2 Teaching a Feature Description

The hypothetical part contains only one cavity volume 'X'., For the present
implementation, it is assumed that a cavity volume contains only one machining feature
to be learnt. However, it is considered that the principle of the method can be applied

on a cavity volume that contains more than one machining feature.

It can be observed that 'X' is a non-2.5D, T-slot-like machining feature. Also
it can be appreciated that 'X' cannot pass the geometric test of the devised feature
recognition algorithm as its T-slot-like undercut feature cannot be machined by the use
of a simple cylindrical cutter. For explanation purposes, it is assumed that the system
has not encountered machining feature cavity volumes with a shape similar to that of
'X' before. This implies that the system has no prior knowledge about 'X' or its
similarly shaped counterparts. Thus the machine learning method can be used to learn
'X' with the intention that after the learning process the system will be able to

recognize 'X' or similarly shaped machining features automatically.

- 118 -

Chapter 6

The learning strategy is based on using 'X' as a positive teaching example for
the user to teach the corresponding machining feature description to the system. The
machining feature description is in terms of the part_face, side_entrance_face, and
primary_top_entrance_face that have already been used in the generic feature
definitions. There are three main reasons for using the same feature description. Firstly,
as mentioned in section 4.4, the three faces serve to describe the machining method of
a machining feature. Secondly, maintaining a uniform feature representation in the
system standardizes the communication of feature information to other manufacturing
applications such as process planning. Lastly, the manufacturing meaning of the three
machining faces could be easily understood by a general user such as a CAD/CAM
engineer or a CNC machine operator, so that the teaching of new features to the system

would not need to be performed by special experts.

Hence, the teaching of the feature description of 'X' is equivalent to the
specification of the three machining faces on the boundary of 'X' by the user. In the
system, it is implemented in such a way that the user specifies the three faces
interactively with the help of the wireframe display of 'X' and the pointing device of

the computer system.

As the machining method used for machining 'X' is similar to the general T-slot
machining operation, faces fl, f2 and f3 would be specified as part face,

side_entrance_face and primary_top_entrance_face respectively (Fig. 6.3).

face f1
part_face

[~~— face 2
face f3\ side_entrance_face

primary_top_entrance_face

Figure 6.3 : Specifying the three machining faces as feature description.

- 119 -

Chapter 6

It is realized that a machining feature could have several side_entrance faces and
primary_top_entrance_faces. However, the present implementation of the approach
assumes that only one side_entrance face and one primary top entrance face need to
be specified. The selection of the three machining faces is decided by the user. The
specified machining face information is incorporated in the corresponding face records
in the B-rep of 'X'. This is illustrated by using the face/edge graph shown in Fig.

6.4.

f7
f6
f11 Key :
12 L
sa_face ! side_snirance_face

pta_face : primory_top. entrance_face
*: feoture description taught by vaer

planar
mc,_.foe
ol

11
eylind
me_lace
nil
nll

face:
murfoce:
natura:
cccess:
atatum

: planar
me_foce
nil

lanar
a_foce |

Figure 6.4 : The face/edge graph of cavity volume 'X",
- 120 -

Chapter 6

6.2.3 Memorizing the Taught Feature

The taught machining feature is memorized as a piece of new knowledge by
automatically converting the boundary characteristics of 'X' into a set of production
rules. As mentioned earlier, the boundary characteristics of "X' essentially represent the
geometric and topological conditions of the faces and edges of 'X' to be matched. For
instance, as for 'X', the boundary characteristics described in the condition part of the

production rules would be :

face f1I is planar, nature is machined_face, number of boundary edges is 6, status
is specified as part_face;

edge el is linear, convex, left adjacent face is f2, right adjacent face is fI;

face f2 is planar, nature is tool_entrance_face, number of boundary edges is 8,
status is specified as side_entrance face;

edge e2 is linear, convex, left adjacent face is f3, right adjacent face is f2;

face f3 is planar, nature is tool_entrance face, number of boundary edges is 6,
status is specified as primary_top_entrance _face;

... etc, for the remaining faces and edges.

As a production rule in the KBS can only contain a limited number of
conditional elements, the boundary characteristics are specified in a set of rules rather
than in a single rule. However, the set of rules is virtually linked together as a total set
which also implies that the matching for shape similarity is on the basis of the total set
of rules rather than on a rule-by-rule basis. During the rule construction process, there
is no checking whether an identical rule exists in some previously generated set of

rules. More details about the construction of rules will be described in the next chapter.
The new rules are incorporated in the system by compiling them into an object

code module which is then linked with the old object code modules of the system to

produce a new executable program.

- 121 -

Chapter 6

The teaching and memorization of new machining features can be viewed as the
customization and re-configuration of the system. The feature extraction capability of
the re-configured system improves due to an increase of feature recognition rules that
are established without being concerned with the programming problems of new feature

descriptions and recognition.

6.2.4 Recollecting the Learnt Feature

When another non-recognizable machining feature is encountered subsequently,
the system attempts to recall the learnt feature in terms of its shape and instructed
feature description by matching the incorporated rules with the boundary characteristics
of the non-recognizable machining feature. For instance, assuming that a similarly
shaped cavity volume 'Y' (Fig. 6.5) is encountered subsequently, as it will not be
recognized by the feature recognition module, the incorporated set of rules will match
the boundary characteristics of 'Y'. As 'X" and 'Y" have identical boundary shape, the
entire set of rules can be matched and, as a result, the three instructed machining faces
of 'X' are retrieved and substituted as machining feature description for 'Y' as
illustrated in Fig. 6.5.

part_face

side_entrance_face

primary_top_entrance_face

cavity volume 'Y’

Figure 6.5 : A similarly shaped cavity volume 'Y"'.

- 122 -

Chapter 6

Should the matching fail, the next set of rules previously incorporated in the
system will be used to match with the boundary characteristics of 'Y'. If there is no set
of rules that can match the boundary characteristics of 'Y', the approach assumes that
"Y' is another new machining feature that could be learnt by the system in the same

manner,

6.3 Concluding Remarks

The automatic generation of a set of production rules as the result of learning
an exemplary machining feature virtually represents the ability of developing a piece
of new knowledge in the system for extracting machining features that have shapes
similar to that of the exemplary feature. In effect, the machine learning approach
improves the feature extraction capability by perpetually expanding the system
knowledge base. This is in contrast with the former recognition algorithm approach in
which the knowledge is precoded rigidly as a mixture of feature pattern declarations and

geometric testing procedures.

- 123 -

Chapter 7

CHAPTER 7
IMPLEMENTATION

An experimental prototype system has been implemented to study the feasibility
of using the two described approaches for extracting machining features from a CAD
database. The system is implemented by integrating a solid modeller with a rule-based

Al environment.

The solid modeller is used as a CAD system for defining the nominal geometry
of the starting stock and finished part, and for generating the boundary information of
the corresponding cavity volume model by means of Boolean subtraction and boundary
evaluation. The established B-reps of the solids interface directly with the feature
recognition process and the machine learning process. This is necessary as the feature
recognition algorithm is designed to store the extracted features information directly in
the B-rep of the cavity volume, while the machine learning approach also requires
interactive access to the B-rep of the cavity volume during the feature teaching and

memorizing phases.

The main reason for using the rule-based Al environment is that its structure is
basically a knowledge based system whose characteristics are described in section 3.1.
The AI environment has a global database, a rule base and an inference mechanism.
The global database is used for storing the shape definition of cavity subvolume, while
the rule base and the inference mechanism are used for fast prototyping of the rule-

based recognition approach and the machining learning approach.

7.1 The Solid Modelling System

The solid modelling system is the PADL-2 CSG modeller [Brown82]. The
principle of CSG modelling method has been introduced in Chapter 2. As a typical CSG

- 124 -

Chapter 7

system, PADL-2 uses a CSG tree data structure as the primary representational medium
for maintaining the construction history of a user defined solid. The CSG tree is
operated on by a set of boundary evaluation [Requicha85a] procedures to obtain the
corresponding boundary information which is then stored and managed in an auxiliary
boundary representational scheme, called the BFILE [Hartquist81]. The logical entities

in the BFILE are linked collections of assemblies, solids, faces and edges.

PADL-2 software consists of functional modules that are organized as
procedurally accessible subsystems that can be used through subroutine or function calls
rather than by directly accessing the internal data structures. This open architecture of
PADL-2 simplifies the task of binding it with the rule-based Al environment.

7.2 The VAX-OPS5 Al Environment

The VAX-OPS5 [Digital85] Al environment is used for prototyping of the two
feature extraction approaches. The VAX-OPSS is an extended implementation of the
OPSS production rule language [Forgy77, Brownston85] which consists of a global
database and production rules that manipulate the database. Data or working-memory

elements in the database is represented in a frame format as illustrated in Fig. 7.9.

The VAX-OPSS run-time system controls the execution of OPS5 programs and
consists of a recognize-act cycle, command interpreter and run-time compiler.
7.2.1 The Recognize-act Cycle

This is essentially the inference mechanism or pattern matcher of the system.
During the recognize phase of the recognize-act cycle, the system compares working-

memory elements of the database with the condition elements on the left-hand side of

each rule (Fig. 7.1). When working-memory elements match all the condition elements,

- 125 -

Chapter 7

the rule is ready for execution. As the left-hand sides of rules are satisfied, the run-time
system creates a conflict set that contains records of the working-memory elements that
match the condition elements of a rule. Each record, called an instantiation, includes
a rule name and a list of the time tags of working-memory elements that match the

condition elements on the rule's left-hand side.

production rule base
production rule_1
production rule_2
production rule_3 _ global database
Recognize working—memory
: match working-memory elements
duction rule_{i elements with conditions
pro . ' ule_(i) on left—-hand side of
. production rules
production rule_{n-i}
production rule_{n)
. Act
confliel set execute actio_ns on
production rule.3 time—tags right-hand side of
production rule_2 time-—tags production rule_(i)
production rule_(i) time-tags and update global
database
conflict | _ production rule_(i)
resolution

Figure 7.1 : The recognize-act cycle.

The run-time system uses either the Lexicographic-Sort (LEX) or the Means-
Ends-Analysis (MEA) conflict resolution strategy to order and select one of the
instantiations in the conflict set. Both strategies apply in the order of the following built-
in rules : refraction, recency, specificity and arbitrary [McDermott78]. By the
refraction rule, an instantiation is selected only once. This prevents a program from
looping infinitely on the same data. The recency rule selects the instantiation that refers
to the most recent data in working memory. This means that the system selects the
instantiation that contains the highest time tags. The specificity rule selects an
instantiation of a rule whose left-hand side is the most specific. Specificity is measured
by the number of conditional tests on a rule's left-hand side. If more than one

instantiation has the highest level of specificity, an instantiation is selected arbitrarily.

- 126 -

Chapter 7

The MEA strategy is similar to the LEX strategy except that it includes an extra
step after refraction, which orders the instantiations in the conflict set according to the
recency of the working-memory element matching the first condition element in each
rule. In the prototype system, the most important condition element is always placed
first on the left-hand side of each rule, and hence, the MEA strategy is used in the

system.

After the run-time system selects an instantiation from the conflict set, the
recognize-act cycle enters the act phase. During this phase, variables assigned in the
rule's left-hand side are bound to values and the actions on the right-hand side of the
rule to which the instantiation refers execute. The execution of the rule actions may
effect changes in the working-memory elements of the database. When the act phase

completes, the cycle goes back to the recognize phase.

7.2.2 The Command Interpreter

The VAX-OPS5 command interpreter is used to control the execution of a
program interactively, A special set of interpreter commands can be used for setting up
initial conditions, executing recognize-act cycles, debugging OPS5 programs,

controlling input/output, calling external routines and controlling program loops.

7.2.3 The Run-time Compiler

By using the VAX-OPSS 'BUILD' action in a rule, new rules can be added to
an executing program. Each time a 'BUILD' action executes, the run-time compiler
creates a new version of the file named OPS$BUILD.OPS for storing the source code
of the new rule and also includes the execution codes of the new rule in the executing
program. This new rule generation facility appears to be a very convenient means of

implementing a learning agent in the system., However, as the source code of the new

- 127 -

Chapter 7

rule is always stored in the same file, old rules stored in the file will be overwritten by
new rules, Besides, information about the interface to the run-time compiler is also
limited. Hence, this run-time rule generation facility is not used in the prototype

system.

7.3 Linking PADL-2 and VAX-OPSS

As shown in Fig. 7.2, the prototype system is built by coupling the PADL-2
solid modeller with the VAX-OPSS5 system. The system programs are developed by
using the OPSS5 production rule language and the FORTRAN language. During program
development, the object files of the developed programs are linked with the object files
of the PADL-2 programs to form one binary executable image that runs on a
MircoVAX II workstation under the VAX/VMS operating system. The two systems
communicate through the use of a set of VAX-OPSS's foreign language interface
facility which is basically a set of support routines that enable external programs written

in other languages to communicate with OPS5 programs.

User input command

Prototype system

Command| parser

developed
VAX—OPS5 \, Ccommands execute
interpreter
commands execution results
\ may influence
VAX-0PS5 PADL-2

[command parser|

. recognize/act cycle
. command interpreter
. run—time compiler

. s6lid model databases -
. funtional routines

!

i

|

i

Run—time system |
]

i

!

|

. frame database |
. production rule base [————~—— - ——>—————

Figure 7.2 : Linking PADL-2 and VAX-OPS35.

- 128 -

Chapter 7

The user-system interface is effected through the use of command line input
method. A command parsing routine is developed to interpret the user input commands.
The command parsing routine works like a two-stage filter. The first stage intercepts
a set of new commands developed for carrying out a variety of functions such as
enquiring of a geometric entity, activating the feature recognition process, etc.. The
second stage catches the VAX-OPSS interpreter commands and directs them to the
VAX-OPSS environment for execution. Commands that leak through the two stages are
passed to the PADL-2 system for execution. If a wrong command is input, PADL-2

will return appropriate error message to prompt the user.

7.4 Implementation of the Feature Recognition Approach

At the outset, the CSG models of the part and the corresponding starting stock
are defined through the use of PADL-2's commands. To facilitate the modelling of
some typical cavity shapes in a part, several generic meta-primitives such as blocks with
round corners are also predefined in the system. However, it is the duty of the user to
ensure that the shape and size of the stock are correctly defined for making the part.
Moreover, since the cavity volume is obtained via a Boolean subtraction operation
between the part and the stock, the user must also ensure that the relative position and
orientation between the part and stock are correct so that the desired cavity volume is
obtained.

The feature recognition process involves the following three major steps : (1)

establishing boundary information, (2) describing cavity subvolume in VAX-OPSS5, and

(3) recognizing machining features.

- 129 -

Chapter 7

7.4.1 Establishing Boundary Information

After defining the CSG models of the stock and part, a command ‘makwed/
stock, part' is issued fo the system. The command accepts the names of the defined
stock and part as command arguments and activates the corresponding set of command

procedures which perform two main functions :

(1) establish the CSG data structure of the cavity volume model as described by
expression (2) in section 4.2,
(2) activate the boundary evaluation procedures of PADL-2 to establish the

boundary information of the stock, part and cavity volume.

As mentioned in section 7.2, the boundary information is stored and managed
in a hierarchical BFILE in PADL-2. However, there are two problems with the use of
the BFILE. The first problem is that the definition of faces in the BFILE has been
based on the so-called maximal-face [Silva81] scheme in which faces belonging to the
same half-space are collectively addressed by a single logical pointer. For many
applications, especially in feature recognition, this maximal-face representation method
is undesirable. For example, using the maximal-face scheme, the two areas 'A' and 'B’
shown in Fig. 7.3(a) are represented as a single face. In contrast, the connected-face
scheme [Silva81] illustrated in Fig. 7.3(b) is congenial with the human perceived
definition of an object face and is a more sensible segmentation of the surface boundary
for feature recognition. Unfortunately, changing the maximal-face scheme of the BFILE
is a formidable task as the scheme is implemented as part of the sophisticated boundary

evaluation algorithm.

- 130 -

Chapter 7

area ‘A’

belong to the
same halfspace

areas A’ and 'B’
are represented as
a single face face |

area ‘A’

belong to the
same halfspace

%m; ,
areas ‘A’ and 'B’

are represented as .

two individual faces e (b) connected-face scheme

Figure 7.3 : Maximal-face and connected-face schemes.

The second problem is that the hierarchical structure of the BFILE also imposes
restrictions on computer program design due the fact that the BFILE entities (i.e.
assemblies, solids, faces, edges, and vertices) have to be traversed and accessed in a

top-down manner,

To overcome these problems, a new B-rep database structure is developed in the
prototype system for maintaining the B-reps of the stock, part and cavity volume, The
basic B-rep information in the new database is derived from that of the BFILE.
However, the boundary faces of the stock, part and cavity volume are represented as
connected-faces in their corresponding new B-rep databases. The conversion from
maximal-face to connected-face is performed by an implementation of a conversion
algorithm proposed by Chan [Chan88], which basically determines all the closed edge
loops for each maximal-face represented in the BFILE and then groups the identified

edge loops into outer edge loop and inner edge loops of a connected-face,

- 131 -

Chapter 7

7.4.1.2 Boundary Representation of the Stock and Part Models

A data structure has been defined and implemented for handling the converted
boundary representation. The B-rep structures of the stock and the part are basically
the same. For explanation purposes, the B-rep structure of the stock is shown in Fig.
7.4,

Solid List
Pointer to Stock = Solid Record
Pointer to Part Pointer to Edge List
Pointer to Cavity Volume Pointer to Face List
: Pointer to Rigid Motion

Pointer to Enclosing Box
Not Applicable

Face List w1
Pointer to Face_1 * Face Record
Pointer to Face_2 Pointer to obtain Geometric information
: from PADL-2 geometric database

Pointer to Edge Loop List

Not Applicable

Not Applicable

Not Applicable

Edge Loop List —=
Pointer to an Edge of Edge Loop_1
Pointer to an Edge of Edge Loop_2

Edge List ——
Pointer to Edge_1 |
Pointer to Edge_2

Edge Record

Pointer to obtain Geometric Information
from PADL-2 geometric database

Pointer to Vertex_ |1 p—r———=— Vertex Record
Pointer to lLeft Face x~coordinate
Pointer to CWE] Fdge y—coordinate
Pointer to CCWE 1 Edge z—coordinate

CWEH_1 (integer)
CCWEH_1 (integer)
Pointer to Vertex 2
Pointer to Right Face
Pointer to CWE 2 Edge
Pointer to CCWE_2 Edge
CWEH_2 (integer)
CCWEH_2 (integer)

Not Applicable

Figure 7.4 : B-rep data structure of the stock and part,

- 132 -

Chapter 7

At the highest level, the structure uses a list for storing the pointers to the
records of the three modelled solids, namely the stock, part, and cavity volume. The
solid record has 5 fields. The first field stores a pointer to an edge list in which the
edge record pointers are maintained. Similarly, the second field stores a pointer to a
face list for storing the face record pointers. The purpose of these edge and face lists
is to facilitate sequential traversal of the edges and faces when necessary. The third
field stores a pointer for obtaining the rigid motion transformation matrix (location and
orientation) of the solid, while the fourth field stores a pointer for obtaining the
enclosing box size of the solid. The fifth field is not applicable for the stock and part

models.

The face record also has 5 fields. The first field contains a pointer that can be
used to obtain the face's geometric information, such as surface type, surface normal,
etc., from the PADL-2 geometric database. The second field is a pointer to an edge
loop list. The number of elements in the edge loop list represents the number of edge
loops of the face. For instance, if a face has an inner edge loop, then its edge loop list
will have two elements, The first element is a pointer to an edge belonging to the outer
edge loop, while the second element is a pointer to an edge belonging to the inner edge

loop. The Iast three fields are not relevant for the stock and part models.

The edge record contains 14 fields. The first field is used to obtain the edge's
geometric information, such as curve type, curve parameters, etc., from the PADL-2
geometric database. The design of the subsequent twelve fields (i.e. from the second
field to the thirteenth field) is based on the modified winged-edge data structure
proposed by Weiler [Weiler85]. The modified winged-edge structure and the symbols
used in the fields are explained in Appendix E. In summary, the winged-edge structure
is a non-hierarchical, edge-based data structure which maintains explicitly the adjacency
relationships of faces, edges and vertices, and thus offers more freedom in accessing
boundary information in the B-rep. The last field is not applicable for the stock and part
models. A fragment of the B-rep of the hypothetical part used in chapter 5 is illustrated
in Fig. 7.5.

-133 -

Chapter 7

Saolid List

ointer to Stock

Pointer to Part

Pointer to Cavity Volume

Face List -

#~ Solid Record

Pointer to Edpe Liat

Pointer 1o Face [isl

Pointer to Rigid Motion

Pointer to Enclosing Box

Not Applicable

Pointer to face fa

Face fm Record

Pointer t:o face fm

Paointer to obtain {feometric Information
from PADL-2 geometric database

Pointer to Edpe Loop List

Not Applicable

Not Applicable

Not Applicable

Edge Loop Liat —=

Pointer to edge el

Pointer to edge e5

Edpge List —s—

Edge el Record -

Pointer to_edpe el

Pointer to edge ez_l

Pointer to obtain Geometric Information I

from PADL-2 geometric database

Pointer to Vertex_1 vi }————w= Vertex vl Record
Pointer to Left Face im x—-coordinate
Pointer 1o CWE 1 Edge £4 y—coordinate
Pointer to CCWE_1 Edge Qz z—proordinate
CWEH _1

CCWEH_1 1

Pointer to Vertex 2 ve

Pointer to Right Face fa

Pointer to CWE_2 Edge eb

Pointer to CCWE_2 Edge €7

CWEH_2

CCWEH_2

Not Applicable

Figure 7.5 : A fragment of the B-rep of the hypothetical part.

7.4.1.3 Boundary Representation of the Cavity Volume Model

The B-rep of the cavity volume is an extended version of the B-reps of the stock

- 134 -

and part models. As can be seen in Fig, 7.6, the fifth field of the solid record now

stores a pointer to a cavity subvolume list. This is necessary because the cavity volume

Chapter 7

may consist of several disjoint subvolumes as described by expression (3) in section
4.2,

Solid List

— Solid Record
)oan:.er :o gto'ik Pointer to Edge List
ointer to raArt Pointer Lo Face 13st
Pointer to Cavity Veolume

Pointer to Rigid Motion
Pointer to Enclosing Box
Pointer to Cavity Subvolume List ——-l

Cavity Subvolume List

Pointer to Subvolume_1 Face List ———
Pointer to Subvolume_2 Pointer to Face_1
: ointer to Face 2
Face Record : _'
Pointer to obtain Geometric Information

from PADL—-2 geometric database
Pointer to Edge Loop List

| Pointer to Machining Feature List
Face Nature Classification (integer)
Part_Face status

Machining Feature List
Pointer to Machining Feature_1 |—
Pointer to Machining Feature_2

Machining Feature Record -~a—m-——-o-|
Cutter Axis Vector {u)
Cutter Axis Vector (v}
Cutter Axis Vector (w)
Pointer to an Edpge of the concerned edge loop
Poinier {o Primary top_entrance_face [ist
Pointer to Secondary_top entrance_face List
Pointer to Side_entrance_face list —'

Side_entrance_face List —= Edge Ligt —~=—
| Pointer to Side_enirance face_1] Pointer to Edge_1
: Pointer to Edge 2 |

Secondary_top._entrance_face List

[Pointer to Secondary_top_entrance face 1 |
f T 1

Primary_top_entrance_face List -w—-—
| Pointer to Primary_top_entrance_face_1 |

H

Edge Loop List —=
{ Pointer to an edpge of Edge_loop_1 |
[: 1
Edge Record -

Pointer to obtain Geometric Information
from PADL-2 geometric database

Pointer to Vertex_1 = Vertex Record
Pointer to Left Face x—coordinate
Pointer to CWE_1 Edge -coordinate
Pointer to CCWE_% Edge z—coordinate

CWEH__1 (integer)
CCWEH_1 (integer)
Pointer to Vertex_2
Pointer to Right Face
| Pointer to CWE_2 Edge
Pointer to CCWE_2 Edge

CWEH_2 (integer)

CCWEH_2 (integer}

Convexity Classification (integer)

Figure 7.6 : B-rep structure of the cavity volume model.

- 135 -

Chapter 7

The cavity subvolume list stores the pointers for addressing the individual
subvolumes. In turn, each individual subvolume is represented by the same solid record

structure that maintains its own lists of faces and edges as shown in Fig. 7.7,

Cavity Subvolume List

Pointer to Subvolume | »- Solid Record
Pointer to Subvolume_ 2 Pointer to Edge List
: Pointer 1o Face List

Pointer to Rigid Motion
Pointer to Enclosing Box
Not Applicable

Solid Record ———— 1
Pointer to Edge Lisl Face List ~s—m—————e—
Pointer to Face List Pointer to Face_1 | Face Record
Pointer to Rigid Motion -
- . Fointer to Face_2
Pointer te Enclosing Box ;
Not Applicable :

Edge List -
Face List — Pointer to Edge_1 |—=Fdge Record
Pointer to Face_1 |—= Face Record Pointer to Edge_2

Pointer to Face_2

Edge List -
Pointer {o Edge_1 |—wEdge Record
Pointer to Edge_2

Figure 7.7 : Cavity subvolume list structure.

The faces of each individual subvolume are determined by classifying the faces
of the cavity volume into face groups such that the faces within each face group are
adjacent to each other. The edges of each individual subvolume can then be determined

simply from the boundary edges of the faces in each face group.

As mentioned earlier, the last three fields of the face record are not used for the
stock and part models. However, for the cavity volume model, the third field of the
face record is designed to store the recognized machining features. As can be seen in
Fig. 7.6, if a face is recognized as a part_face, then the third field of the face record
will store a pointer to a machining feature list. If the face is not a part_face then the
third field of the face record is not used. In turn, the machining feature list stores the
pointers to the corresponding machining feature records of the face. This means that

each machining feature record represents a machining feature that uses the face as a

- 136 -

Chapter 7

part_face. It will be recalled from section 4.4 that a multi-connected face (i.e. face with
inner edge loops) can be a condition type 5 part_face, and can be used by several
machining features as illustrated in Fig. 7.8. This is why a machining feature list is
used for maintaining the recognized machining features that are associated with a

part_face.

Machining
Feature ‘A’ Machining

Feature 'B’
check face
check faces

Part

This face has two inner edge loops,
It is recognized as a part_face of
condition type 5.

It is used as a part_face for

the machining features A’ and 'B’

mnner A constituent edge

edge of the inner edge loop #2
loop #1 used for identifying the
adjacent check face of

A constituent edge machining feature 'B’

of the inner edge loop #!
used for identifying the Cavity V

- avily Volume
adjacent check faces of
machining feature ‘A’

Figure 7.8 : A condition type 5 part_face.

The fourth field of the face record stores an integer which represents the face
nature classification of the cavity volume as discussed in section 4.3. As described by
expression (4) in section 4.3, the tool_entrance_face is defined as (S » cP), hence the
face nature is determined by classifying each of the cavity volume faces against the
stock faces. If a cavity volume face is contained in a stock face (i.e. same half-space)
then the cavity volume face is classified as tool_entrance face, and an integer 1 is
stored in the fourth field of the face record. Otherwise, the cavity volume face is tagged
as machined_face and an integer -1 is stored. The fifth field is used to indicate whether

or not the face is a part_face.

- 137 -

Chapter 7

The machining feature record contains 7 fields. The first 3 fields are used to
store the cutter axis vector parameters that represent the cutter approach direction to the
part_face as described in section 5.3.4. The fourth field stores a pointer to an edge
which is shared between the part face and the check face of the corresponding
machining feature as illustrated in Fig. 7.8. The fifth, sixth and seventh fields store the
pointers to the primary_top entrance face list, secondary_top_entrance face list and
side_entrance_face list respectively. The three lists are used for maintaining the face

identities of the three different types of tool_entrance_faces.

The last field of the edge record stores an integer which represents the convexity
classification of the edge. The edge convexity of an edge is determined by evaluating
the inner angle of the two adjacent faces meeting at the edge according to the conditions
illustrated previously in Fig. 2.8. In the implementation, convex, concave and smooth

cdgés are represented by integers 1, -1 and O respectively.

When the B-reps of the stock, part and cavity volume are successfully
established, the system will report the number of subvolumes contained in the cavity
volume. The subvolumes maintained in the cavity subvolume list are arranged in
ascending order of their number of boundary faces, and are also given system default
names as mv_l, mv_2, etc.. Thus the first subvolume mv_1 has the least number of

faces.

Three interactive enquiry commands are developed for the user to interrogate
the established models : (1) asksvol (2) asksolid/<x>, (3) askface/<x>, and (4)

askedge/ <x>. The facilities of these commands are outlined below :

(1) asksvol

This command is used to interrogate the cavity subvolumes available in the
system. The system uses the pointers maintained in the cavity subvolume list (Fig. 7.6)
to access the corresponding B-reps of the cavity subvolumes. A wireframe display of

all the disjoint cavity subvolumes is rendered on the screen, and the total number of

- 138 -

Chapter 7

cavity subvolumes with their system given names, i.e. mv_1, mv_2, etc., are reported.

(2) asksolid/ <x>
This is used for obtaining information about a solid <x> maintained in the B-
rep database. The command argument 'x' can be either one of the followings :
(a) the user given name of the original stock used in the CSG design stage,
(b) the user given name of the part used in the CSG design stage,

(c) the system given name of any cavity subvolume.

The system renders a wireframe display of the enquired solid, and reports the
following information :
(a) the total number of boundary faces,
(b) the total number of boundary edges,
(c) the total number of machined_faces (if enquired solid is a cavity subvolume), and

(d) the total number of tool_entrance faces (if enquired solid is a cavity subvolume).

(3) askface/ <x>
This command is used to enquire about a boundary face of a cavity subvolume

'x'. The system displays the wireframe image of the desired subvolume on the screen
and prompts the user to input the enquired face by means of picking any two boundary
edges of the face with the use of the ‘mouse' pointing device. The system acknowledges
the input face by highlighting the boundary edges of the face with a different colour,
and reports the following textual information on the screen :

(a) integer identity of the enquired face,

(b) surface type (planar or cylindrical),

(¢) face nature classification {(machined_face or tool_entrance_face), and

(d) machining feature description (part_face, check face, etc.).

(4) askedge/ <x>
This is used to ask about a boundary edge of a cavity subvolume 'x'. The user

input the enquired edge again by means of interactively picking the graphical display

- 139 -

Chapter 7

image of the edge with the use of the 'mouse’. The system highlights the input edge
with different colour and returns the following message on the screen :

(a) integer identity of the edge,

(b) curve type (line, ellipse or general cylinder/cylinder intersection curve), and

(c) convexity (convex, concave or smooth),

7.4.2 Describing Cavity Subvolumes in VAX-OPS5

A cavity subvolume 'mv_1" is presented to the feature recognizer for recognition
by using the command 'bframe/mv_1'. The corresponding command procedure collects
relevant information from the cavity volume B-rep database and establishes a frame-

based description of mv_1 in the global database of the Al environment,

The frame-based description of a cavity subvolume consists of : (1) a solid

frame, (2) face frames, (3) edge frames, and (4) inner edge loop frames.

The structure of a solid frame is :
Frame : solid

Attributel : name

A face frame has the following structure :
Frame : face
Attibutel : face identity
Attribute2 : face's surface type
Attributed : face nature classification
Attribute4 : number of boundary edges
Attribute5: access

Attribute6 ;: status

- 140 -

Chapter 7

The structure of an edge frame is :
Frame : edge
Atftributel : edge identity
Attribute2 : edge's curve type
Attribute3 : convexity classification
Attribute4 . left adjacent face identity
AttributeS : right adjacent face identity
Attribute6 : status

The structure of an inner edge loop is :
Frame : inner edge loop
Attributel : edge identity of an edge belonging to the inner edge loop
Attribute2 : face identity of a face that owns the inner edge loop

As an illustration, the frame-based description of the subvolume 2 used in

chapter 5 is shown in Fig. 7.9, It can be seen that the frame-based description is

essentially an implementation of the face/edge graph representation used in chapter 3.

- 141 -

Chapter 7

Solid_frame
Solid ~Name mv_2
Face frame
Face ~Identy f17 ~Faectyp pln ~Nature teface ~Edgent 1 ~Access nil ~Status nil
Face ~Identy {15 ~Factyp pln ~Nature teface ~Edgent 1 ~Access nil ~Status nil
Face ~Identy f16 ~Factyp cyl ~Nature mcface ~Edgent 3 ~Access nil ~Status nil
Face ~Identy fl4 ~Factyp ¢yl ~Nature mcface ~Edgent 4 ~Access nil ~Status nil
Face ~Identy fl13 ~Factyp pln ~Nature mcface ~Edgent 1 ~Access nil ~Status nil

Edge frame
Edge ~ldenty ea ~Edgtyp elp ~Clascd convex ~Lftfac f15 ~Rhtfac f14 ~Status nil
Edge ~Identy eb ~Edgtyp elp ~Clascd convex ~Lftfac f13 ~Rhtfac fl14 ~Status nil
Edge ~Identy ec ~Edgtyp cce ~Clased concav ~Lftfac f16 ~Rhtfac fl4 ~Status nil
Edge ~Identy ed ~Edgtyp cce ~Clascd concav ~Lftfac fl4 ~Rhtfac f16 ~Status nil
Edge ~Identy ee ~Edgtyp elp ~Clascd convex -~Lftfac f17 ~Rhtfac f15 ~Status nil

Inner edpge loop frame

Inedgloop ~Edgeid ec ~Faceid 14
Inedgloop ~Edgeid ed ~Faceid f14

Key
~ ¢ attribute symbol Edgtyp : edge’s curve type
Identy : Identity Clascd : convexity
Factyp : face's surface type ILftfac : left adjacent face
Nature : face nature classification Rhtfac : right adjacent face
pln : planar surface elp : ellipse curve
cyl : cylindrical surface Inedgloop : inner edge loop
mcface : machined_face Edgeid : edge identity
teface : tool_entrance_face Faceid : face identity
cce : cylinder/cylinder intersection curve conecav : concave
mv_2 : system given name Edgent : number of boundary edges

Figure 7.9 : Frame-based representation of the subvolume 2.

The candidate face selection mechanism described in section 5.3.1 is
implemented by making use of the recency selection rule described earlier in section
7.2.3. The recency selection rule selects the instantiation that refers to the most recent
data in working memory, and hence the creation of face frames in the global database
is designed to follow the chronological sequence :

{...c2, ¢l, ... p2, pl, ... pne2, pnel},
where the symbols ¢2, cl, p2, pl, pne2, and pnel have the same meanings as used in
section 5.3.1. For instance, pnel was the last face frame created, and hence it is the
most recent face frame (with the highest time tag) in comparison with the others. So
according to the recency selection strategy, pnel is the first candidate face to be chosen.

After the selection of pnel, the next most recent face frame is pne2, and so on. In

- 142 -

Chapter 7

effect, the recency selection strategy is used as a sequential data accessing method

similar to the way of popping data out of a stack memory.

The face frames shown in Fig. 7.9 are listed in their actual sequence created in
the global database. It can be seen that the tool_entrance_face frames are created first
followed by the machined face frames. As a result, the machined_face group will be
selected before the tool_entrance_face group, and thus this is in accordance with the

recognition algorithm which considers the group(l) faces before the group(2) faces.

Apart from creating the above frame-based description, the 'bframe' command
also creates several other utility frames in the global database. The utility frames are
used mainly for the purpose of passing messages amongst the rules. The idea of using

the utility frames will become clearer in the next section.

7.4.3 Recognizing Machining Features

The machining feature recognition algorithm is implemented by means of a
mixture of OPS5 language production rules and FORTRAN language procedures. The
use of OPSS production rules is to utilize the recognize-act cycle mechanism as a
pattern matcher for searching and matching the rule conditions as discussed in chapter
5. The FORTRAN procedures are used for performing tasks such as line/surface
intersection computation and communication with the B-rep database/geometric database

of the solid modeller.

Before starting the recognition process, the user can use some optional
commands to monitor the recognition process such as the (1) watch <integer>, and
(2) raydisp <on>/<off>. The 'watch’' command is an OPS5 interpreter command
which sets the amount of trace information that the system displays while executing the
recognition program. The command argument is an integer in the range of 0 to 3

(default value is 1), which represents the trace level to be set as follows :

- 143 -

Chapter 7

Level Trace Information Displayed

0 None
1 The instantiations selected by the conflict resolution strategy for execution
2 The same as level 1, plus the working memory elements that are added to

and deleted from the global database

3 The same as level 2, plus changes that occur in the conflict set.

Thus by examining the trace information, the user can obtain an explanation of
how the reasoning process is performed during the entire recognition process. For
instance, the faces included in the conflict set and the reasoning results of a selected
candidate face can be monitored. The recognition process can also be animated by using
the 'raydisp' command which toggles the on/off display of the casted rays used in the

line/surface and line/curve intersection tests.

The recognition process 1is initiated by issuing the command
'recognize/mv_<integer >', where 'mv_ <integer>' is assumed to be the name of the
cavity subvolume to be recognized. For insiance, to recognize the first subvolume
mv_1, the command is 'recognize/mv_1'. The command is intercepted by the command
parser described formerly in section 7.3. A utility frame 'command “type recognize
“argument]l mv_1' is then created in the global database. This utility frame is matched

by the following production rule (expressed in OPSS language syntax) in the rule base:

(p recognize
{ <recogn> (command “type recognize “argument < subvolume name>)}
(solid "name <subvolume_name>)

->
(remove <recogn>)
(make return_to_command_parser)
(make goal “context report “argument < subvolume_name>)
(make goal "context reason_group(3)_face “argument <subvolume name>>)
(make goal “context reason_group(2)_face “argument <subvolume name>)
(make goal “context reason_group(l)_face “argument <subvolume_name>))

- 144 -

Chapter 7

The meaning of the above rule is as follows :
Rule name : recognize
If . in the global database there is a ‘'recognize’ command whose argument is
< subvolume_name>, and
. there is a solid whose name is <subvolume name>,
Then
. remove the command utility frame from the global database to avoid
recursive firing of this rule,
. generate five new utility frames in the global database in the following order:
goal “context return_to_command_parser
goal “context report “argument <subvolume name>
goal “context reason_group(3)_face "argument <subvolume_name>
goal “context reason_group(2)_face “argument <subvolume_name>

goal “context reason_group(l)_face “argument <subvolume name>.

According to the above sequence of utility frame generation, the last frame 'goal
“context reason_group(l)_face..." is the most recent, while the second last frame 'goal
“context reason_group(2)_face...' is the next most recent, and so on. Due to the built-in
recency selection mechanism, the last frame has higher matching priority than the
second last frame, and so on. Thus, in effect, the last three utility frames act as an
agenda to control the recognition process to consider the group(l) faces first, then the

group(2) faces and lastly the group(3) faces.

The utility frame ‘goal “context report..."' is for reporting any faces that have
failed the geometric tests. The frame 'goal “context return_to_command parser' is for
returning the system control to the command parser at the end of the recognition

process.

The recognition process is driven on the forward chaining strategy as the cavity
subvolume frame-based description created in the global database is matched and tested
by a set of production rules for determining the three groups of faces contained in the

cavity subvolume. For instance, the selection and testing of a group(l) face is initiated

- 145 -

Chapter 7

by the. firing of the following production rule :

(p reason_group(l) face
(goal “context reason_group(l)_faces “argument <subvolume_name>)
{<face> (face “factyp { <> cyl} “nature mcface “access {< > 0}
“status { < > part_face < > check_face} “identy <mcface-id>)}
(edge “Iftfac <mcface-id> “identy <edge-id>)
- (inedgloop “edgeid <edge-id>)
(?:all xwedfc <mcface-id> <subvolume name>)
(modify <face> "access (xmfact <mcface-id> <edge-id> <subvolume_name>))
(make goal “context change adjacent face status “argument <mcface-id>))
The above rule reads as :
Rule name : reason_group(l)_face
If . the goal is to reason a group(l) face of a subvolume whose name is addressed
by the pointer <subvolume_name>, and

. in the global database there is a face frame whose characteristics are as
follows:

face surface type - not cylindrical

face nature - machined_face

access utility flag - not zero

status utility flag - neither 'part_face' nor 'check_face’
face identity - addressed by the pointer <mcface-id>,

. in the global database there is an edge frame whose adjacent face is the same
as the face addressed by the pointer <mcface-id>; the identity of the edge
is addressed by the pointer <edge-id>, and

. the edge addressed by the pointer <edge-id> is not an edge member of an
inner edge loop,

Then

. use the names of the face and subvolume as input parameters to call the
external subroutine 'xwedfc’ for highlighting the wireframe image of the face,

. pass the names of the face, edge and subvolume as input parameters to the
external function 'xmfact’ which, in turn, activates a series of procedural
routines to perform the first, second and third geometric tests on the face as

described in sections 5.3.3, and

- 146 -

Chapter 7

. generate a utility frame 'goal “context change_adjacent_face status “argument
<mcface-id>"' in the global database.

The first condition of the above rule is to match the utility frame 'goal “context
reason_group(l)_face ...'. In effect, the utility frame functions as an agenda item for
initiating the recognition of group(l) faces. The remaining matching conditions in the
above rule are essentially the characteristic pattern of a group(l) face as defined in
section 5.3.2. Apart from performing the geometric tests, the external function 'xmfact'
also modifies the access and status utility flags of the face frame according to the
geometric test results and adds the recognized feature information in the cavity volume

B-rep if recognition is successful.

For example, Fig. 7.10 shows a fragment of the recognized feature information

stored in the B-rep of the subvolume 2.

- 147 -

Chapter 7

£14 eb £13
g subvolume_2
f16

17 v
f15
ee u
ch ec
Solid List Solid Record

Pointer to Stock Pointer to Edge List

Pointer to Part ; T
Pointer to Canity Volume| | [poinier o Fece List —

Pointer to Enclosing Hox
Pointer to Cavity Subvolume List-—l

Cavity Subvolume List
Pointer to Subvelume_1 Face List -—-————
Pointer to Subvolume_2 v :

Pointer to face f13
Pointer to face fi4 —‘

Face fl4 Record —=
Pointer to obtain Geometrie Information

from PADL-2 peometric database i pi?ﬁfe:‘(’; P elclll;z =a
Pointer to Edge Loop list ‘ Fointer to edge eb

Pointer to Machining Feature List -
—1 (machined_face) Pointer to edge ec
part_face

Machining Feature List -e—
}Pointer to Machining Feature 2!—

Machining Feature_2 Record —=

Cutter Axis Vector (u) 1

Cutter Axis Vector (v) 0

Cutter Axis Vector (w) 0

Pointer to edge ec Edge Ligt —=—

Pointer to Primary fop_enfrance face List e :

' (no secondary_top_entrance_face} Pointer tt; edge b

(no side_entrance_£face) Pointer to edge eci—
Primary_top_entrance_face List -——— ;

! Pointer to face f17 II

Edge ec Record —=

Pointer to obtain Geometric Information
from PADL-2 geometric database
Pointer to Vertex_1 vl
Pointer 1o Left Face fig
Pointer to CWE_1 Edge ed Remarks *
| Pointer to CCWE 1 Edge ed -
CWEH 1 (integer) 1 s Also include the faces
CCWEH_1 (integer) 2 of subvolume_1
Pointer to Vertex 2 v2
Pointer to Right Face fid »» Also include the edges
Pointer to CWE 2 Edﬁe ed of subvolume_1
Pointer to CCWE_2 Edge ed {see Figure 6.3)
CWEH_2 (integer) 1
CCWEH_2 (integer) 2

{concave) ~—1

Figure 7.10 : A fragment of the recognized feature information of the subvolume 2,

- 148 -

Chapter 7

The utility frame 'goal “context change adjacent_face_ status ...' is used to

activate the following rule for changing the status of the adjacent faces :

(p change _adjacent_face status
(goal “context change_adjacent_face status “argument <mcface-id>)
(face “identy <mcface-id> “status part_face)
(edge “ltfac <mcface-id> “rhtfac <checkface-id> “status nil “clascd convex
"identy <edge-id)
{<fac> (face “identy <checkface-id> "status nil)}
->
(modify <fac> “status check_face))
The above rule reads as :
Rule name : change_adjacent_face_status
If . the goal is to change the status of the adjacent faces of <mcface-id>,
. there is a face frame whose face identity is addressed by the pointer
<mcfaceid > and whose status utility flag is part_face,
. there is an edge whose characteristics are as follows :
left adjacent face is the same as the face addressed by the pointer
<mcface-id >
right adjacent face is addressed by the pointer <checkface-id>
status utility flag is addressed by the pointer <edge-id>, and
. the status utility of the face addressed by the pointer <checkface-id> is nil,
Then

. change the status utility flag of <checkface-id> to 'check_face'.

The above rule is essentially an implementation of the rule stated in section
5.3.4 (e). It can be seen that the above rule will not fire if the tested candidate face
fails either one of the three geometric tests. This is because the status of the candidate
face will not be changed to 'part_face' by the geometric testing routines if the geometric

test is not successful.

The implementation of the algorithm for the recognition of the group(2) face and
group(3) face is done in a similar manner. For instance, the utility frame 'goal "context

reason_group(2) face ...' is used to activate another set of production rules to select

- 149 -

Chapter 7

and test the group(2) faces. Similarly, the utility frame 'goal “context reason_group(3)

face ..." is used to invoke another set of rules to test the group(3) faces.

As the status and access utility flags in the face frames and edge frames of the
global database are modified by the action of the rules during the recognition process,
this has the effect of adding constraints in the cavity subvolume frame-based description
in terms of reducing the number of frames matchable by the rules. As a result, the

efficiency of the recognize-act cycle increases.

Since the access flag of a face will be changed to zero when the face fails the
geometric test, the following rule is designed to match this access flag signal so as fo

report any faces that have failed the geometric test :

(p report_failed_face
(goal “report “argument <subvolume name>)
{<fac> (face “access 0 “identy < face-id>)}
->
(call xwedfc <face-id> < subvolume name>)
(write crlf | Face | <face-id> | fails the geometric tests ! |)
(modify <fac> "access -1))
The meaning of the above rule is :
Rule name : report_failed face
If . the goal is to report a face that has failed the geometric test, and
. there is a face whose access utility flag has been changed to zero by the
geometric testing procedures,
Then
. highlight the wireframe image of the face,
. Inform the user that the face fails the geometric test, and

. change the access utility flag to -1 so as to avoid recursive firing of this rule.
Recalling that the utility frame 'goal “context report ..." is less recent than the

three frames used for activating the testing of the three groups of faces, the above rule

will fire only after the testing process of the three groups of faces., Similarly, the

- 150 -

Chapter 7

following rule is designed to make use of the least recent utility frame ‘goal
return_to_command_parser' to return the system control to the command parser when

all the rules relevant to the recognition process cannot be fired :

(p return_to_command_parser
{<ret> (goal "return_to_command_parser)}
-2
(remove <ret>)
(call xcompars)) ; external routine to call the command parser

7.5 Implementation of the Feature Learning Approach

The hypothetical part shown in Fig, 6.2 is again used here to facilitate the

description of the implementation. The following initial conditions are assumed :

(1) the system has not learnt the shape of the cavity volume 'X' before,

(2) the feature recognizer has been used but fails to recognize the cavity volume 'X’
due to its T-slot-like shape,

(3) the cavity volume 'X' is going to be used as a positive teaching example, and

its B-rep database still exists in the solid modeller.

7.5.1 Teaching Feature Description

The feature learning process is initiated by inputting the command
'learn/mv_ <integer >', where mv_<integer > is the system given name of the cavity
subvolume. For the current example, the cavity volume 'X' will be named as mv_1 as
it does not contain any subvolume. The corresponding command procedure displays the
wireframe image of the cavity volume on the screen. At the same time the user is
prompted to select a face of the cavity volume which will be used as a part_face. As
described in section 6.2.1, the face fl1 shown in Fig. 7.11 is to be selected as the

part_face.

- 151 -

Chapter 7

<D/el

\f2 (as side_entrance_face)

Figure 7.11 : Instructing machining faces.

The implementation of the face selection process makes use of the interactive
input facility of the system. More specifically, a face is selected by means of inputting
two of its boundary edges. The input of an edge is done interactively by positioning the
cursor of the mouse pointing device near the wireframe display of the edge. The
coordinates of the confirmed cursor point 'p' is obtained via the use of the GKS
[Bono87] input device support routines. The perpendicular distance befween the point
'p' and a boundary edge of the cavity volume is then calculated, The edge that is
nearest to the picked cursor point is highlighted. The second edge is input in the same

mannecr.

With the two input edges, the desired input face is determined as follows.
Assuming that el and e3 are the two input edges (Fig. 7.11), and using the winged-edge

B-rep database, their adjacent faces can be retrieved as :

Picked Edge Adjacent Face #1 Adjacent Face #2
el ' f1 ' 2
e3 . fl 8

- 152 -

Chapter 7

By simple comparison, the face (f1) that owns both of the two input edges is
determined as the selected part_face. The selection of the side_entrance_face (f2) and
the primary_top_entrance_face (f3) is done in the same manner. The instructed

machining face information is stored in the B-rep database as shown in Fig. 7.12.

/\ face fl
.[part_face
§

h.—— edge el

S Face 12

side_entrance_face

_—face {3
primary_lop_entrance_face

Solid List .
Solid Record .
; i d list
Pointer to Stock Fointer to Edge List 0 2ree
Pointer to Part

Pointer to Face List
Pointer to Rigid Motion
Pointer to Enclosing Box

Pointer to Cavity Subvolume Listb-—\

Pointer to Cavity Volume

Cavity Subvolume List —=
!Pointer to Subvolume,1 E

Face List -—a—-—-

Pointer to {1

Poinfer to 2

i Face fl1 Record = N Pointer to i3
FPointer to obtain Gecometiric Information T

from PADL-2 geometric dalabase
Pointer to Edge Loop List

Pointer to Machining Feature List oo Machining Feature List

—1 (machined_face) [Poinler to Machining Feature_1

pari_Tface . I .
Machining Feature_1 Record -

Cutler Axis Veclor (u}
Cutter Axis Vector (v)
Cutier Axis Veclor (w} Primary_top_entrance_face List

Pointer to edge el [Pointer to face f3 » |
Pointer to Primary._.top_entrance_face Lisl ™ 1
Nol applicable

"Poinler {o Side_enlrance_Tface Lisi f——= Side_entrance_face List

Remark !Pointer ta_face 2 t-ll
-

: instructed face informalion

Figure 7.12 : Storing the instructed machining face information in the B-rep database.

- 153 -

Chapter 7

7.5.2 Memorizing the Taught Feature

The user is then asked to enter a unique name, say 'TSLOT', for the cavity
volume. The acquired name is stored in a default file called 'LEARN.NAM' which is
used to maintain the names of all the features previously taught by user. The system
then traverses the winged-edge B-rep database of the cavity volume and collects relevant
B-rep data to automatically code a set of OPSS rules according to the format and
structure as described below. The user- given name 'TSLOT' is used as a basis for
naming the coded rules, and the integer identities of the faces and edges are used as

binding variables in the rules.

Ideally, the complete boundary characteristics of the cavity volume would have
been coded in a single rule as a matching template. However, this cannot be
implemented because an OPS5 production rule only allows a maximum of 32 positive
condition elements. Thus the boundary characteristics of a cavity volume are described
separately in a number of rules. The first rule 'TSLOT-1' shown below can be
considered as the header of the entire set of new rules. It matches the utility frame 'goal
“context TSLOT' and then generates the utility frame 'goal “context TSLOT-2' as a

message to invoke the second rule.

{p TSLOT-1

{<recollect> (goal “context TSLOT)}
->

(remove <recollect>)

(make goal “context TSLOT-2))

As shown below, the second rule 'TSLOT-2' defines the characteristics of the
three instructed faces and the two edges (el and e2) shared between the three faces
(Fig. 7.13).

- 154 -

Chapter 7

Figure 7.13 : Coding boundary characteristics as rule conditions.

The right hand side actions of the rule change the status of the concerned faces

and edges and generate the utility frame for activating the third rule.

(p TSLOT-2
{<tslot> (goal “context TSLOT-2)}
{<v1> (face "edgent 6 “clascd meface “factyp pln “status nil “identy <fl>)}
{<v2> (edge “rhtfac <fl> “lftfac <f2> “edgtyp lin “clascd convex "statusnil)}
{<v3> (face “identy <f2> “edgent 8 “clascd teface “factyp pln “status nil)}
{<v4> (edge “lftfac <f2> “rhtfac <f3> “edgtyp lin “clascd convex “status nil)}
{<v5> (face “identy <f3> “edgent 6 * clascd teface “factyp pln “status nil)}
—->
(remove <tslot>)
(modify <v1> “status part_face)
(modify <v2> “status marked)
(modify <v3> status side_entrance_face)
(modify <v4> “status marked)
(modify <v5> “status primary_top_entrance_face)
(make goal “context TSLOT-3))

- 155 -

v

Chapter 7

For the current example, since the cavity volume has 14 faces (Fig. 6.4), while
the second rule has already matched the 3 instructed machining faces, so there are 11
faces remaining. For each of the 11 faces, a rule is coded to match the face's

characteristics. For instance, for matching the face f10 (Fig. 7.13), the rule would be:

(p TSLOT-3

{<tslot> (goal “context TSLOT-3)}

{<vl> (face “edgent 4 “clascd mcface “factyp pln “status nil “identy
<fl10>)}

(edge “rhtfac <fl0> “edgtyp lin “clascd convex) ; e4

(edge “rhtfac <fl0> “edgtyp lin "clacsd convex) ; €5

(edge “Iftfac <fl0> “edgtyp lin “clascd smooth) ; €6

(edge “lftfac <fl10> “edgtyp lin “clascd concay) ; €7

(remove <tslot>)
(modify <v1> “status marked)
(make goal “context TSLOT-4))

So for the current example, there are altogether 12 rules used (from the second
to the thirteenth rules) to memorize the boundary characteristics of the cavity volume.
Each rule activates its succeeding one by means of generating a utility frame. In effect,
the 12 rules are virtually linked together as a single rule that describes the boundary
shape of the cavity volume as represented by the face/edge graph in Fig. 6.4. The
number of rules coded by the system for memorizing the boundary characteristics of
a cavity volume is equal to n-2, where n is the total number of boundary faces of the

cavity volume.

To close the rule set, an additional rule is coded :

(p TSLOT-14
{<tslot> (goal “context TSLOT-14)}
- (face “status nil)
(face “status part_face “identy <fl1>)
(face “status side_entrance _face “identy <f2>)
(face “status primary_top_entrance_face “identy <f3>)

(remove <tslot>)
(call xmkreg <fl> <f2> <f3>))

- 156 -

Chapter 7

As the previous rules are virtually linked together serially as a single rule, it
means that one of the conditions for the above last rule to fire is that all the previous
rules should have fired. In other words, the first matching condition ensures that the
boundary faces of the cavity volume have been successfully matched. The second
matching condition requires that the global database does not contain a face whose
~status is nil. Thus the second matching condition essentially ensures that the matched
cavity volume has the correct number of boundary faces. The remaining matching
conditions in the rule have the effect of retrieving and passing the three instructed
machining faces as input arguments to the external subroutine 'xmkreg' in the action
part of the rule. The external subroutine is used to add the machining face information

in the B-rep database.

The coded rules are written to a file with 'TSLOT.OPS' as the file name. To
incorporate the new rules in the system, the 'TSLOT.OPS’ source file is compiled into
an object code file which is linked with the old object code files of the system to

produce a new binary executable image.

7.5.3 Recollecting the Learnt Feature

Assuming that a similarly shaped cavity volume 'Y’ as shown in Fig. 6.5
is subsequently encountered and it cannot be recognized by the feature recognizer as its
shape is similar to that of cavity volume 'X'. At this stage, the user can retrieve the
previously learnt features by issuing the following commands in sequence :

'flush’
'bframe/mv_1"

'recollect’

The first command is used to clear the global database so as to ensure that any
old cavity volume description in the global database is removed. The second command

loads the frame-based description of the cavity volume 'Y’ in the global database. The

- 157 -

Chapter 7

third command is used to activate the sets of rules that have been created in previous
learning exercises for matching with the frame-based description of the cavity volume
'Y'.

More specifically, the corresponding command procedure opens the previously
mentioned file 'LEARN.NAM' and uses each of the names stored in the file to generate
a corresponding utility frame in the global database. Recalling that the names stored in
the file are actually the user given names of the previously learnt cavity volumes, and
since the name 'TSLOT' is in the file, the utility frame 'goal context TSLOT' is
inserted in the global database. This utility frame acts as a message to invoke the first
rule 'TSLOT" described in the previous section. As the cavity volumes 'X" and 'Y’
have identical boundary characteristics, the entire set of "TSLOT' rules will fire. The
last rule identifies the corresponding three machining faces (fa, fb and fc in Fig. 7.14)
of the cavity volume 'Y' that have geometrical and topological characteristics similar
to those of the three faces defined in the set of 'TSLOT" rules.

The 'xmkreg' external routine adds the tﬁree machining faces as machining
feature information in the B-rep database of the cavity volume. The enhanced B-rep
database of the cavity volume 'Y' is illustrated in Fig. 7.14 which is basically the same
as that of the cavity volume 'X' shown in Fig. 7.12. Also by comparing Figs. 7.10 and
7.14, it can be appreciated that the machining feature information obtained by using the
feature recognition approach and the feature learning approach is basically the same and

is represented by the same data structure in the B-rep database.

- 158 -

Chapter 7

cavity volume 'Y’

Solid List

Solid Record

fb

fe

edge el

T to edge list
gg:gtg: tg g';zik Pointer to Edge List b A
- - Pointer to Face List
Pointer to Cavity Volume Polnter Lo Rigid Motion
: Pointer to Enclosing Box
Pointer to Cavily Subvelume List

Cavity Subvolume List

]

!Poinl,er to Subvolumeﬂ,l_!

Face fa Record —=

Face List ~e——ou-—
Pointer to fa
Pointer to fb
Pointer to fe

Pointer to obtain Geomelric Information
from PADL-2 geometric database

Pointer to Edge Loop List

Pointer to Machining Feature List

j-———=s=— Machining Feature List

—1 (machined_face)

parl_Tface *

Machining Feature_l Record

{ Pointer to Machining Fealure_1 }——’
f 1

Cutter Axis Vector (u) 0 *
Cutter Axis Vector (v) 0 .
Cutter Axis Vector (w) 1 *

Primary_top_entrance_face List

Pointer to edge el *

Pointer to Primary_top_entrance_face List

!Pointer to face fc__« !

Nol applicable

Peinter to Side_enltrance_Face Lisl

[—— Side_entrance_face List

Remark

* : machining face information

[LPointer to face fb x|
1

added by the ‘xmkreg’ routine

Figure 7.14 : Instructed machining faces added in the B-rep.

- 159 -

Chapter 7

It can be seen that in the current prototype system, the activation of the above
three commands is done manually, The reason of such an implementation is mainly for
the purpose of distinguishing the two approaches more clearly. In fact, the two
approaches can be easily coupled together by incorporating the three commands in the
feature recognition algorithm so that when the feature recognition approach fails, it can

automatically retrieve the previously learnt feature templates for matching.

7.6 Discussion

Having described the methodology and implementation aspects, the advantages

and disadvantages of the two adopted approaches are now discussed.

7.6.1 The Feature Recognition Approach

Many feature recognition methods [Henderson®4, Joshi88, ete.] are designed for
recognizing general form features only. As form features are different from machining
features, these methods need to have a separate, post-recognition tool accessibility
analysis for validating the machinability of the recognized form features. The feature
recognition algorithm used in this thesis in unique in the sense that it virtually simulates -
the human behaviour of recognizing machining features first by focusing on a potential
part_face and then assessing the tool accessibility of the potential part _face. The author
has the following two arguments for the incorporation of machining heuristics and tool

accessibility analysis in a machining feature recognition algorithm :

(a) It has been an accepted principle that features are application specific, and hence
a form feature is considered as a machining feature based on machining
application considerations. For instance, as illustrated by Pratt's [Pratt87] example
in section 1.4, a depression in a part can be interpreted either as a web space

formed by reinforcing ribs (viewpoint based on casting, welding, etc.) or as a

- 160 -

v

Chapter 7

machining pocket (viewpoint based on machining). Thus the author feels that for
recognizing machining features (and not general form features), it would be
beneficial to exploit as much machining related considerations as possible in the
recognition process so that any candidate features that have invalid machining
properties such as a 'pocket' without a tool entrance face or without round corners
can be detected as soon as possible in the recognition process. These
important recognizing results could be made known to the user during the
recognition process for further actions or at least for further contemplation, and

not after the recognition process.

(b) The difference between the approach that exploits machining related knowledge
in the recognition process for identifying machining features and the approach that
performs tool accessibility as a post-recognition process is not only a matter of
time difference. This implies that without the ingredient of machining technology
in the recognition process, the latter recognition strategy will likely find difficulty
in resolving machining feature interactions since the recognition mechanism will
have to rely mainly on general form feature (geometric and topological) reasoning
or pattern matching (assuming that other feature information such as tolerance
information is not available). Shah [Shah9la) used an abstract term called
‘conjugate feature' to refer to complex features that are formed due to feature
spatial interactions or due to alternative feature interpretations based on diverse
application considerations. He also postulated that sophisticated, application
specific conjugate feature transformation (feature recognition) would be required
for obtaining a correct and comprehensive feature interpretation. The use of an
aspect vector (cutter approach direction) as discussed in Corney's [Corney91a,
Corney91b] work can also be considered as another example of utilizing
machining knowledge very early in the machining feature recognition process.
Thus the use of the machining heuristics and ray-casting accessibility analysis in
the algorithm has the crucial effect of assisting form feature reasoning, and as a

result the following significant benefits have been realized :

- 161 -

v

Chapter 7

(i) can handle rather complicated feature situations including non-orthogonal
feature interaction,

(i) the machinability of the recognized machining features is ensured, and

(iv) the ray-casting process can detect alternative primary_top_entrance_faces and
secondary_top_entrance faces of a machining feature which are very useful

for process planning.

The ray-casting technique has been employed as a less rigorous and less
computational expensive analysis for tool accessibility. Other more precise and costly

methods can be used : surface oriented and volume oriented.

In the former method, the half-spaces of the check faces (wall faces) of the
potential part_face will intersect with the other half-spaces of the cavity volume (as well
as with the half-spaces of the part for global accessibility test) for determining an
intersection boundary 'X'. This intersection boundary 'X" will be compared with the
boundary edges 'Y' of the potential part_face. If 'X' is identical to 'Y"' or 'X' totally
encloses 'Y', then the potential part_face is obstruction free, otherwise the reverse will

be true.

In the latter method, the boundary edges 'Y' of the potential part_face will be
swept linearly along a cutter axis vector to create a sufficiently long virtual object. This
| very long virtual object is basically a simulated image of the tool swept volume above
the potential part face. Its very long length can be determined by using information that
is related to the dimensions of the starting stock or the finished part. This simulated tool
swept volume can be Boolean subtracted (or intersected) with the finished part. If the
resultant intersecting volume is null then tool accessibility is satisfied. However, it is
anticipated that these two methods would require very computational expensive
processes such as edge/edge comparison, area calculation and boundary evaluation, and

hence these two methods are not adopted in the algorithm.

- 162 -

v

Chapter 7

The efficiency of the feature recognition algorithm now depends very much on
the efficiency of the ray-casting algorithm which however, can be improved by using
more efficient ray-casting algorithms [Weghorst84]. Moreover, as the ray-casting
algorithm is basically a version of the better known 'clipping’ algorithm commonly used
in the CAD/CAM community, many modern CAD/CAM development systems also
provide the facility of calling a ray-casting utility procedure that has been firmwared
in their electronic circuitry. Hence, the use of the ray-casting technique for tool
accessibility analysis should not be a serious concern for enhancing the efficiency of the

feature recognition algorithm.

Although the CSG based PADL-2 solid modeller is used in the prototype system,
the algorithm actually works with the boundary representation database, and hence the
algorithm can be easily adopted in boundary representation systems. In addition, the
algorithm could also be embedded in a feature based design systems as a procedure for

checking the machinability of a designing part.

The combination of the knowledge based environment with the solid modeller
also offers significant advantages for implementing the algorithm. The production rule
programming paradigm allows a concise and symbolic embodiment of the feature
recognizing knowledge in the system, and hence the development and maintenance of
the algorithm are much facilitated. The inference engine (recognize/act cycle) of the
KBS is designed for symbolic manipulation, and is therefore exploited to simulate the
human function of recognizing feature characteristic conditions. Whenever, numerical
computation or database communication is required, the algorithm will switch to the use
of procedural routines. In this way, a good match of jobs with the correct types of
working tool is maintained. With the command interpreter utilities of the KBS, the
recognition process can also be performed in a more interactive manner. In the current
prototype implementation, the user can interactively perform various activities such as
inspecting the status of the working memory elements in the global database and tracing
the rules that have been fired or that will be fired during the recognition process. With

a more sophisticated implementation, the system could be made more interactive such

- 163 -

v’

Chapter 7

as using previously fired rules to explain why a former decision has been made.

The machining features extracted by the algorithm are essentially generic 2.5D
machining regions that have not been differentiated clearly into different feature types.
Moreover, there is only one cutter axis vector associated with a machining region
because the ray-casting accessibility analysis is not repeated on the other faces of the
machining feature once a valid part face is located. This is a significant shortcoming
as it precludes other alternative interpretations of a machining feature, Further work
needs to be done to enhance the extracted feature content with more meaningful feature
information so that other manufacturing activities such as process planning can be fully
automated. The refinement work on this part will be discussed in more detail in chapter
9.

7.6.2 The Feature Learning Approach

This approach can be considered as a remedy of the first method that can only
deal with 2.5D machining features. Besides, this approach itself also represents a novel
means of extending the recognition ability of the system to adapt to diverse
manufacturing conditions, The author has deliberately used the feature representation
scheme adopted in the first approach for representing custom features in this second
approach so as to maintain a uniformity of feature representation in the system. In
addition, the process of instructing new custom features has also been designed to be
interactive and without the use of a programming language. This is important as the
teaching of custom features to the system is supposed to be done in an on-line mode by
practical engineering personnel of a factory rather than in an off-line mode by a

software knowledge engineer.
In the current implementation, the method only permits the user to teach one

machining feature in a cavity volume. Moreover, the description of a feature based on

the instruction of the three machining faces (part_face, side entrance face and

- 164 -

Chapter 7

primary_top_entrance_face) may not be sufficiently general to account for all possible
situations. For instance, a non-2,5D machining feature may have alternative
side_entrance faces, and an erroneous instruction of an alternative side_entrance_face
may lead to undesirable results such as generation of a faulty cutter path that will
collide with the machined part.

The representation of cavity volume shape is by means of a defined set of face
and edge conditions, and testing of shape similarity is by matching the face/edge
conditions of a previously learnt feature with the corresponding face/edge conditions of
a new feature. However, it is not clear whether there exists a theoretical, adequate set
of conditions for governing a reliable testing of shape similarity. Intuitively, it is
postulated that the more matching conditions used (provided that the conditions are not
redundant), the more stringent will be the shape matching process, and the more

reliable will be the shape similarity testing.

The approach has taken the view that every feature example presented to the
system to be learnt is a totally new feature that has no connection with the previously
learnt features in terms of shape similarity. Consequently, each set of new rules added
to the system is completely independent, and the system has no control on "the
possibility of generating redundant rules. Hence, the number of new rules incorporated
in the system can easily grow to an impractical size. At the same time, the efficiency
of the recognize/act cycle will also decrease to an inadmissible level. A possible method

for improving this shortcoming will be discussed in chapter 9.

- 165 -

Chapter 8

CHAPTER 8
VERIFICATION OF WORK

This chapter presents a practical elucidation of using the machining feature
information produced by the two approaches for downstream manufacturing planning
operations. For this purpose, two simple software modules are developed to post-
process the machining feature information established in the B-rep database. The first
module is basically a simple machining operation sequencer which puts machining
features of identical cutter axis vector together in a group, and sequences the machining
features in each group for machining. The result of the first module is stored in a
machining operation file as a machining operation agenda to generate NC cutter paths

for the machining features.

It is emphasized that the two simple modules are mainly developed and used for
the purpose of verifying the practical usefulness of the feature recognition and learning
software. They do not represent a formal study of the various process planning activities
such as set-up planning and process planning. For more substantial work in these areas,
the reader can refer to other publications such as [Murray86, Gindy91, and Sakuari91].

8.1 Grouping and Ordering Machining Features

The first module is activated by inputting the command 'oplan/<fname>"',
where <fname> is the user given name for the machining operation file that is going
to be output. The corresponding command procedure manipulates the feature

information established in the B-rep data base as described below.

- 166 -

o

Chapter 8

8.1.1 Retrieving Machining Features

The extracted machining features of the cavity volume represented in the B-rep
database are identified by examining the fifth field of the face record. If the fifth field
indicates that the face is a part_face, then the machining feature list pointer stored in
the third field of the face record is used to retrieve the information of the machining
features associated with the face. For instance, for the hypothetical part used in chapter
5, the machining feature information represented in the B-rep database of the cavity
volume (subvolume_1 and subvolume_2) is depicted in Figs. 8.1 and 8.2. In summary,
the following information about a machining feature can be obtained directly from the
B-rep database :

(1) part_face,

(2) cutter axis vector (i.e. cutter approach direction),

(3) an edge belonging to the concerned edge loop of the part_face,

(4) primary_top_entrance_face,

(5) secondary_top_entrance_face (if there are any), and

(6) side_entrance face (if there are any).

8.1.2 Grouping the Machining Features

Machining features that have identical cutter axis vector are put together in a
group. This grouping is based simply on the notion that machining features with the
same cutter axis vector can potentially be machined in the same machining set-up. For
example, the subvolume_1 shown in Fig. 8.1 has two machining feature groups. The
first group has two machining features, while the second group has one machining

feature as summarized in the following table :

Machining | Cutter Axis
Feature Vector

GrOup ...

Machining { Part_face | Primary_top_entrance face
Feature

Table 8.1 : Machining features of subvolume 1.

- 167 -

Chapter 8

subvolume__1

Solid List

i)
ar to Rig otion
nter to Enciosin: oxX
1 ﬁr !o E.E gumumn EE
Covity Subvolume LUst ——I

Faca List =i

Solid Record
MFTF:: to Stock | Polnter 1o Edge to edge llst
nter_io Cavily Volume J;-%YEE r dﬂ _

o

Lo

|Eo!niar g Suglgm;:i Polnter to face 18
Face 18 Record L N
[Polnler To obtoln Geometric Information

from PADL—2 geomatric datobasa == Edge Loop List
olnter to Edge
[Fointar to Machining Featurs List PoTnte: 10 ac : i
=1 [machined_ foce .
parl_face

Machining Feature List
[Foinler te Machining Faatura_1 I—I
I

Machining Featura_1 Record
Cuttar Axia_Vacfor Tu)

1
Primary_tep_entrance_faoce List
tor_tv)
 { for (w) 1
nter to esdqe el

nier to Primary_top_entrance_face Liat Sida_antranca_faca tlat

na_secondaory_top_antrance_foce ointer o foce

Pointer ta Sida_entranca _foce Liat

Foce 110 Reacord

Infer In oblain Geometric infarmation —=- Edge Loop Liat
from PADL—2 gqeometrie daotabore],.ED.[Di!LtD_!dJLﬂ_I
Pointer to Edge Loop Liat
cinter o Machining Feoture TIst teersmse—pe. Mochining Faatura List
aL_&h hea Tdoa In ac B
part_face)
Machining Featura_2 Record =
Cutter_Axis Vector [u] [+]
" Her Auis Vactor {v) 9 Prlu _top_entrance_face List
FCutiar Axis Vector (w) b | Painter to face f1__ |
‘sana er to_edge - . 7_1] Lt
ointar_to Primarytop_entrance facs List Sacondory_top_entronce_face
[Palnter ta §condary_tp_mmnen_?nm Liat el =T a?_ I'-l;“
no slde_entronca_facs) r 1
Face f8 Record

Polnter to oblain Geomelrle Informalion Edge Loop List
P

from PADL—2 geometric dotabose
Folntor fo Fdgs Loop Lot - | Eng':“; Yo odde o
Pointer to Machining Faoture LIat

=1 Emuchln&fuca)]—— Machining Fecture List
po oce

lPointar to Machining Feature 5 I—I
Machining Faatura_3 Record -

gu ar zh Vectar {u
uttar Axis Vaclor (v
[Cutter_Axls Vector (w
oinfer to edge
cinter t¢ Primary _top _entrance face %Jnt ——— Primory_ton_entronce_face Liat
no_secondary_top_entrance_face) FFEHM—l

nog uldq_antmncn_.fnms B

¥ 1

Figure 8.1 : The B-rep of subvolume 1 enhanced with feature information.

- 168 -

Chapter 8

Similarly, the grouping of machining features of subvolume 2 (Fig. 8.2) is
summarized in the following table :

Machining | Cutter Axis Machining | Part_face
Feature Vector Feature
Group ————————

Primary_top_entrance face

f14 b _£13
)’\ subvolume_2
u
- f17
f15 o
eq
Solld List
. Solid Record
_;:::::: io g?:k _J amnter 1o Fdae List | ——m e to adga st
ointer 1o Cavify Volume ouRar_Lo, ucla’ld:tﬂon
Encloalng Dox
Cavity Subwelums_List —I
Cavity Subvoluma List

Pointer to_Subvoluma_1 Foca List —e—- .|
ntar Subvolume 2 IPoﬁur to foce 13
Face f14 Record —|

Fointer to obtain Gecmetne Infarmation
from PADL-E?'I qeoLLnotric datobase
olnter fo Edge Loop List s Edge Loop Liat
| Palnter to Mochining Feature Lst i?.}:!:ﬂnjﬂgﬂ 2q
1 \machinedfoca [Bointer to_edge eb
part_tace [Fointer to edga ec
Machining Fegture List —e—-

I&rnter o Muchlnlng‘ Fecrtuif D
Mochining Feotura_2 Record
]

Cutier Axla Vactor {u]
Cutier_Axfa_Vector {v]

er Axls Veclor {w)
Folnter o _edge

BC
Palnter to Primory_top_entronce Toca Ust = Primary_top_entranca_face List

{ {no_sacondory_top_entrance _face Fglummu_uj_'
no_slde_sntrance_face)

- Faca {13 Record =
ointer to obtain Geometric infarmation Ed

from PADL—2 gecmetric database I W%
oln{ar to_tdga {oop List] [q {
ointer ta achining rediurg |

—1 [mochined_Taca) [T t—s= Machining Feature List

part._Toce |Elnter 1o Mgchining Faotura_1 I—l
Machining Featura_1 Record

Lutter Axls Vector {u] [s]
Cuiter Axls Vector_(v} [1]
ulter Axls Vector (w)

Polnter {o adgs ab
Pointer fo Primary_top_enirance_tace LIt —== Primory_top_entronca_foca Lint
{no_secondary_lop_entronce_foce) |Fo|‘n!er {o face 115 |

{no side_entronce_face) I

Figure 8.2 : The B-rep of subvolume_2 enhanced with feature information.

- 169 -

Chapter 8

8.1.3 Resolving Identical Features Condition

As discussed in section 4.4, machining features that have condition type 1
part_face, such as the through hole illustrated in Figure 8.3, will be extracted by the
feature recognizer as two machining features. The presence of this kind of machining
feature condition is identified by checking whether the following conditions exist :

(1) the cutter axis vector of two machining feature groups 'A' and 'B' are opposite
to each other,

(2) the part face of a machining feature 'i' in group 'A' 1is the
primary_top_entrance face of a machining feature 'j' in group 'B', and vice
versa, and

(3) machining features 'i' and ')’ have the same set of check_face(s) surrounding

the part face.
part with face f1
mplo through hole v
caﬁty /l\ u
volume w
face 2

Extracted as two machining features:

Maching Feature 1 : i
part_face : f1 part_face : f2

cutter axis vector : u = 0 cutter axis vector : u = 0
v=20 v=2~0
w=1 w = -1

primary top_entrance face : f2 primary_top_entrance_face : {1

Figure 8.3 : Machining feature with part_face condition type 1.

If the above conditions exist then either machining feature 'i' or machining
feature 'j' is deleted since they can be machined by a single machining operation. The
rule used for deletion is that if the number of machining features in groups ‘A’ and 'B'
is different, then the machining feature belonging to the smaller group is deleted,
otherwise the choice is made arbitral:ily. For instance, if group 'A' has more machining

features than group 'B’, then machining feature 'j' is deleted. On the other hand, if

- 170 -

Chapter 8

groups 'A' and 'B' have the same number of machining features, then either machining
feature 'i' or machining feature 'j' can be deleted. The motive for using this decision
rule for deleting redundant machining features is to reduce the group size of smaller
machining feature groups so that if the size can be reduced to zero, the total number

of machining feature groups (or machining set-ups) can also be reduced.

8.1.4 Sequencing Machining Features

The machining features in a machining feature group are then sequenced
according to the secondary_top_entrance face dependency relationship. For instance,
for the first machining feature group of the subvolume 1, the machining feature with
part_face 'f8' is ordered before the machining feature with part face 'f10' because the
latter machining feature can use face 'f8' as its secondary_top_entrance face. This
means that the former machining feature will be machined before the latter one (Table
8.3).

Machining | Cutter Axis Machining { Part Primary Secondary
Feature Vector Feature face top top
Group e entrance entrance

face

1 f8 f1

1 0 {0 11 2 f10 f1 f8
Table : Sequencing of machining features in group 1 of subvolume 1.

After the above sequencing process, those machining features that have a single
cylindrical check face are grouped together in a subgroup. This grouping is based on
the assumption that the machining features within the subgroup can be machined by
using simple cylindrical hole drilling operations. Factors such as size, tolerance and

surface finish of the machining features are not considered in this thesis.

- 171 -

Chapter 8

Finally, the machining features within a subgroup are further divided into

smaller groups of equal cylindrical diameter, The objective of this grouping is to

machine equal sized holes together with the same cutting tool so that tool change and

tool travelling time can be minimized. Also if the group of machining features form

a higher level feature pattern, such as a pattern of holes on a pitch circle diameter,

they can be machined in a more sensible manner. The method of grouping machining

features here is necessarily simple. For a more substantial study on process capability

modelling, references such as [Gindy90] can be pursued.

The post-processed machining feature information is then written to 2

machining operation file. Each record in the file represents a machining operation. For

example, for the subvolume_1 and subvolume 2, the machining operation file would

contain information as shown below :

Record | Cutter Part Edge Primary | Secondary | Side

No. Axis face Identity | top top entrance
Vector Identity entrance | entrance | face

face face Identity

L A Identity | Identity

1 0 |1 |18 el f1 nil {7

2 0 |1 |f10 e9 f1 f8 nil

3 0 |1 |[f13 eb f15 nil nil

4 -1 10 [0 |f6 e7 f12 nil nil

5 1 |0 |O [f14 ec 17 nil nil

-172 -

(Please refer to Figures 8.1 and 8.2 for the face and edge notations)
Table 8.4 : Machining operation file content of subvolume_1 and subvolume 2

Chapter 8

8.2 Cutter Path Generation

Having produced the machining operation file, the cutter path generation
module is activated by issuing the command 'nepath/ < fname>', where <fname>
is the name of the machining operation file just produced. The module opens the

machining operation file and processes the file records sequentially.

The cutter path generation module computes cutter paths using the B-rep of the
cavity subvolumes rather than the B-rep of the finished part since the machining
feature information is represented with reference to the boundary of the cavity
subvolumes. The cutter axis vector in each machining operation record represents the
cutter approach direction, and hence it is used to determine a rotational transformation
matrix (Appendix F) for transforming the orientation of the corresponding cavity
subvolume in such a way that the cutter axis vector aligns with the system's z-axis.
The z-axis is taken as the machine spindle axis in the cutter path generation module.
For e¢xample, for the five machining operation records shown in Table 8.4, the

corresponding orientation of the two cavity subvolumes are illustrated in Figure 8.4.

Z
spindle
axis

- —: cutter
axis vector

Figure 8.4 : Orientation of the machining features for machining.

-173 -

Chapter 8

Two types of cutter paths are generated depending on the part_face conditions.
The first type is essentially a drilling operation, and is used when the part_face is
surrounded by a single cylindrical check face. The cutter is directed to enter through
the primary_top_entrance_face (and secondary_top_entrance_faces if there are any) and
travel along the axis of the cylindrical check face to the part face. The total axial depth
of cut is determined according to the part_face condition types as discussed in section
4.4. For instance, if the part_face is of condition type 1, the cutter path goes through
the part_face by an amount as described in section 4.4. The number 2 machining record
shown in Table 8.4 is an example of such a through hole condition. The corresponding

cutter path is illustrated in Figure 8.5.

secondary
top
entrance face {8

primary
top
entrance
face f1

—— --—— outline
of stock

—-— fast
approach/
retract
path

—————— cutting
path

Figure 8.5 : Cutter path for machining record no. 2.

If the part_face is of condition type 2 which represents a blind hole sitvation,
the cutter stops right on the surface of the part_face. Machining record number 3 is an
example of such a blind hole condition, and the generated cutter path is shown in Fig.
8.6.

- 174 -

Chapter 8

primary

. - top
- /‘\ \“~\‘ entrance
L ! ~-..._‘_f?ce f15 part_face
— f13

——— - - — putline
of stock

Fast
approach/
retract
path

—————— cutting
path

% o~ ~|
S v T
—— !
cutling T I g
toal .. e
p] — P

Figure 8.6 : Cutter path for machining record no. 3.

On the other hand, if the part_face is of condition type 5 which represents an
inner edge loop feature interaction, the cutter path also overshoots the surface of the
part_face by an amount as described in section 4.4. Examples of this condition are the
machining records number 4 and 5 shown in Table 8.4, The corresponding generated

cutter path is shown in Figs. 8.7 and 8.8.

AT

o Z

7 7

l

part_face :
[} I
]

primary]
i.O'p ¥
enlrance !

face 112

A -
/ - /‘-—- -~ putline
S | . of stock
by o | s
! e —-—— fast
- e approach/
. J/ retract
path
cutting ———=— cultin
‘ -- £
/ tool palh

Figure 8.7 : Cutter path for machining record no. 4.

- 175 -

Chapter 8

part_face
fi4

primary
top
entrance
face f17

v
a8
\ \<" ' .
\ \1 ,/’ _ o;xtlinek
* . ' - of stoc
\ ~17 ,

* —— fast
\ approach/
retract

A}
path
—————— cutting,
. cutting path

tool

Figure 8.8 : Cutter path for machining record no. $.

The second type of cutter path is used when the part_face is surrounded by more
than one check faces. At the outset, the boundary edges of the part face are virtually
offset [Tiller84, Saced88] by an amount equal to the cutter radius which is specified by
the user in the prototype system. The actual offset direction depends on the edge
convexity. For convex boundary edges the offset is towards the inside of the cavity
volume, while for concave boundary edges the offset is outside the cavity volume. The
offset edges are trimmed or extended to form a polygon. A pattern of zig-zag cutter
path is then generated within the polygon. The zig-zag cutter paths are used for clearing
the material within the bounded region of the part face. This zig-zag cutter path is
essentially based on a fixed direction-parallel milling method. A contour-parallel milling
method would be a better choice for milling profiles or pockets with an arbitrary
contour shape. A good discussion of cutter path generation methods can be found in
[Persson78, Held91].

- 176 -

Chapter 8

The offsetting and zig-zag cutter path generation procedures are repeated on
successive levels between the primary top_entrance face (or the Ilast
secondary_top_entrance face) and the part face., Each level of zig-zag cutter paths
represents a layer of machining. The gap between two layers represents the axial depth
of cut. Currently, the increment of axial depth of cut is implemented as a hard-coded
value, If side_entrance face is present, the cutter will enter and exit the machining
region laterally through the first side_entrance_face represented in the
side_entrance face list, otherwise the cutter will enter vertically through the centre of
an imaginary rectangle that bounds the primary_top_entrance face. For example, the
generated rough milling cutter paths for the machining record number 1 is shown in
Fig. 8.9.

part_face f8 _/V(.__ !

primary
top

entrance
face f1

~—--«—— oputline
of stock

—-—— fast
approach/
retract
path

—————— cutting
path

,&\cutting ..

/ tool T~ -

Figure 8.9 : Rough milling for machining record no. 1.

When the part_face has convex inner edge loops, it means that the part face
contains inner protrusions or islands. To avoid collision, the cutter is raised to a safe

height when moving across an inner edge loop. The safe height is determined according

- 177 -

Chapter 8

to the height of the primary top_entrance face. Following the rough milling, a fine
milling cutter path is generated by driving the cutter to move around the perimeter of
the polygon as shown in Fig. 8.10. This is equivalent to perform a profile milling
around the vertical 'walls' of the machining feature. '

part_face f8 . /V(..

pPrimary
top
entrance
face f1

— --—— outline
of stoeck

fast
approach/
retract
path

—————— cutting
path

. cutting T~
yd tool —~

Figure 8.10 : Fine milling for machining record no. 1.

The generated cutter path is maintained internally in a linear list. It can be

output to an intermediate cutter location data file [BS5110] which can be post-processed
to produce the NC programs.

8.3 Examples

Figure 8.11 illustrates a reasonably complicated sample part together with the
machining features that can be extracted by the feature recognition algorithm. For

convenience of illustration, the extracted machining features are represented by means

- 178 -

Chapter 8

of highlighting their corresponding part_faces. The generated cutter paths for the

machining features are displayed in Figs. 8.12a and 8.12b. The image of the original
stock is shown in the figure for visual credibility.

s 22 Hs > Hp
—

‘ﬁﬂp

origina finitshed
stock par

f7
\\

f6""'—-—.__,.___
8
f3—.
f9
f1
(wirefra
display)

=——

= 0.
5 —

9
= fo part_faces
of recognized
= machining
features

Figure 8.11 : Sample part no. 1.

- 179 -

Chapter 8

-+

Q

(o]

~ ok

1+ 3]

.w 3]

R

o

E s

e e
B oS
2 B ay
o =

—eeeeuw-— outline of

—-—-— fast
—~——-~———- cutting path

-)lrﬂ’di Ii P, n ’ /
: @el.ﬁ.)ﬁ..%ﬂ Va
\ BLPGIILL 7

e N AT ATATaT AT A A A m

Figure 8.12a : Generated cutter path for sample part no. 1.

- 180 -

Chapter 8

——— — outline of
original stock

————— fast
approach/
retract
path

----- — cutting
path

Figure 8.12b : Generated cutter path for sample part no.1.

Figure 8.13 shows a rectangular pocket that has its four corners recessed by
means of drilling holes. As a result, the interaction between the holes and the pocket
becomes rather complicated for feature recognition. The feature recognition algorithm
can recognize the pocket and the four holes in terms of determining their part_faces and
primary_top_entrance_faces. The part face (i.e. bottom face) of the pocket is also
recognized as the secondary top_entrance face of the four holes. The generated cutter

path for the part is also illustrated in Figure 8.13,

- 181 -

Chapter 8

original
stock

finished
part
3

(

oS

(wireframe

display) %
S
part_faces 1! s
of recognized %
machining features

Figure 8.13 : Sample part no. 2.

- 182 -

Chapter 8

The part depicted in Figure 8.14 is a mould platen used in a plastic injection

moulding machine which is manufactured by a local factory.

original
stock

wireframe
display of
finished part

-— cutter part_faces
axis recognized
vector

sectional view
of finished part

finished
part

mv_2

mv_"7

9 cavity subvolumes

mv_5
& mv_G mv_8
mv_1 9

mv_3

from the
cavity subvolumes
mv_1 to mv_5

Figure 8.14 : Sample part no. 3.

- 183 -

Chapter 8

The T-slots are designed to facilitate the clamping of moulds of variable sizes
on the mould platen surface. The design of the actual dimensions of the T-slots depends
on the size or capacity of the injection moulding machine, but the T-slot shape remains
basically the same irrespective of the moulding machine capacity. The central stepped
hole provides a space for adapting the frontal portion (injection nozzle) of the plastics
extruder. The sliding movement of the mould platen is guided by cylindrical tie rods

which pass through the four holes near the corners of the mould platen.

There are altogether 9 cavity subvolumes as shown in the figure. From cavity
subvolumes mv_1 to mv_5, the feature recognition algorithm extracts 11 machining
features whose corresponding part_faces are highlighted in the figure. It can be seen
that for each of the four corner holes, two part_faces are extracted as the hole can be
machined from two cutter approach directions. For instance, for cavity subvolume
mv_1, part_faces 'fl' and 'f2' are extracted. The 11 machining features will be
classified by the operation sequencing module into two groups based on the similarity
of their cutter axis vectors. One group will consist of features represented by part_faces
f1, f3, 15, £7, 9, f10 and f11, while the other group will consist of features represented
by part_faces f2, f4, f6 and 8. As described in section 8.1.1, the operation sequencing
module will resolve the situation of dual approach directions by deleting part faces {2,
f4, f6, and f8 in the latter group because the latter group size is smaller than that of the
former group. As a result, only the former group remains and thus the central stepped
hole together with the four corner holes will be machined in the same set-up as
illustrated in Figure 8.15.

- 184 -

Chapter 8

Figure 8.15 : Machining of the central stepped holes and the four side holes.

The feature recognition algorithm cannot recognize any feature from the cavity
subvolumes mv_6 to mv_9 because their T-slot-like feature shape violates the ray-
casting test of the algorithm. As only the parametric dimensions of the T-slot vary while
the shape of the T-slot remains the same for different models of mould platens, it is
therefore worthwhile to use the feature learning approach to remember its generic shape
and the associated machining method so that after the learning process the system will
be able to recognize other T-slots of different mould platen models, and at the same

time, determine their corresponding machining faces.

As the shapes of cavity subvolumes mv_6 to mv_9 are identical to each other,
any one of them can be used as a teaching example. For instance, the cavity subvolume
mv_9 is used for instructing the three machining faces to the system as illustrated in
Figure 8.16.

- 185 -

Chapter 8

A==

primary

top t

entrance] J par

face
side
entrance
face

Figure 8.16 : Generated cutter path for milling the T-slots.

As shown in the figure, the T-slot can have two side_entrance faces which are
different only in the direction of their surface normals. The surface normal orientation
of the machining faces are not included in the new rules created during the learning
process, and therefore either one of the two side_entrance_faces can be defined as the
side_entrance face. It is understood that T-slot machining is a rather special machining
process that normally requires several steps of machining operations such as milling a
simple rectangular slot first so as to provide a spatial clearance for a T-slot cutter to do
the T-slot milling afterwards. These technical details of machining operation are not
considered in the machining face instruction process. When instructing the part_face,
attention is focused mainly on the final T-slot milling operation during which the bottom
face of the T-slot will be used as part_face as illustrated in Fig. 8.17. The instruction
of the primary_top_entrance face is rather obvious as the top face of the T-slot must

not cause obstruction to the cutter shank when the cutter is machining the T-slot.

- 186 -

Chapter 8

—————outline of
original stock

————- fast
approach/retract |g
path

e gutting path

Figure 8.17 : Generated cutter path for milling the T-slots.

After the machining face instruction process, the system remembers the shape
of the example T-slot and the instructed machining method in the form of a set of new
rules as described in the last chapter. With the incorporation of the new rules, the
system is able to recognize a T-slot of shape identical to the example one and, at the
same time, augment the B-rep database of the T-slot with the three machining faces
information. The operation sequencing module and the cutter path generation module
can then process the enhanced B-rep database in the manner as described before. The

cutter paths generated for the T-slots are illustrated in Figure 8.17.

- 187 -

Chapter 8

8.4 Concluding Remarks

From the above extensive description and illustration of the series of steps
starting from the extraction of machining features to the final production of NC cutter
path, it can be appreciated that the two approaches have basically satisfied the original

research objectives of enhancing the communication link between CAD and CAM.,

The two approaches do not require a special feature based design environment
as the feature modelling strategy employed in both approaches is fundamentally based

on post-design boundary data manipulation.

The first approach can recognize rather complicated 2.5D machining features,
while the second approach provides a remedial backup to the first approach for handling
non-2.5D or custom features. After the application of the two approaches, the boundary
data of the design model is enriched with specific and practical machining feature
information. In other words, the solid model is virtually transformed into a feature
model which contains not only geometric and topological information, but also
important manufacturing oriented information such as machining region,
tool_entrance face and cutter approach direction. Despite the rather simplistic
implementation of the set up determination and cutter path software, they still serve the
purpose of demonstrating the practical usefulness of the two approaches which are

capable of extracting valid manufacturing information directly from the design database.

- 188 -

Chapter 9

CHAPTER 9
CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

Features have been widely accepted as a basis for integrating CAD and CAM
because they can embody design intent along with part geometry, and thus provide the
necessary information for various manufacturing applications. Two distinct approaches
have been used by researchers for modelling features : design by features and automatic
feature recognition. The research work presented in this thesis has focused mainly on

using the latter approach for recognizing machining features.

Machining features in other research have been represented either as faces or
as volumes, and each representation has its own advantages and disadvantages. This
thesis has taken the advantages of both representations by recognizing machining
features as groups of machining faces from a cavity volume model that is obtained by
Boolean subtraction between the starting stock and finished part models. The merit of
using the cavity volume is that it not only reveals the volumes of material actually
required to be removed but also provides a comprehensive boundary description of the

machining volume which is useful in an automatic process planning context.

The core of this thesis discusses two methods of recognizing machining features
directly from a CAD database, and their implementation in a prototype software system.
The first method is designed to recognize 2.5D machining features in the corresponding
cavity volume model of a finished part. The cavity volume is primarily represented in
a winged-edge based B-rep data structure and secondarily represented as frames in the
working memory of a knowledge-based system. Recognition is achieved by analyzing
the cutter accessibility of cavity volumes whose boundary faces are classified either as
machined_faces or as tool _entrance faces. The accessibility analysis is essentially a

simulation of the cutting action when a cylindrical cutter is used to machine a selected

- 189 -

Chapter 9

face of the cavity volume, and is implemented by projecting semi-infinite, imaginary
lines from the surface of the selected face. If these cast lines are free of obstruction,
a machining feature is considered to have been recognized. This ray-casting feature
recognition algorithm has several advantages : it avoids complicated searches for
boundary shape elements during recognition, allows the identification of reasonably
complex machining features that interact with each other, and ensures cutter
accessibility of the recognized features. Representation of a recognized machining
feature is in terms of the identified machining faces and the projection direction of the
cast lines. The extracted feature information is stored in appropriately linked data

records in a boundary representation database.

This feature recognition method has the drawback that it can only recognize
2.5D machining features that satisfy the cutter accessibility analysis. Consequently, a
second method of machine learning has been implemented and this allows the user to
use a cavity volume that is not recognizable by the first method to be used as a positive
teaching example to interactively instruct the corresponding machining faces to the
system. These instructed faces together with the boundary description of the cavity
volume are then compiled into a group of production rules which are then added into
the rule base of the system. When a similarly shaped cavity volume is subsequently
encountered the system will be able to make use of the new rules to recognize and
generate appropriate machining faces as machining feature information in the B-rep
database.

- 190 -

Chapter 9

9,2 Contributions to Knowledge
The major contributions of this thesis are summarised below :

(1) A scheme has been designed and implemented for representing machining features.
Based on this scheme, a ray-casting based algorithm has been devised for
recognizing 2.5D machining features. Besides being a useful tool for exposing
potential 2.5D machining features, the algorithm can also be used as a general
method for dealing with machining feature interactions in a design by features
system. For instance, with slight modifications, the algorithm could be embedded
in a feature based design system as a procedure for validating the machinability of
a particular portion of a part after each step of design construction. Although the
implementation described in this thesis uses a CSG-based system, the method
actually works with the B-rep database, and hence the algorithm can also be adopted

in B-rep modellers.

(2) A machine learning based procedure has been designed and implemented for adding
custom machining features to the system for subsequent recognition. The
representation of the custom features is compatible with the feature representation
scheme adopted in the first method. The process of instructing new custom features
is interactive and does not require the knowledge of é programming language. This
provides a novel means of extending the recognition ability of the system to adapt

to diverse manufacturing conditions.

(3) As a proof-of-concept implementation, a simple machining operation sequencing
program and a NC cutter path generation program have been developed to study and
elucidate the chain of steps leading from the extracted feature information to the

ultimate production of NC part programs.

(4) The practical demonstration of how AI and solid modelling techniques can be

combined together to accomplish the automatic extraction and organization of CAD

-191 -

Chapter 9

information for manufacturing has been produced. In particular, a suite of programs
have been implemented for constructing/managing a comprehensive B-rep database
which is an improved version of the original PADL-2's boundary file, and for
transforming the B-rep data into a frame representation for feature recognition. In
addition, a prototype software system using a combination of knowledge-based and
solid modeller architectures has been developed. The testbed system is a flexible
resecarch platform for pursuing future explorations on the automation and

integration of design and manufacturing.

9.3 Future Work

Major recommendations for future work are discussed based on refinement of
some of the ideas and their implementations in this research. Some general research

avenues opened up by this thesis are also briefly outlined.

9.3.1 Featui‘e Classification

The extracted machining features have not been differentiated into specific
feature classes or types, and thus the cutter path generation module can only treat all
extracted machining features as a general pocket. This results in the use of a rather
general cutter path generation strategy. If the extracted features could be classified into
more meaningful types such as slots and steps, then many of the process planning
decisions, such as operation selection and cutter path planning, can be made more

intelligently.
This shortcoming can be ameliorated by adding a feature classification module

to enhance' the semantic content of the extracted machining features with feature type

information. In this connection, a feature classification scheme would need to be

- 192 -

Chapter 9

established for defining the feature type domain. The form feature taxonomy proposed
by Gindy [Gindy89] is recommended for this purpose, not only because the taxonomy
is designed for generic features, but also because the classification attributes used in the
structure are very similar to those used in the feature representation scheme of this
work. For instance, Gindy's entry/exit boundaries can be related to the
primary_top_entrance_face/part face, while the external access directions can be seen

as equivalent to the cutter axis vector described in this thesis.

The feature type classification module could be implemented by specifying the
classification attribute conditions of each defined feature type in production rules so that
successful firing of a set of rules would lead to confirmation of a particular feature
type. The comprehensive B-rep database established in this research work would still
be a primary source for providing necessary information to the classification process.
However, the majdr information input to the feature type classification process would
not be raw CAD data but extracted machining features that have practical

manufacturing meanings already attached to their bounding faces.

9.3.2 Alternative Cutter Axis Vectors

The cutter axis vector, which is determined directly from the projection direction
of the cast rays, basically represents the cutter axial approach direction. In effect, the
cutter axis vector defines how a machining feature is orientated for machining, and
hence it is a very useful piece of information for setup planning, machining path
planning, etc.. Currently, only one cutter axis vector is represented in an extracted
machining feature due to the fact that the ray-casting accessibility analysis is not
repeated on the other faces of the machining feature once a valid part_face is found.
This limitation could be removed if the accessibility test were also performed on the
_other faces of the recognized machining feature so that the total number of alternative
cutter axis vectors can be explored and ascertained. This would also facilitate the

feature type classification processs as recommended above since the number of

- 193 -

Chapter 9

alternative cutter axis vectors could be used as a clue for discriminating between

different classes of features.

9.3.3 Instructing Multiple Features

The machine learning method only allows the user to teach one machining
feature in a cavity volume. As a cavity volume may contain several machining features,
it is desirable to improve the method so that multiple features could be learnt by the

system.

9.3.4 Learning Technique Enhancement

The learning method adopted in this thesis is essentially based on the learning
by rote strategy which involves the conversion of the boundary characteristics of a
feature example into an independent set of rigidly linked production rules. Each set of
production rules is used as a unique feature template for subsequent feature recognition.
An undesirable result is that the system considers every feature example as a completely
new and unique case that bears no relationship or similarity with previously learnt
features. This has an adverse effect on the system performance since the number of new

rules added to the system can easily increase to an unmanageable size.

Perhaps a more positive approach for enhancing the learning process would be
to use the learning by example strategy described in chapter 3. With such an approach,
the system would regard the features to be learnt as a continuous supply of training
examples, With the feature classification structure mentioned above, the system would
be able to discern structural shape similarities or differences between a given feature
example and the previously learnt features. The user would need to teach the system
by providing more specific information or instructions so that the system could enhance

its knowledge about feature shapes through one or a combination of the following three

- 194 -

Chapter 9

major actions :

(1) Generalize a previously learnt feature shape description into a more generic
description that could be used as a basis for recognizing the feature example. For
example, generalization could be done by relaxing shape classification constraints,
such as using convexity classification for representing edge angle rather than

specifying an exact angular measure in degrees;

(2) Specialize a previously learnt feature shape description into a more stringent or
discriminative description that has a high discerning power for recognizing the
feature example. For instance, specialization could be effected by defining precisely
a classification attribute value, such as stating the exact number of cutter axis

vectors of a feature;

(3) Create a new feature shape description for the feature example when the feature
example is found to be a genuinely new feature instance. This action is essentially

the approach currently used in this thesis.

With these methods, the problem of managing a large rule base would be
alleviated since the acquisition of new feature shape knowledge would not always be
by creating new feature shape description rules but also by modifying existing rules.
However, the alternate generalization and specialization of rules may make the system's
performance in recognizing features become unstable or inconsistent. For example, the
system may 'forget' some previously learnt features after an improper specialization
process. Exploration in using such a feature learning approach is a challenging research
task.

- 195 -

Chapter 9

9.3.5 General Research Directions

Further investigations can be pursued along two major directions :

(1) Extension of the part domain in terms of complexity and variety;
(2) Comprehensive exploitation of feature technology for integrating various automated

activities in the product life cycle.

The parts considered in this research are machined components that contain only
planar and cylindrical faces. Extension of the feature finding methods to machined parts
that are constructed by using additional surface types is essential. Methods for
representing variational geometric information in CAD models are lacking as they
embody much design and manufacturing meanings that are very beneficial to feature
reasoning. While PADL-2 can still be used to fulfil this extension, the use of an
advanced B-rep modeller that offers high extensibility and manipulation flexibility of
part geometry would be a more desirable and long-term choice. The knowledge and
experience gained from this research could also be applied to' study features associated

with other product types such as sheet-metal parts and moulded parts.

The use of the extracted feature information can be extended for diverse design
and manufacturing activities such as finite-element analysis, process capability
modelling, setup planning, assembly planning and inspection planning. Investigations
using a feature model as a central database for supporting manufacturing logistics
oriented activities such as material requirements planning and product costing are of
crucial importance in a computer integrated manufacturing environment. However, so

far these kinds of research activities on feature applications seem to be severely lacking.

- 196 -

References

REFERENCES

[Akagi91] Akagi, S., "Expert system for engineering design based on object-
oriented knowledge representation concept”, Artificial Intelligence
in Design, Pham, D.T., (ed.), Springer-Verlag, pp. 61-95, 1991.

[Alting89] Alting, L. and Zhang, H.C., "Computer aided process planning
: the state-of-the-art survey"”, International Journal of Production
Research, Vol. 27, No. 4, pp. 553-586, April 1989.

[Anderson79] Anderson, J.R., Kline, P. and Beasley, C., "A general learning
theory and its implications to schema abstraction”, The
Psychology of Learning and Motivation, Bower, G.H., (ed.),
Academic Press, New York, Vol. 13, pp. 277-318, 1979.

[Arbab82] Arbab, F., "Requirements and architecture of a CAM-Oriented
CAD system for design and manufacture of mechanical parts,”

Ph.D. Thesis, Computer Science Dept., University of California,
Los Angeles, 1982.

[Baer79] Baer, A., Eastman, C. and Henrion, M., "Geometric modelling
: a survey"”, Computer-Aided Design, Vol. 11, No. 5, pp. 255-
272, September 1979.

[Baumgart74] Baumgart, B.G., "Geometric modeling for computer vision",
Ph.D. thesis, Department of Computer Science, Stanford
University, August 1974.

[Berenjig6] Berenji, H.R. and Khoshnevis, B., "Use of artificial intelligence
in automated process planning”, Computers in Mechanical
Engineering, pp. 47-55, September 1986. '

[Bono87] Bono, P.R. and Herman I, (eds.), "GKS theory and
practice”, Springer-Verlag, Berlin, 1987,

[Brown82] Brown, C.M., "PADL-2: A technical summary", IEEE Computer
Graphics and Applications, Vol. 2, No. 2, pp. 68-84, March
1982,

[Brownston85] Brownston, L., Farrell, R., Kant, E. and Martin, N,,

"Programming Expert Systems in OPS5", Addison-Wesley
Publishing Company Inc.,1985.

- 197 -

[Bruzzone91]

[BS3635]

[BS5110]

[Buller80]

[Butterfield87]

[CAMI-ANCS5)

[Case92]

[Chan82]

[Chan86]

[Chan88]

[Chang81]

References

Bruzzone, E. and Floriani, L. De., "Extracting adjacency
relationships from a modular boundary model”, Computer-aided
Design, Vol. 23, No. 5, pp. 344-356, June 1991.

BS3635 : Part 1 : control input data, "Specification for the
numerical control of machines", November 1972.

BS5110 : Part 1 : 1979, "Logical structure and major words of
processor output (CLDATA), Specification for programming
languages for the numerical control of machines”, -British
Standards Institution.

Buller, W.I.,, Nof, S.Y. and Whinston, A.B., "Artificial
Intelligence in Manufacturing Planning and Control”, AIIE
Transactions, pp. 351-363, December 1980.

Butterfield, W.R., Green, M.K., Scott, D.C. and Stoker, W.J.,
"Part features for process planning”, CAM-I Report C-85-PPP-
03, CAM-I Inc., Arlington, Texas, 1987.

General Dynamics Corporation, "Volume decomposition algorithm
final report”, CAM-I Report R-85-ANC-01, 1985,

Case, K., "Feature technology : an integration methodology for
CAD and CAM", Keynote paper to the International Conference
on Manufacturing Automation, Ko, NNW.M. and Tan, S.T.,
(eds.), University of Hong Kong, Hong Kong, pp. 613-624, 10-12
August 1992,

Chan, B.T.F., "ROMAPT : a new link between CAD and
CAM", Computer-aided Design, Vol. 14, No. 5, pp. 261-266,
September 1982.

Chan, S. and Voelcker, H.B., "An introduction to MPL - a new
machining process programming language", IEEE Int. Conf. on
Robotics and Automation, San Francisco, April 1986,

Chan, K.C. and Tan, S.T., "Hierarchical structure to winged-
edge structure : a conversion algorithm", The Visual Computer,
4:133-141, Springer-Verlag, 1988.

Chang, T.C. and Wysk, R.A., "An integrated CAD/Automated

process planning system", AIIE Transactions, Vol. 13, No.3, pp.
223-233, September 1981.

- 198 -

References

[Chang88] Chang, T.C., Anderson, D.C. and Mitchell, O.R., "QTC - an
integrated design/manufacturing inspection system for prismatic
parts”, Proceedings of the 1988 ASME International Computers
in Engineering Conference and Expositions, Vol. 1, pp. 417-426,
1988.

[Choi84] Choi, B.K., Barash, M.M. and Anderson, D.C., "Automatic
reognition of machined surfaces from a 3D solid model”,
Computer-aided Design, Vol. 16, No. 2, pp. 81-86, March 1984.

[Choi88] Choi, B.K., Lee, C.S., Hwang, 1.S. and Jun, C.S., "Compound
surface modelling and machining", Computer-aided Design, Vol.
20, No. 3, pp. 127-136, April 1988.

[Chung88] Chung, J.C.H., Cook, R.L., Patel, D. and Simmons, M.K.,
"Feature-based geometry construction for geometric reasoning”,
Proceedings of the 1988 ASME International Computers in
Engineering Conference and Expositions, Vol. 1, pp. 497-504,
1988.

[Cohen83] Cohen, P.R. and Feigenbaum, E.A., (eds.), "Learning and
inductive inference", The Handbook of Artificial Intelligence,
Vol. 3, Chapter XIV, pp. 324-511, Pitman Books Limited, 1983.

[Corney9la] Corney, J. and Clark, D.E.R., "A feature recognition algorithm
for multiply connected depressions and protrusions in 2.5D
objects”, Proceedings of Symposium in Solid /Modelling
Foundations and CAD/CAM Applications, ACM, USA, 1991.

[Corney91b] Corney, J. and Clark, D.E.R., "Method for finding holes and
pockets that connect multiple faces in 2.5D objects", Computer-
aided Design, Vol. 23, No. 10, pp. 658-668, December 1991.

[Crawford87] Crawford, T.M. and Marton, V., "A machine learning approach
to expert systems for fault diagnosis in communications
equipment”, Computer-aided Engineering Journal, pp. 31-38,
1987.

{Cunningham88] Cunningham, J.J. and Dixon, J.R., "Designing with features :
the origin of features", Proceedings of the 1988 ASME
International Computers in Engineering Conference and
Expositions, Vol. 1, pp. 237-243, August 1988,

[Cutkosky88] Cutkosky, M., Tenenbaum, J.M. and Muller, D., "Features in
process based design”, Proceedings of the 1988 ASME
International Computers in Engineering Conference and
Expositions, Vol. 1, pp. 557-562, 1988.

- 199 -

References

[Dahl73] Dahl, O.J. and Hoare, C.R., "Hierarchical program structures”,
Structured Programming, Academic Press, London, 1973,

[Davies84] Davies, B.J. and Darbyshire, I.LL., "The use of expert systems
in process planning”, Annals of the CIRP, Vol. 33/1, pp. 303-
306, 1984,

[Descotte84] Descotte, Y. and Latombe, J., "GARI : an expert system for

process planning”, Solid Modelling by Computers : from theory
to applications, Pickett, M.S. and Boyse, I.W., (ed.), Plenum
Press, pp. 320-346, 1984,

[Digital85] Digital Equipment Corporation, "VAX OPS5 reference manual
(AA-EZ19A-TE) and VAX OPSS user's guide (AA-EZ18A-TE)",
1985.

[Dong88a] Dong, X. and Wozny, M.J., "FRAFES : a frame-based feature

extraction system", Proceedings of the International Conference
on Computer Integrated Manufacturing, Troy, New York, pp.
296-305, May 1988.

[Dong88b] Dong, X., "Geometric feature extraction for computer-aided
process planning”, Ph.D. Thesis, Center for Interactive Computer
Graphics, Rensselaer Polytechnic Institute, Troy, New York, May
1988.

[Eastman79] Eastman, C. and Weiler, K., "Geometric modelling using the
Euler operators", Proceedings of the First Annual Conference on
Computer Graphics in CAD/CAM Systems, MIT, Cambridge,
Mass., pp. 248-259, April 1979,

[Falcidieno87] Falcidieno, B. and Giannini, F., "Extraction and organization of
form features into a structures boundary model",
EUROGRAPHICS ‘87, Marechal, G., (ed.), Elsevier Science
Publishers B.V. (North-Holland), pp. 249-259, 1987.

[Floriani88] Floriani, L.De and Falcidieno, B., "A hierarchical boundary
model for solid object representation”, ACM Transactions on
Graphics, Vol, 7, No. 1, pp. 42-60, January 1988.

[Floriani89] Floriani, L.De and Bruzzone, E., "Building a feature-based object

description from a boundary model", Computer-aided Design,
Vol. 21, No. 10, pp. 602-610, December 1989.

- 200 -

[Forgy77]

[Gallagher73]

[Gandhi89]

[Gindy89]

[Gindy90]

[Gindy91]

[Goldberg83]

[Grayer77]

[Harmon88]

[Hartquist81]

[Hart86]

References

Forgy, C. and McDermott, J., "OPS, a domain-independent
production system language", Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, pp. 933-
939, 1977.

Gallagher, C.C. and Knight, W.A., "Group technology",
Butterworths, London, 1973.

Gandhi, A. and A. Myklebust, "A natural language approach to
feature based modeling”, Advances in Design Automation-1989,
Vol. 1, Computer-Aided and Computational Design, Ravani,B.,
(ed.), pp. 69-77, 1989,

Gindy, N.N.Z., "A hierarchical structure for form features",
International Journal of Production Research, Vol. 27, No. 12,
pp. 2089-2103, 1989.

Gindy, N.N.Z. and Case, K., "Process capability models for
design and selection of processing equipment”, Research Proposal,
Department of Manufacturing, Loughborough University of
Technology, Loughborough, Leicestershire, UK, July 1990.

Gindy, N.N.Z. and Ratchev, T.M., "Product and machine tools
data models for CAPP systems”, 4th IFIP Conference, CAPE91,
Bordeaux, France, September 1991,

Goldberg, A. and Robson, P., "Smalltalk80 : the language and
its implementation”, Addison-Wesley, Reading, 1983.

Grayer, A.R., "The automatic production of machined
components starting from a stored geometric description”,
Advances in Computer-Aided Manufacture, McPherson, D.,
(ed.), North-Holland Publishing Company, pp. 137-151, 1977.

Harmon, P., Maus, R. and Morrissey, W., "Expert systems tools
and applications”, John Wiley & Sons, Inc., 1988.

Hartquist, E.E. Peterson, D.P., and Voelcker, H.B., "BFILE/2
: a boundary file for PADL-2", Computational Geometry Group
Memo. No. 20, Production Automation Project, University of
Rochester, 1982.

Hart, N. and Bennaton, J., "A CAD engineering language to aid
manufacture”, Proceedings of International Conference on
Computer Aided Production in Engineering, Edinburgh, April
1986.

-201 -

References

[Held91] Held, H., "On the computational geometry of pocket machining”,
Springer-Verlag, Berlin Heidelberg, 1991.

[Henderson84] Henderson, M.R., "Extraction of feature information from three
dimensional CAD data", Ph.D. thesis, Purdue University, May
1984,

[Hillyard82] Hillyard, R., "The BUILD group of solid modelers”, IEEE

Computer Graphics & Applications, pp. 43-52, March 1982,

[Houten90] van Houten, F.J.A.M., van "t Erve,A.H., Boogert, R.M., Nauta,
J., and Kals H.J.J., "Part, selection of methods and tools", 22nd
CIRP International Seminar on Manufacturing Systems, Enschede,
1990,

[Hummel89] Hummel, K.E., "Coupling rule-based and object-oriented
programming for the classification of machined features”,
Proceedings of the 1989 ASME International Computers in
Engineering Conference and Expositions, Vol. 1, pp. 409-418,
1989,

[Hummel90] Hummel, K.E. and Wolf, M.L., "Integrating expert systems with
solid modeling through interprocess communications and the
applications interface specifications”, Proceedings of the 1990
ASME International Computers in Engineering Conference and
Expositions, Vol. 1, pp. 355-360, 1990.

[IIT67] IIT Research Institute, "APT Part Programming", McGraw-Hill,
N.Y., 1967.
[Ishii89] Ishii, K., Goel, A. and Adler, R.E., "A model of simultaneous

engineering design", Artificial Intelligence in Design, Gero,
J.S.,(ed.), Proceedings of the 4th International Conference on the
Applications of Artificial Intelligence in Engineering, Cambridge,
UK, July, 1989, Computational Mechanics Publications, Springer-
Verlag, pp. 483-501, 1989.

[Iwata90] Iwata, K., Fukuda, Y. and Sugimura, N., "A proposal of
knowledge base structure for integrated process planning system”,
Proceedings of the 22th CIRP international seminar on
manufacturing systems, Enschede, 1990.

[Joseph90] Joseph, A.T., Kalta, M. and Davies, B.J., "Automatic generation
of NC programs for turned components from CAD product
models”, Proceedings of the 28th MATADOR, UMIST, 18-1%
April 1990.

- 202 -

[Joshi88]

[Juster92]

[Kochan86]

[Kroll91}

[Kuratowski76]

[Kusiak91]

[Kyprianou80]

[Lee82a]

[Lee82b]

[Lee87]

[Lee88]

References

Joshi, S. and Chang, T.C., "Graph-based heuristics for
recognition of machined features from a 3D solid model”,
Computer-aided Design, Vol. 20, No. 2, pp. 58-66, March 1988.

Juster, N.P., "Modelling and representation of dimensions and
tolerances : a survey", Computer-aided Design, Vol. 24, No. 1,
pp. 3-17, January 1992.

Kochan, D., (ed.), "Developments in computer-integrated
manufacturing”, Springer-Verlag, Berlin, Heidelberg, 1986.

Kroll, E., Lenz, E. and Wolberg, J.R., "Intelligent analysis and
synthesis tools for assembly-oriented design”, Artificial
Intelligence in Design, Pham, D.T., (ed.), Springer-Verlag,
pp.125-145, 1991.

Kuratowski, K. and Mostowski, A., "Set theory", Amsterdam :
North-Holland Publishing Co., 1976.

Kusiak, A. and Heragu, S.S., "Knowledge-based programs for
manufacturing system design” Artificial Intelligence in Design,
Pham, D.T., (ed.), Springer-Verlag, pp. 437-492, 1991.

Kyprianou, L., "Shape classification in computer aided design”,
Ph.D. Thesis, University of Cambridge, July 1980,

Lee, Y.T. and Requicha, A.A.G., "Algorithms for computing the
volume and other integral properties of solids : I. known methods
and open issues”, Comm. of the ACM, Vol. 25, No. 9, pp. 635-
641, September 1982.

Lee, Y.T. and Requicha, A.A.G., "Algorithms for computing the
volume and other integral properties of solids : II. a family of
algorithms based on representation conversion and cellular
approximation", Comm. of the ACM, Vol. 25, No, 9, pp. 642-
650, September 1982.

Lee,Y.C. and Fu, K.S., "Machine understanding of CSG :
extraction and unification of manufacturing features", IEEE
Computer Graphics & Applications, pp. 20-32, January 1987.

Lee, Y.C. and Jea, K.F.J., "A new CSG tree reconstruction
algorithm for feature representation”, Proceedings of the 1988
ASME International Computers in Engineering Conference and
Expositions, Vol. 1, pp. 521-528, 1988,

-203 -

References

[Li%1] Li, R.K. and Tzieng, S.D., "Machinable volumes extraction-non-
block type raw material input”, International Journal of Computer
Integrated Manufacturing, Vol. 4, No. 4, pp. 241-252, 1991.

[Luby86] Luby, S.D., Dixon, J.R. and Simmons, M.K., "Creating and
using a features data base”, Computers in Mechanical
Engineering, Vol. 5, No. 3., pp. 25-33, November 1986.

[Mendelson75] Mendelson, B., "Introduction to topology"”, Boston : Allyn and
“Bacon, Inc., 3rd edition, 1975.

[McDermott78] McDermott, J. and Forgy, C., "Production system conflict
resolution strategies”, in Pattern-directed inference systems,
Waterman, D.A. and Hayes-Roth, F., (eds.), Academic Press,
Inc., pp. 177-199, 1978.

[Minsky75] Minsky, M., "A framework for representing knowledge", The
Psychology of Computer Vision, Winston, P., (ed.), McGraw-
Hill, N.Y., 1975.

[Mostow83] Mostow, D.J., "Machine transformation of advice into a heuristic
search procedure”, Machine Learning, An Artificial Intelligence
Approach, Michalski, R.S., Carbonell, J.G. and Mitchell, T.M.,
(eds.), Tioga Publishing Co., Palo Alto, CA, pp. 368-403, 1983.

{Murray86] Murray, J.L. and Linton, H., "The development of an automatic
system for the generation of planning and control data for milled
components”, Proc. Inter. Workshop on Expert Systems in
Production Engineering, Spa, Belgium, Springer Verlag,
Heidelberg, pp. 231-245, 1986.

[Murray89] Murray, J.L. and Williams, M.H., "Knowledge-based systems
in process planning and assembly design”, Geometric Reasoning,
Woodwark, J. (ed.), Clarendon Press, Oxford, pp. 217-236,
1589.

[Newell72] Newell, A. and Simon, H.A., "Human problem solving",
Prentice-Hall, Cliffs, N.J., 1972.

[Nilsson71] Nilsson, N.J., "Problem-solving methods in artificial
intelligence”, McGraw-Hill, New York, 1971.

[Okino73] Okino, N., Kakazu, Y. and Kubo, H., "TIPS-1 : technical
information processing system for computer-aided design, drawing
and manufacturing”, Computer Languages for Numerical Control,
Hatvany, J. , (ed.), North-Holland Publishing Co., Amsterdam,
pp. 141-150, 1973,

- 204 -

[Perng90]

[Persson78]

[Pratt87]

[Pratt88]

[Pressman77]

[Quillian68]

[Requicha78]

[Requicha80]

[Requicha82]

[Requicha83]

[Requicha85a]

[Requicha85b]

References

Perng, D.B., Chen, Z. and Li, R.K., "Automatic 3D machining
feature extraction from 3D CSG solid input”, Computer-aided
Design, Vol. 22, No. 5, pp. 285-295, June 1990.

Persson, H., "NC machining of arbitrarily shaped pockets”,
Computer-aided Design, Vol. 10, No. 3, pp. 169-174, May 1978.

Pratt, M.J., "Form features and their applications in solid
modelling", SIGGRAPH '87 Course Notes, Vol. 26, July 1987,

Pratt, M.J., "Synthesis of an optimal approach to form feature
modelling", Proceedings of the 1988 ASME International
Computers in Engineering Conference and Expositions, Vol. 1,
pp. 263-274, 1988.

Pressman, R.S. and Williams, J.E., "Numerical control and
computer-aided manufacturing”, Chapter 1, pp. 1-17, John Wiley
& Sons, Inc., 1977,

Quillian, M.R., "Semantic memory"”, Semantic Information
Processing, Minsky, M., (ed.), MIT Press, Cambridge, Mass.
pp. 216-270, 1968.

Requicha, A.A.G. and Tilove, R.B., "Mathematical! foundations
of constructive solid geometry : general topology of regular closed
sets”, Tech, Memo. No. TM-27a, Production Automation Project,
University of Rochester, Rochester, N.Y., June 1978.

Requicha, A.A.G., "Representations for rigid solids : theory,
methods, and systems", Computing Surveys, Vol. 12, No. 4, pp.
437-464, December 1980.

Requicha, A.A.G. and Voelcker, H.B., "Solid modeling : a
historical summary and contemporary assessment”, IEEE
Computer Graphics & Applications, pp. 9-24, March 1982.

Requicha, A.A.G., "Toward a theory of geometric tolerancing”,
International Journal of Robotics Research, Vol. 2, No. 4, 1983.

Requicha, A.A.G. and Voelcker, H.B., "Boolean operations in
solid modelling : boundary evaluation and merging algorithms",
Proc. IEEE, Vol. 73, No. 1, pp. 30-44, January 1985.

Requicha, A.A.G. and Chan, S., "Representation of geometric
features, tolerances and attributes in solid modelers based on
CSG", Tech. Memo. No. 48, Production Automation Project,
University of Rochester, Rochester, N.Y., October 1985.

- 205 -

References

[Rogers89] Rogers, D.F, and Adams, J.A., "Mathematical elements for
_ computer graphics”, McGraw-Hill Publishing Company, second
international edition, 1989.

[Roth82] Roth, S.D., "Ray casting for modeling solids", Computer
Graphics and Image Processing, 18, pp. 109-144, 1982.

[Saeed88] Saced, S.E.O., de Pennington, A. and Dodsworth, J.R,,
"Offsetting in geometric modelling”, Computer-aided Design,
Vol. 20, No. 2, March 1988.

[Sakurai88] Sakurai, H. and Gossard, D.C., "Shape feature recognition from
3D solid models", Proceedings of the 1988 ASME International
Computers in Engineering Conference and Expositions, Vol. 1,
pp. 515-519, 1988.

[Sakuraio1] Sakuari, H. and Gossard, D.C., "Geometric modelling in setup
planning and fixture design”, Product Modelling for Computer-
Aided Design and Manufacturing”", Turner, J., Pegna, J. and
Wozny, M. (eds.), Elsevier Science Publishers B.V. (North-
Holland), IFIP, pp. 299-313, 1991.

[Samuel63] Samuel, A.L., "Some studies in machine learning using the game
of checkers", Computer and Thought, Figenbaum, E.A. and
Feldman, J., (eds.), McGraw-Hill, New York, pp. 71-105, 1963.

[Samuel76] Samuel, N.M., Requicha, A.A.G. and Elkind, S.A,,
"Methodology and results of an industrial part survey", Tech.
Memo. No. 21, Production Automation Project, University of
Rochester, Rochester, N.Y., July 1976.

[Shah88a] Shah, J.J., Sreevalsan, P.C., Rogers, M., Billo, R., and Mathew,
A., "Current status of features technology”, Computer Aided
Manufacturing-International, Inc., Revised Report, R-88-GM-
04.1, Arlington, Texas, November 1988.

[Shah88b] Shah, J.J. and Rogers, M.T., "Feature base modelling shell :
design and implementation”, Proceedings of the 1988 ASME
International Computers in Engineering Conference and
Expositions, Vol. 1, pp. 255-261, 1988.

[Shah90] Shah, J1.J., Rogers, M.T., Sreevalsan, P.C., Hsiao, D.W.,
Mathew, A., Bhatnagar, A., Liou, B.B., and Miller, D.W., "The
A.S.U. features testbed : an overview", Proceedings of the 1990
ASME International Computers in Engineering Conference and
Expositions, pp. 233-241, 1990.

- 206 -

[Shah91a]

[Shah91b]

{Shapiro91]

[Simon83}

[Simon88]

[Silva81]

[Smithers89]

[Tang91]

[Thomson86]

[Tiller84]

References

Shah, J.J., "Assessment of features technology”, Computer-aided
Design, Vol. 23, No. 5, pp. 331-343, June 1991,

Shah, 1.J., "Conceptual development of form features and feature
modelers", Research in Engineering Design, Springer-Verlag,
New York Inc., Vol. 2, pp. 93-108, 1991.

Shapiro, V. and Vossler, D.L., "Construction and optimization
of CSG representations”, Computer-aided Design, Vol. 23, No.
1, pp. 4-20, January/February 1991.

Simon, H.A., "Why should machines learn ?", Machine
Learning, An Artificial Intelligence Approach, Michalski, R.S.,
Carbonell, J.G. and Mitchell, T.M., (eds.), Tioga Publishing Co.,
Palo Alto, CA, pp. 25-37, 1983.

Simon, W., Ersuu, E., Gose, H., and Zoll, M., "A real-time
knowledge scheme for sensory-controlled robot assembly tasks,
Proceedings of the Symposium on Robot Control, Karlsruhe,
FRG, October, 1988.

Silva, C.E., "Alternative definitions of faces in boundary
representations of solid objects”, Tech. Memo. No. 36,
Production Automation Project, University of Rochester, 1981.

Smithers, T., Conkie, A., Doheny, J., Logan, B., and
Millington, K., "Design as intelligent behaviour : an Al in design
research programme”, Artificial Intelligence in Design, Gero,
J.S., (ed.), Proceedings of the 4th International Conference on
the Applications of Artificial Intelligence in Engineering,
Cambridge, UK, July, 1989, Computational Mechanics
Publications, Springer-Verlag, pp. 293-334, 1989,

Tang, K. and Woo, T., "Algorithmic aspects of alternating sum
of volumes. Part 2 : nonconvergence and its remedy”, Computer-
aided Design, Vol. 23, No. 6, pp. 435-443, July/August 1991,

Thomson, V. and Graefe, U,, "CIM - A manufacturing
paradigm", Division of Mechanical Engineering Report, DM-6,
NRC No. 26198, National Research Council Canada, 1986/7.

Tiller, W. and Hanson, E.G. "Offsets of two-dimensional

profiles”, IEEE Computer Graphics and Applications, pp. 36-46,
September 1984,

- 207 -

References

[Tilove80] Tilove, R.B., "Set membership classification : a unified approach
to geometric intersection problems”, IEEE Transactions on
Computers, Vol. C-29, No. 10, pp. 874-883, October 1980.

[Tilove81] Tilove, R.B., "Line/Polygon classification : a study of the
complexity of geometric computation”, IEEE Computer Graphics
& Applications, Vol 1, No. 2, pp. 75-83, April 1981.

[Tilove84] Tilove, R.B., Requicha, A.A.G. and Hopkins, M.R., "Efficient
editing of solid models by exploiting structural and spatial
locality", Tech. Memo. No. 46, Production Automation Project,
University of Rochester, Rochester, N.Y., May 1984,

[Tsang89] Tsang, J.P. and Brissaud, D., "A feature-based approach to
process planning", Proceedings of the 1989 ASME International
Computers in Engineering Conference and Expositions, Vol. 1,
pPp. 419-430, 1989,

[Turner88] Turner, G.P. and Anderson, D.C,, "An object-oriented approach
to interactive, feature-based design for quick turnaround
manufacturing”, Proceedings of the 1988 ASME International
Computers in Engineering Conference and Expositions, Vol. 1,
pp. 551-555, 1988.

[Unger88] Unger, M.B. and Ray, S.R., "Feature-based process planning in
the AMRF", Proceedings of the 1988 ASME International
Computers in Engineering Conference and Expositions, Vol. 1,
pp. 563-569, 1988,

[Voelcker81] Voelcker, H.B. and Requicha, A.A.G., "Boundary evaluation
procedures for objects defined via constructive solid
geometry”, Tech. Memo. No. 26, Production Automation Project,
University of Rochester, 1981.

{Weghorst8] Weghorst, H., Hooper, G., and Greenberg, D.P., "Improved
computational methods for ray tracing", ACM Transactions on
Graphics, Vol. 3, No. 1, pp. 52-69, January 1984,

[Weiler85] Weiler, K., "Edge-based data structures for solid modelling in
curved-surface environments", IEEE Computer Graphics &
Applications, pp. 21-40, January 1985.

[Weiler88] Weiler, K., "Boundary graph operators for non-manifold
geometric modeling topology representations”, Geometric
Modeling for CAD Applications, Wozny, M.J., McLaughlin,
H.W. and Encarnacao, J.L., (eds.), Elsevier Science Publications
B.V., North-Holland, pp. 37-66, 1988.

- 208 -

References

[Wilson88] Wilson, P.R. and Prait, M.J., "A taxonomy of features for solid
modeling”, Geometric Modeling for CAD Applications, Wozny,
M.J., McLaughlin, H.W. and Encarnacao, J.L., (eds.), Elsevier
Science Publications B.V., North-Holland, pp. 125-136, 1988.

[Winston75] Winston, P.H., "Learning structural descriptions from examples”,
The Psychology of Computer Vision, Winston, P.H., (ed.),
McGraw-Hill, New York, pp.157-209, 1975.

[Woo75] Woo, T.C., "Computer aided recognition of volumetric designs",
Advances in Computer-Aided Manufacture, McPherson, D.,
(ed.), North-Holland Publishing Company, pp. 121-136, 1977.

[Woo082] Woo, T.C., "Feature extraction by volume decomposition”,
Proceedings of the Conference on CAD/CAM Technology in
Mechanical Engineering, MIT, Cambridge, MA, pp. 76-94,
March 1982,

[Wysk77] Wysk, R.A, "Automatic process planning and selection -
APPAS", Ph.D. Thesis, Purdue University, May 1977,

[Yuen88] Yuen, M\M.F., Chan K.W., Sze, W.S. and Tan, S.T., "A CIM
implementation feasibility study”, Proceedings of the 4th
International Conference on Computer-aided Production
Engineering, University of Edinburgh, pp. 265-269, November
1988,

- 209 -

Appendix A

APPENDIX A
DERIVATION OF THE

CAVITY VOLUME BOUNDARY EXPRESSION

Before explaining the derivation, some symbols and their corresponding

definitions are introduced first :

d(x1, x2)
B(x, 1)

ix

cX

bx

iX
bX

kX

rX

<c>X

<->
<n>

a subset of

world set of 3D Euclidean space

metric distanée between points x1 and x2 in W

a set in the form of an open ball of radius r about a point x of a subset
X in W that satisfies d(x,y) < r,

such thaty € B(x,r) € W,and x € X € W

an interior point of a subset X in W which contains B(ix, 1)
complement of a subset X in W

W -X

set intersection

a boundary point of a subset X in W such that

B(bx, 1) A~ X ,and Bbx, 1) n X

a set of all the interior points ix of subset X in W

a set of all the boundary points bx of a subset X in W
set union

the closure of X

iX v bX

a regular set X

kiX

regular complement of a subset of X

reX

regularized set subtraction

regularized set intersection

-210 -

Appendix A

The following regular point-set properties are also needed for explanation of the

derivation process :

Property Al :
If X and Y are regular point sets then X <-> Y = X <a> <c>Y

Property A2 :
If X and Y are regular point sets then
X <a>Y)=0X niY)v (X ndbY) v [bX A DY nk(iX ~iY)]

Property A3 .
If X is a regular point set then i<c>X = ¢X

Property A4 :
If X is a regular point set then b<c>X = bX

The proof of the above properties is very laborious and requires a rigorous and
fundamental discussion of the regularized point-set theory. Hence, the proof is not
included in this thesis, and interested readers are recommended to study the references
[Kuratoswski76, Mendelson75, Requicha78].

As defined in section 4.2 (chapter 4), the cavity volume model V is the total
volume of material machined from S to produce P, which can be expressed as :
V=S<->P
By using the boundary point set operator b defined above, the surface boundary of the
cavity volume V can be expressed as :
bV = bS <-> P)

= bS <a> <c>P) i)
= (S Ani<c>P)v ((SAb<c>P) v [IS Aab<c>P Ak(iS ni<c>P)] (i)
= (BSAcP)v (SAb<c>P)v [IS Aab<c>P A k(S A cP)] (iii)
= ((SAcP)v (ISADP) v [bS A DBP A Kk(S A cP)] (iv)

- 211 -

Appendix A

Remarks :

Expression (i) is obtained by applying Property Al
' (i) is obtained by applying Property A2
' (iii)) is obtained by applying Property A3
' (iv) is obtained by applying Property A4

The meaning of expression (iv) is illustrated in Fig. Al. It can be seen that the
last term, [bS A DP A k(S A cP)], basically represents the edgeé formed by the
intersection of the cavity volume boundary faces. As the focus of interest is on the

cavity volume boundary faces, the last term is ignored.

Hence, bY = (bS AcP) v (iS A bP)

NERNERANERAN AN v W74 NN AR
2 I U 4 N
A N 4 \ V
. S % % AN
N N [T /\ NS
N % p / .
N (cavity volume)
N N N N NN 7 7 7 7/ V
(stock) (part) magnified
(bs N cP)
; ' 4 (is Nbp)
bS N bP N k(is N cP) A //
777

Figure Al : Illustration of the cavity volume boundary expression.

-212 -

Appendix B

APPENDIX B

FEATURE REPRESENTATION -
ILLUSTRATED EXAMPLES

Figure Bl illustrates a stepped‘ blind hole. The representation of the lower and
upper holes together with some of their geometric and topological information that can
be deduced from the cavity volume boundary database are summarized in Tables Bl,
B2, B3, B4, and BS5.

part with
a stepped
blind hole

e—loop4

Figure Bl : An example part with a stepped hole.

| Feature : the lower | part check primary | secondary | side

hole | face face top top entrance
... entrance | entrance | face
face face

cutter axis vector:
axis of f2 :

number of face i1 1 1 1 nil

I face id. | f1 f2 5 f3 nil
" Table Bl : Feature representation of the lower hole shown in Fig. B1.

-213 -

Appendix B

t Feature :

the

upper
hole

| cutter axis vector: |

| axis of 4

number of face

check
face

| part
face

face face

1 nil

primary | secondary | side
top top entrance
entrance | entrance | face

nil

I face id.

f5 nil’

nil

Table B2 : Feature representation of t

he upper hole shown In Fig. BI.

{ surface type

nature edge loop id.
planar machined_face e-loopl
2 | cylindrical machined_face e-loopl, e-loop2
3 | planar machined face e-loop2, e-loop3
4 § cylindrical machined face e-loop3, e-loop4
fs planar tool_entrance_face | e-loop4

Table B3 : Face nformation.

_: constituent edge inner/outer loop .
e-loopl | el outer
e-loop2 { 2 inner
e-loop3 l e3 outer
e-loop4 e4 outer

Table B2 : Edge loop information.

curve type convexity
el, e3, ¢4 ellipse convex
e2 { cllipse concave

Table B> : Edge information,

- 214 -

Appendix B

Figure B2 shows a part with a rectangular boss that is assumed to be produced
by removing its surrounding and upper part material by means of two surface milling
operations. Similarly, the representation of the two machining features is summarized
in Tables B6, B7, B8, B9 and B10.

e5 fl

T ey, —e-loopl
——el24 623:/_
|L____\ﬂ'—Lg‘:g l__“_eﬁ

\;%Le—IOOPB

e—loop3d
e-loop?
el?
e—loopd

el

Figure B2 : An example part with a rectangular boss.

| Feature : surface | part | check face primary | secondary | side

milling § face top top entrance

entrance | entrance face

cutter axis
face face

vector:
for example, using the
curve vector of edge

€9 towards 6

number of face 8

f1 f2, 3, f4, £5, | 16 f11 f2, 3,
f7, 18, 19, f10 f4, f5

face id.

Table B6 : Feature representation of the surface milling shown in Fig. B2.

- 215 -

Appendix B

Feature : boss part | check face primary | secondary

top face top top
milling entrance | entrance

face face
cutter axis

vector:
for example, using the
curve vector of edge

el7 towards 16

4

number of face

side
entrance

face

face id. fll 7, 18, 9, f10 | f6 nil

nil

face id. surface type nature edge loop id.

‘ 7777777 lanar] machinf | e-loop , | -lp ”
2 planar tool_entrance face | e-loop9
f3 planar tool_entrance face | e-loop10
f4 planar tool_entrance face | e-loopll
f5 planar tool_entrance face | e-loop8
f6 planar tool_entrance face | e-loopl2
planar machined_face e-loop4
18 planar machined_face e-loop5
planar machined_face e-loop6
f10 planar machined_face e-loop3
f11 planar machined_face e-loop7

Table BS : Face information.

-216 -

Appendix B

e-loop id. constituent edge inner/outer loop
e-loopl e3, eb, 7, e8

e-loop2 e2l, e22, €23, e24 inner
e-loop3 el3, el7, €20, €21 outer
e-loopd el4, el7, el8, e22 outer
e-loop5s el5, el8, €19, €23 outer
e-loop6 el6, el9, €20, e24 outer
e-loop7 el3, el4, el5, 16 outer
e-loop8 el, e5, €9, el2 outer
e-loop9 €2, €6, €9, el0 outer
e-loopl0 e3, e7, el0, ell outer
e-loopll e4, e8, ell, el2 outer
e-loopl12 el, e2, e3, e4 outer

Table BY : Edge loop information.

| curve type convexity

el, e2, e3, ed, e5, 6, [line convex

e7, e8, e9, el0, ell, :
el2, e20, €21, €22, €23, |
e24

el3, eld, el5, el6, €17, § line concave
el8, el9, 20

Table B10 :1Edge information.

-217 -

Appendix C

APPENDIX C
LINE/SURFACE INTERSECTION

As the part models are assumed to contain planar and cylindrical faces, two

types of line/surface intersection need to be considered : line/plane and line/cylinder.

Line/Plane Intersection

The problem is to find the coordinates of the point of intersection between a line and
a plane. Let a line (or a ray) be defined in a parametric form as a point (x,, Yo, Zo) and
a direction vector (dx, dy, dz). For a parameter t, any point (X, y, z) on the line is
given by

X=xy + t*dx

Y=Yo + t*dy

z2=129 + t*dz
For simplicity, consider the intersection of the parametrized line

[(xg, Yo, Zo) {dx, dy, dz)] with the XY plane,

solving the two simultaneous equations :

z=10
Zz=12y+t*dz
gives t = -zy/dz

Having found the parameter value t, the point of intersection can be found as :
[xo + (-z/dz)dx, yo + (-zy/dz)dy, 0]
If dz is zero, the line is parallel to the plane, so they do not intersect.

-218-

Line/Cylinder Intersection

Appendix C

For simplicity, consider a cylindrical surface P = {(x, y z) : x> + y* + 72 < R?}, and

-infinity < z < +infinity

Substituting the x and y components of the line's equation yields
(Xo + t*dx)> + (yo + t*dy? = R?
Rearranging gives
2LEx)? + @y +2tXe*dx + yo*dy) + x> + ¥5°-R* =0
Using the quadratic formula, parameter t can be found as :
t = [-B +/- Sqrt (B? - 4AC)]/ 2A
where A = (dx)* + (dy)?
B=2(x;*dx + y,*dy)
C=x3 + y - R?

The line will intersect the cylindrical surface only if A is not equal to zero and

(B? - 4AC) is greater than or equal to zero.

Having found t, the intersection point can be found as in the line/plane case.

- 219 -

Appendix D

APPENDIX D
LINE/POLYGON INTERSECTION

In the recognition algorithm, it is required to determine whether a point P lies
inside or outside the boundary of a potential part face. The boundary edges of the
potential part face can be considered as a polygon of line segments since non-linear
edge segments can be approximated with line segments. When a line (or ray) is
projected from a starting point P to a destination point Q such that line PQ cut across
the polygon boundary, a number of intersection points will be created (Fig. D1). If the
number of intersection point N is even then the original point P is outside the polygon,
whereas if N is odd then P is inside the polygon. Thus the problem is virtually reduced
to finding Line/Line intersection between the projected line PQ and the line segments

of the polygon.

pontential
part face
boundary

o0 =intersection
point

Q

Figure D1 : The notion of line/polygon intersection.

Line/Line Intersection

Let the line PQ (or ray) be expressed parametrically as a starting point P, and a unit
direction vector V,,, i.e. PQ(t) =P, + t*V,

- 220 -

Appendix D

Similarly, let a line segment AB of the potential part face boundary be defined as a
starting point M, and a unit direction vector W_, i.e. AB(s) = M, + s* W,

The intersection occurs when PQ(t) = AB(s) or equivalently when
P, +t*V, = M, + s*W,
Subtracting P, from both sides and vector cross multiplying with W, yields
Vp X W)*t =M, - P) X W,
where X denotes vector cross multiplication
Hence t = {(M, - P)) X W_}/(V, X Wp.
Having found t, the intersection point can be found from :
PQ() =P, + t* V,
If the intersection point lies between the endpoints of AB then a valid intersection is

counted, otherwise there is no intersection counted.

-221 -

Appendix E

APPENDIX E

THE MODIFIED WINGED-EDGE
DATA STRUCTURE

The modified winged-edge data structure was proposed by Weiler [Weiler85].
It is an enhanced version of the winged-edge data structure originally proposed by
Baumgart [Baumgart74] for representing the adjacency relationships of topological

entities (i.e. faces, edges and vertices) of a polyhedral object in a computer.

As can be seen in Fig. El, the winged-edge structure is an edge-based structure
since an edge is used as a reference to access its adjacent entities : two faces, four
edges and two ending vertices. The clockwise and counter-clockwise names used in the
figure refer to their use in determining the cycle of edges surrounding a face, as viewed
from outside the solid looking towards the reference edge. However, as there is no
explicit indication of which side of the edge pointed at is intended, an extra test has to
be performed in data structure traversal routines to ensure that the desired topological

entity is consistently retrieved.

vertex_2 {v_2)

counter—clockwise edge__1

clockwise edge_2
{cewe_1)

(cwe_2)

left_face (f.1) —e e—right_face (f_2)

Reference edge (e)

clockwise edge_1 counter—clockwise edge_2

{cwe_1) ertex_1 (v_1) {ccwe_2)
Identity
Resord |__(®) (1) (~_2)
(cwe__1) (ccwe_1)
(cwe_2) (cewe_2)
(£_1) (f_2)

Figure El : The original winged-edge data structure.

-222 -

Appendix E

For instance, as shown in Fig. E2, given the left face f 1 and the reference
edge e, it is desired to find the boundary edges of f 1. Starting from the reference edge
e, the next edge to be retrieved around the sequence of edges of f 1 can be either ec
(i.e. the cwe_1 of ¢} or ea (i.e. the ccwe_1 of e). Assuming that ea is taken, the next
edge to be retrieved around the edge cycle should be the new edge eb. However, as the
pointing side of edge ea is not known, the next edge to be retrieved can be the
reference edge e or the new edge eb. In order to correctly select eb, a test of the edge's
pointing or traversing direction is necessary. For instance, the test can be done by

comparing the ending vertices of the edges.

(ccwe_1 of e) ea—___|
L (cwe__R)

eb —P
right_face (f_2)

left_face (f_1) o

——Reference edge (e)

(cwe_1 of e) ec (cewe_R2)

Figure E2 : Edge retrieval with the original winged-edge data structure.

In view of this drawback, Weiler [Weiler85] improved the original winged-edge
structure by introducing an additional field at each of the four adjacent edges of a
reference edge as shown in Fig. E3.

The additional field is called an edge half (or edge side) field which indicates
explicitly which side of the edge pointed at is intended. In the prototype system, the
edge half field is implemented as an integer value of either 1 or 2 that represents the
pointing direction of the reference edge as illustrated in Fig. E4.

-223 -

Appendix E

*counter—clockwise edge_half 1| vertex_2 (v_2) [|*clockwise edge_half 2
(ceweh_1) {cweh_2)
counter—clockwise edge_1 clockwise edge_2
{cewe_1) {cwe_2)
left face (f._1) —e &— right_face (f_2)
Reference edge {e)
clockwise edge_1 counter—clockwise edge_2
(cwe_1) (cowe_2)
*clockwise edge_half 1 *counter—clockwise edge_half_2
(cweh_ 1) £ verteLl (V_ 1) (ccweh_z)
Identity
Edge
Regord (e} (v_1) (v_2)
(cwe_1) |(cweh_1) | (ccwe_1)|(ceweh_1)
(ewe_2) [(cweh_2) | (cowe_2)|(ccweh_2)
(r_1) (£_2)

Figure E3 : The modified winged-edge data structure.

ea (ccwe_1 of e)

(ccwe_1 of ea)

(ewe_2)

*—

right_face (f_2)
Reference edge (e)

left_face (f_1) 1—e

(ewe_1 of e)

(ccwe_2)
(a) If the edge half of ea is 1

ea (ccwe_1 of e)

(ccwe_2 of ea)

(ewe_2)

*—

right_face (f_2)

Reference edge (e)

left_face (f_1) 1—e

(cwe_1 of e)

(cecwe_2)
(b) If the edge half of ea is 2

Figure E4 : Edge-half configuration of the modified winged-edge data structure.

- 224 -

Appendix E

Using the above example again, and assuming that the edge half of the starting
reference edge is 1, the next edge ea (i.e. the ccwe 1 of e) is the next edge to be
retrieved from the edge record of e. At the same time, the edge half integer value of
ea (i.e. the ccweh_1 of e) is also retrieved from the edge record of e. If the edge half
integer value of ea is 1, the next edge to be selected is eb which is also the ccwe_1 of
ea as shown in Fig. E5(a). If the edge half integer value of ea is 2, the next edge to be
selected is the ccwe_2 of ea which is also eb as shown in Fig. E5(b). Hence, there is
no need to perform expensive test to decide on the next edge to be retrieved despite the
fact that the implementation of the modified winged-edge structure is also at the expense

of more system memory.

ea (ccwe_1 of e)
eb

(ccwe_1 of ea) — (cwe_2)

o—]Jright_face (f_2)

Reference edge (e)

left_face (f_1)

(cwe_1 of e)
(cewe_2)

(a) If the edge half of ea is 1

ea (ccwe_1 of e)
eb

(ccwe_2 of ea) — (cwe_2)

o—Jright_face (f_2)

Reference edge (e)

left_face (f_1)

_1 of
(cwe_1 of e) (cewe._2)

(b) If the edge half of ea is 2

Figure E5 : Edge retrieval with the modified winged-edge data structure,

A set of data structure traversal routines are developed to support the
management of the modified winged-edge data structure. For instance, given a

reference edge as input, a routine can return its two adjacent faces.

-225 -

Appendix F

APPENDIX F

ALIGNING THE CUTTER AXIS VECTOR
WITH THE Z-AXIS

As shown in Fig. F1, the basic problem is to align the cutter axis vector C with
the z-axis of the system so as to become C*. This can be done first by rotating C about
the y-axis an angle -a so that AB is collinear with the z-axis. Following the above
rotation, C is then rotated about the x-axis an angle b so that C is collinear with the z-

axis. Angles a and b can be found by the following equations :

r = ICI = ‘/u2+v2+wz
sinb = v/r
tana = u/w

Figure F1 : Aligning the cutter axis vector with the z-axis.

In matrix form, the rotation can be expressed as :

C* = [Ry] [Rx] [C]

where

cos-a 0 sin -a

Ryl = 0 1 0 (rotation about y-axis)
-sin-a 0 cos -a
1 0 0

Rx] = 0 cosb -sinb (rotation about x-axis)
0 sinb cosb
u

[Cl] = v
W

Thus the required rotational transformation matrix is [Ry][Rx].

- 226 -

