115,610 research outputs found

    Recognizing human actions using key poses

    Get PDF
    In this paper, we explore the idea of using only pose, without utilizing any temporal information, for human action recognition. In contrast to the other studies using complex action representations, we propose a simple method, which relies on extracting "key poses" from action sequences. Our contribution is two-fold. Firstly, representing the pose in a frame as a collection of line-pairs, we propose a matching scheme between two frames to compute their similarity. Secondly, to extract "key poses" for each action, we present an algorithm, which selects the most representative and discriminative poses from a set of candidates. Our experimental results on KTH and Weizmann datasets have shown that pose information by itself is quite effective in grasping the nature of an action and sufficient to distinguish one from others. © 2010 IEEE

    A key-pose based representation for human action recognition

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2011.Thesis (Master's) -- Bilkent University, 2011.Includes bibliographical references leaves 44-46.This thesis utilizes a key-pose based representation to recognize human actions in videos. We believe that the pose of the human figure is a powerful source for describing the nature of the ongoing action in a frame. Each action can be represented by a unique set of frames that include all the possible spatial configurations of the human body parts throughout the time the action is performed. Such set of frames for each action referred as “key poses” uniquely distinguishes that action from the rest. For extracting “key poses”, we define a similarity value between the poses in a pair of frames by using the lines forming the human figure along with a shape matching method. By the help of a clustering algorithm, we group the similar frames of each action into a number of clusters and use the centroids as “key poses” for that action. Moreover, in order to utilize the motion information present in the action, we include simple line displacement vectors for each frame in the “key poses” selection process. Experiments on Weizmann and KTH datasets show the effectiveness of our key-pose based approach in representing and recognizing human actions.Kurt, Mehmet CanM.S

    Joint-Based Action Progress Prediction

    Get PDF
    Action understanding is a fundamental computer vision branch for several applications, ranging from surveillance to robotics. Most works deal with localizing and recognizing the action in both time and space, without providing a characterization of its evolution. Recent works have addressed the prediction of action progress, which is an estimate of how far the action has advanced as it is performed. In this paper, we propose to predict action progress using a different modality compared to previous methods: body joints. Human body joints carry very precise information about human poses, which we believe are a much more lightweight and effective way of characterizing actions and therefore their execution. Estimating action progress can in fact be determined based on the understanding of how key poses follow each other during the development of an activity. We show how an action progress prediction model can exploit body joints and integrate it with modules providing keypoint and action information in order to be run directly from raw pixels. The proposed method is experimentally validated on the Penn Action Dataset

    Learning a Pose Lexicon for Semantic Action Recognition

    Get PDF
    This paper presents a novel method for learning a pose lexicon comprising semantic poses defined by textual instructions and their associated visual poses defined by visual features. The proposed method simultaneously takes two input streams, semantic poses and visual pose candidates, and statistically learns a mapping between them to construct the lexicon. With the learned lexicon, action recognition can be cast as the problem of finding the maximum translation probability of a sequence of semantic poses given a stream of visual pose candidates. Experiments evaluating pre-trained and zero-shot action recognition conducted on MSRC-12 gesture and WorkoutSu-10 exercise datasets were used to verify the efficacy of the proposed method.Comment: Accepted by the 2016 IEEE International Conference on Multimedia and Expo (ICME 2016). 6 pages paper and 4 pages supplementary materia
    • …
    corecore