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ABSTRACT

A KEY-POSE BASED REPRESENTATION FOR
HUMAN ACTION RECOGNITION

Mehmet Can Kurt

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Pınar Duygulu

July, 2011

This thesis utilizes a key-pose based representation to recognize human ac-

tions in videos. We believe that the pose of the human figure is a powerful source

for describing the nature of the ongoing action in a frame. Each action can be

represented by a unique set of frames that include all the possible spatial config-

urations of the human body parts throughout the time the action is performed.

Such set of frames for each action referred as “key poses” uniquely distinguishes

that action from the rest. For extracting “key poses”, we define a similarity value

between the poses in a pair of frames by using the lines forming the human figure

along with a shape matching method. By the help of a clustering algorithm, we

group the similar frames of each action into a number of clusters and use the

centroids as “key poses” for that action. Moreover, in order to utilize the motion

information present in the action, we include simple line displacement vectors for

each frame in the “key poses” selection process. Experiments on Weizmann and

KTH datasets show the effectiveness of our key-pose based approach in repre-

senting and recognizing human actions.

Keywords: Human motion, action recognition, key-pose, pose similarity, pose

matching.

iii



ÖZET

İNSAN HAREKETLERİNİN TANINMASI İÇİN
ANAHTAR KARE TABANLI BİR POZ TEMSİLİ

Mehmet Can Kurt

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. Pınar Duygulu

Temmuz, 2011

Bu tezde, videolardaki insan eylemlerini tanımak için anahtar kareye dayalı

bir poz temsilinden faydalanılmaktadır. İnsan figürünün oluşturduğu pozun,

bir kare içerisinde devam eden eylemi tanımlamak için çok güçlü bir kaynak

olduğunu düşünüyoruz. Her eylem, o eylemin gerçekleştiği süre içerisinde in-

san vücudunun parçalarının oluşturduğu bütün uzamsal düzenleşimleri içeren bir

kare grubuyla temsil edilebilir. “Anahtar Kare” olarak adlandırdığımız bu kare

grubu bir eylemi diğerlerinden ayırt eder. “Anahtar Kare”leri seçmek için, insan

figürünü oluşturan çizgilerle beraber bir şekil eşleme metodu kullanarak, ver-

ilen iki kare üzerindeki pozların arasında bir benzerlik değeri tanımlıyoruz. Bir

kümeleme algoritması kullanarak, her eylemin benzer karelerini belirli bir sayıda

kümede grupluyor ve bu grupların ağırlık merkezlerini “Anahtar Kare” olarak kul-

lanıyoruz. Dahası, insan figürünü oluşturan çizgilerin hareketlerini video dizisi

boyunca takip ederek, eylem içerisindeki devinim bilgisinden de faydalanıyoruz.

Weizmann ve KTH verisetleri üzerinde elde ettiğimiz sonuçlar, “Anahtar Kare”

bazlı yaklaşımımızın insan hareketlerini temsil etme ve tanımadaki etkinliğini

göstermektedir.

Anahtar sözcükler : İnsan hareketi, eylem tanıma, anahtar kare, poz benzerliği,

poz eşleme.
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Chapter 1

Introduction

1.1 Motivation

Human Action Recognition, which is a research area listed under computer vision,

has drawn immense attention over the years. Previous research done in the field

has resulted in a large variety of applications such as automatic surveillance and

monitoring, social analysis and human-computer interaction. Along with the

improving hardware technologies, the demanding nature of these applications

keep the challenge of developing more effective and efficient systems for human

action recognition alive.

Motivated by the needs of these applications, this thesis addresses the problem

of recognizing human actions in videos automatically. However, it is well known

that building a robust system for human action recognition is not trivial due

to several reasons. First of all, finding the area of the image where the action is

performed can be quite difficult. Especially, in cases where there is a great deal of

noise in the background, spotting the human figure in its entirety is a challenging

task. Secondly, even for simple actions, the way an action is performed may show

a great variety from person to person. Moreover, the shooting conditions such

as illumination changes in the environment, scale and viewpoint variations may

cause further complications in the analysis of the ongoing actions. Considering

1



CHAPTER 1. INTRODUCTION 2

these facts, representing the actions in a robust way plays an important role in

the success of an action recognition system.

Despite the challenges for recognizing human actions explained above, the

human brain can distinguish an action from the others just by looking at a single

frame without having the need of seeing the rest of the sequence. This important

observation is a clear indication of the fact that the pose formed by the human

figure is a powerful source for describing an action. For this reason, exploiting

the pose information encoded in a frame can be an effective approach in solving

human action recognition problem. In fact, there are some previous studies [2,

3, 22], which attempt to represent the shape of a pose by using extracted human

silhouettes. However, the performance of these works may suffer in the scenes

where the quality of the extracted silhouettes are severely affected by the noise

in the background.

An alternative approach for representing the pose information in a frame is to

consider the pose of the human figure as a shape and to utilize one of the existing

shape matching techniques in the literature of human action recognition. Shape

Context Descriptor [1] introduced by Belongie et al. stands as a widely known

shape matching technique which is initially developed as an object recognition

scheme. In this thesis, we utilize Shape Context Descriptor as a tool to determine

the similarity of the poses formed by the human figure in given frames. On top

of identifying the pose differences in two actions by means of Shape Context, we

extend the fact that the human brain can distinguish an action by looking at

a single frame and we perform human action recognition by extracting a set of

frames (“key frames”) for each action.

This approach is powerful in distinguishing the actions which show significant

differences in the poses the human figure forms. However,“key frames” might not

be enough by itself to detect the differences between some actions such as walking

and running. In order to get rid of such limitations, the pose representation

might be supported by the motion information encoded in an action sequence.

Therefore, in this thesis, we also maintain the motion information of the lines

forming the human pose in each frame composing the “key frame” set.
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1.2 Overview and Contributions

Our overall method consists of the following steps. Initially, we detect the lines in

each frame of an action and hold a description for each line by using k-Adjacent

Segments [8]. After applying some noise removal techniques, we come up with a

set of lines which form the human figure in each frame. Secondly, we generate

a set of uniform points from the extracted lines. By feeding these points into

Shape Context [1], we generate a descriptor vector for each point in the frame.

The generated descriptors for each point are combined into a Shape Context

matrix.

Thirdly, in order to find the similarity value between a pair of frames of

an action, we calculate the distance between the shape context descriptors of

each pair of points in the frames by means of chi-square distance. We create

a similarity matrix with the computed distance values and produce a matching

between the points of the frames with one of the two methods; Left-To-Right

Matching or Hungarian Method [14]. Based on two different strategies, Left-To-

Right matching and Hungarian Method have their own advantages which may

reveal in different cases. For a more accurate matching between the points, we

also employ a spatial constraint which prevents any two points that are located

in different regions of the frames from being matched. After creating a set of

matched points, we compute an overall similarity value between two frames by

using the individual similarity values between matched points.

As a next step, we group the similar poses of each action in a defined number

of clusters by using k-medoids clustering algorithm and we form the “key frame”

set for that action by taking the medoid of each cluster.

In order to support the “key frame” set of each action with motion informa-

tion, we detect the location of the lines forming the human figure in a key frame

in the frames that come just before and right after it. After spotting each line

both in previous and next frame, we calculate a displacement vector for that line

by taking the difference in x and y coordinates. This displacement information

reflects where the line is coming from and where it is going next. Repeating this
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process for each line in the key frame, we create two displacement vectors that

we call “from where” and “to where”. This step completes the entire training

process.

For classifying a given sequence of poses, we utilize three schemes; Majority

Voting, Sum of Minimum Distance and Dynamic Time Warping. When using the

Majority Voting, we compare each frame of the test sequence to all key frames

of all actions and assign the action label of the most similar key frame to that

frame. Repeating the same procedure for the entire test sequence, we apply

Majority Voting among the assigned labels in order to make a final decision. On

the other hand, when using the Sum of Minimum Distance, we find each action’s

most similar key frame to each test frame and we accumulate those minimum

distances. Finally, the label of the action that has the minimum total distance

becomes the classification result of the tested sequence. When using the Dynamic

Time Warping (DTW), we find a correspondence between the pose order of two

sequence. Calculating a similarity value between the given test sequence and

training sequences of each action, we classify the test sequence as the action that

contains the most similar training sequence with respect to DTW distance.

We present two important contributions with this thesis. The first one is

approaching the human action recognition as a shape matching problem and

applying Shape Context, which is developed for object recognition, for recognizing

human actions. The second is representing an action with a set of frames named

as “key frames” which cover the pose information in an action sequence along

with the motion information.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows.

Chapter 2 presents a literature review in human action recognition. It de-

scribes the previous work done in the field and discusses its drawbacks.
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Chapter 3 describes our approach. It explains our key-frame extraction algo-

rithm in detail and shows how actions can be classified by utilizing the extracted

key-frames.

Chapter 4 shows the experiments conducted on the state-of-the-art action

recognition datasets, discusses our results and compares them with the results of

the previous work.

Finally, Chapter 5 shows our concluding remarks and introduces possible fu-

ture research.



Chapter 2

Related Work

Human Action Recognition has received considerable attention over the last

decade. There are a large number of recent studies which approach the prob-

lem in different ways. In this chapter, we give a review of the previous work

performed in the field.

2.1 Review of Previous Studies

A large number of studies in the past extend 2D interest points used in object

recognition and apply the idea to the spatio-temporal case. In [15], by employing

a space-time extension of Harris operator, Laptev et al. detect interest points

in multiple levels of spatio-temporal scales and use them for action recognition

by employing a SVM classifier. Dollar et al. in [5] combine space-time interest

point approach with bag of words model which is often employed in information

retrieval. They represent an action by a statistical distribution of the bag of

video-words after extracting interest points by applying separate linear filters in

both spatial and temporal directions. In [17], Liu et al. give a a model in which

they quantize the extracted 3D interest points and represent a video sequence by

a bag of spatio-temporal features named as video-words. In the same work, they

discover the optimal number of video-word clusters by means of Maximization

6
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of Mutual Information. Bag of words model discards the temporal order among

features. However, this ordering information often contains quite important in-

formation about the nature of the action. For instance, sit down and get up

actions, which are performed by the same set of body movements but just in

different directions, can be easily distinguished from each other by a representa-

tion which preserves the temporal ordering between the features. Nowozin et al.

in [21] emphasize this observation and present a sequential representation which

retains the temporal order.

A recent trend in action recognition has been the emergence of methods that

treat a sequence of images as three-dimensional space-time volume. Qu et al.

in [22] take a sequence of full silhouette frames as input and generate a global

feature by extracting the differences between frames. Considering human actions

as three-dimensional shapes, Blank et al. in [2] extract space-time features such

as local space-time saliency, action dynamics, shape structure and orientation.

Both of these studies make the assumption that input silhouettes contain detailed

information about the pose of the human figure. However, in cases where there

is an absence of static cameras and a good background model, obtaining such

silhouettes can be problematic. One study that emphasizes this subtle point is

[13]. In this work, without the need of any background subtraction, Ke et al.

segment input video into space-time volumes and correlate action templates with

the volumes using shape and flow features.

Another group of works can be categorized as optical flow based approaches.

Efros et. al. in [6] introduce a motion descriptor based on optical flow measure-

ments by treating optical flow as a spatial pattern of noisy measurements instead

of precise pixel displacements. Wang et al. in [28] exploits optical flow in con-

junction with bag of words approach. After computing optical flow at each frame

of a video sequence, they run k-medoids clustering on a similarity matrix where

each entry is the similarity between two frames calculated using a normalized

correlation on optical flow features and generate codewords. Yet another work

that uses optical flow is [7]. In this study, Fathi et al. first extract the low-level

optical flow information and construct mid-level motion features on top of them

by using the AdaBoost training algorithm. Flow-based approaches are invariant
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to appearance variations and they work without the need of any background sub-

traction. However, the likelihood to have similar flows in many scenes over short

periods of time stand as a main downside.

In addition to the previous three approaches, shape-based methods, which ex-

ploit the pose of the human figure in an action sequence, have also been studied

widely. İkizler et al. in [12] represent each human pose in a sequence by fitting

oriented rectangular patches over the body and generating a bag-of-rectangles

descriptor. In a similar work [10], Hatun et al. describe the poses with histogram

of oriented gradients (HOG) features. In contrast to previous study, they pre-

serve the temporal characteristics of actions by representing videos as ordered

sequence of pose-words and employing string matching techniques on them for

classification. Another study that utilize the temporal ordering of features is [26].

In this work, Thurau et al. extract HOG features and employ the n-gram model

when creating histograms.

A group of studies in shape-based approaches focus on representing the actions

as a set of key poses. Carlsson et al. in [4] recognize the action in a video

sequence by matching shape information in the frames to stored prototypes that

represent key frames of an action. Their shape matching algorithm is based on

estimating the deformation of the shape in the image to the shape of the stored

prototype. In contrast to this work, which selects only a single key-frame for each

action by manual inspection, Loy et al. in [19] present a method for automatic

extraction of the key frames from an image sequence. After following the same

shape matching scheme in [4], they divide the sequence into clusters of frames by

using an extended version of the normalized-cut segmentation technique and use

the central frame of each cluster as key-frames.

Although most of the shape-based approaches show very promising results,

distinguishing some actions such as running and walking from each other might be

very difficult since generally the human poses in these actions look very similar.

In these cases, discarding dynamics of the motion in the action is intolerable.

Therefore, in order to remove this shortcoming of shape based approaches, some

previous studies use shape and flow features in a complementary manner. Lin
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et al. in [16] learn action prototypes in a joint feature space by capturing the

correlations between shape and motion cues and they perform recognition via

tree-based prototype matching. İkizler et al. in [11] represent human actions

by using line and optical flow histograms. As shape feature, they extract a

histogram which reflects the spatial distribution and characteristics of lines fitted

to boundaries of human figures. They combine the computed shape features

by motion information that they capture with a slightly modified version of the

optical flow.

2.2 Discussion of Related Studies

Most of the studies, that use shape information alone or combined with the mo-

tion information, extract shape features by employing histograms of rectangles,

lines or gradient values. Even though some of these approaches impose a level of

localization by dividing the image into equal-sized bins, they still miss the spatial

relation information between the individual components of the human bodies. In

this thesis, to encode the pose information, we utilize the shape representation

in [1] developed originally for object-recognition. We think that this shape rep-

resentation describes the human shape in more detail since it also captures the

relative positioning of the limbs that define the nature of an action.

The main drawback of the aforementioned studies that employ stored pose

prototypes for recognition is the lack of information about the motion. In these

studies, a global motion information is hard to be involved in the overall process,

since the classification is performed on a frame-by-frame basis. In this thesis,

we address this shortcoming by incorporating the motion information in the key

frame extraction step. For each key frame, we maintain two motion features which

correspond to the general displacement of the lines forming the human figure in

that key frame. We believe that supporting the pure key frames even with that

small level of motion clues affect the recognition performance considerably.



Chapter 3

Our Approach

In this chapter, we present our approach for classifying human actions. First,

we give the details of our pose extraction and representation scheme (Section

3.1). Second, we present the method to calculate the similarity between two

given frames (Section 3.2). Next, we show how we find a set of representative

frames for each action (Section 3.3). Then, we explain how we introduce a level

of motion information to the key frame selection process (Section 3.4). Finally,

we describe the classification methods that we exploit for labeling a given set of

frames with one of the available actions (Section 3.5).

3.1 Pose Extraction and Representation

3.1.1 Line Extraction

Since our approach depends on the pose information, our ultimate interest is

in the shape formed by salient parts of the human body. In order to extract

the shape of the human pose, we utilize the points forming the boundary of the

human figure in the image. For achieving this goal, there exist two alternatives;

detecting the points of interests and sampling among them in a uniform manner

or detecting the lines in the given frame and sampling points from the detected

10
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Figure 3.1: This figure shows the extracted lines on a set of consecutive frames
from a walking sequence. Extracted lines are shown in green. Center points of
the lines are numbered and shown as yellow stars.

lines. We argue that the second approach gives a more consistent and meaningful

set of points. Therefore, the very first step in our action recognition mechanism

is the extraction of lines in a given frame.

In order to find the lines in a given frame, we use the line descriptor introduced

by Ferrari et al. in [8]. Accompanied by a user-defined edge detection scheme,

this algorithm produces a set of lines in each given frame along with the following

descriptor for each line;

Vline = (id, cx, cy, θ, l, s) (3.1)

Here, id refers to a unique identification number for each line in the given

frame, cx and cy are the coordinates of the center of the line, θ is the orientation

of the line which ranges from 0 to 2Π, l is the length of the line and s is the

average strength of the edges composing the line. In our approach, we often

utilize cx and cy information of each line.

3.1.2 Shape Context Descriptor

In order to represent the pose information in a given frame, we use the well-

known shape context descriptor introduced by Belongie and Malik in [1]. Shape

context measures the shape similarity of a given pair of images by finding a match

between the points contained in the images. So far, shape context descriptor has

been generally employed for the purpose of object recognition. However, in this
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Figure 3.2: This figure demonstrates the shape context calculation process. In
shape context, a circular grid is positioned over the sample points of an image
and a histogram SC with size r × u is generated for each point where r is the
number of radial bins and u is the number of orientation bins.

work, we show that we can make use of it for human action recognition as well.

Shape context works as follows; first, a set of points P = {p1, p2, p3, ..., pn} is

sampled from the exterior or interior contours on the object in the image. One

important note to indicate here is that this set of points should not necessarily

be curvature or maxima points. Next, a circular grid, which has r radial and

u orientation bins, is centered at each sampled point pi. For each point pi, a

histogram with size r × u is generated and each cell of that histogram is filled

with the total number of points which are positioned at the corresponding bin

location relative to point pi. The shape context for point pi can be defined as

the coarse distribution of the relative coordinates of the rest of the n− 1 points

with respect to pi. Repeating this procedure for each sampled point, a matrix

SC with n rows and r × u columns is generated for each image. In Figure 3.2,

an example grid is shown on a frame that belongs to a running sequence.

After computing the shape context, one can utilize various similarity distances

to find the similarity between two points. In [1], Belongie et al. suggest that chi-

square distance can be used for this purpose. According to that, given two frames
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Figure 3.3: This figure illustrates the effect of increasing the sampling factor on
generated set of points. (a) shows the extracted lines on the human figure. (b)
shows the set of generated points (only the center points) when sampling factor
is 0. (c) illustrates the generated points when sampling factor is 1. Generated
points contain both the center points and the two end points of each extracted
line. (d) illustrates the generated points when sampling factor is 2. The shape of
the human figure is represented in detail.

f1 and f2, the similarity between the shape context descriptors SC1i and SC2j of

the points pi in f1 and pj in f2 can be calculated by using chi-square distance X2

as follows;

X2 (pi, pj) =
1

2

N∑
k=1

(SCi (k)− SCj (k))2

SCi (k) + SCj (k)
(3.2)
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3.1.3 Point Generation

Feeding the shape context algorithm with a good set of points is a crucial step

for the accurate representation of the actions in the images. For this purpose,

we utilize the line detection algorithm indicated in Section 3.1.1. We store the

main properties of all the detected lines such as the coordinates cx and cy of

the center point, the length l and the orientation θ. One approach for point

generation is just to take the center point of each line and to feed these points

to shape context calculation process. Our experiments show that merely using

center points is inadequate for a detailed representation of the pose. Therefore,

alternatively, by making use of length and orientation information, we generate

the endpoints of each line and pass these generated points to the shape context

calculation process. Clearly, generating 3 points from each line would give us a

better pose representation. In fact, this approach can be generalized so that we

can sample as many points as we want from a single line. In our experiments,

we will define sampling parameter as s and show the effects of increasing s on

the results. Figure 3.3 illustrates the effect of increasing s on the generated set

of points.

3.2 Finding Similarity between Two Poses

We can calculate the similarity value between the poses contained in a pair of

frames f1 and f2 by utilizing shape context descriptors in the following steps;

1. After extracting the lines on each frame and generating points from those

lines, we calculate the shape context descriptors SC1 for f1 and SC2 for f2

as described in Section 3.1.2.

2. Then, we create a similarity matrix SMsc which holds the similarity distance

between each pair of points from f1 and f2. The similarity between any two

points can be calculated using Formula 3.2.

3. Next, we match each point in frame f1 to another point in frame f2 by
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using the calculated distances in matrix SMsc. Here, different matching

strategies can be employed. We present different matching strategies in the

next section.

4. The overall distance between frames f1 and f2 can be calculated by using

Formula 3.3 or 3.4.

3.2.1 Matching Methods

We can use different strategies to find matches between the points of two frames

by using their shape context similarity values. Since the overall similarity value

between two frames depends on the quality of the matching between the points,

this step has a direct impact on the accuracy of the recognition results.

3.2.1.1 Left-To-Right Matching

One strategy that can be followed for matching is to match each point in f1 to

the most similar point (the point that has the lowest similarity distance value) in

f2. If this approach is utilized, there is a high chance that more than two points

in f1 will be matched to the same point in f2. In order to prevent this situation,

we introduce a constraint which guarantees that a point pi in frame f1 can be

matched with point pj in frame f2 if and only if;

• among all points in frame f2, pj is the most similar point to pi, and

• among all points in frame f1, pi is the most similar point to pj.

We can consider the points in frames f1 and f2 being the elements of two

different sets P1 and P2, respectively. This constraint assures that each element

in set P1 can be associated with exactly one element in set P2. We call this

strategy Left-To-Right Matching. Figure 3.4 illustrates an example matching

between two frames by using this strategy.
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Figure 3.4: This figure shows a set of matched points between two frames be-
longing to wave action when Left-To-Right matching is used. Matched points are
connected with green lines.

Once the points in frames f1 and f2 are matched by Left-to-Right matching

strategy, we employ Formula 3.3 to calculate an overall similarity value.

sim (f1, f2) =

∑|M |
i=1 d(Mi)

|M |
+ penalty × max (|P1| , |P2|)− |M |

max (|P1| , |P2|)
(3.3)

Here, we denote the set of matching points as M . Each Mi, where i ranges

from 1 to |M |, represents a pair of matched points, one point belonging to P1 and

the other point belonging to P2. We denote the similarity distance between the

points in matched pair i as d (Mi). The first term and second term in the formula

measure two different aspects for expressing the overall similarity between frames

f1 and f2. The first term in the formula is the average of the similarity distances

between the matched points in M and it basically reflects how similar the shapes

of the human pose contained in frame f1 and f2 are. On the other hand, the second

term introduces an additional factor to the overall similarity by multiplying the

percentage of the number of unmatched points with a predefined constant referred

as penalty. We believe that representing similarity and dissimilarity of the shapes

in f1 and f2 in such a combined fashion gives us a more accurate comparison.
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Figure 3.5: This figure illustrates another set of matched points between the
same frames in Figure 3.4 when Hungarian Method is used. Matched points are
connected with green lines.

3.2.1.2 Hungarian Method

An alternative matching method is the algorithm used in [1]. The Hungarian

Method is a combinatorial optimization algorithm and it gives the matching

between the elements of two sets that has the minimum total cost. Hungarian

Method is different from Left-To-Right Matching in the sense that it may not

match a point to its counterpart right away. Instead, it produces a matching in

which the global similarity distance summation is minimized. The details of this

matching scheme can be found in [14]. Figure 3.5 illustrates an example matching

between two frames by using the Hungarian Method.

sim (f1, f2) =

∑|M |
i=1 d(Mi)

|M |
(3.4)

Hungarian Method provides a one-to-one and onto matching, in which each

and every element in P1 is associated with exactly one element in P2. Since each

point in set P1 has a corresponding point in set P2, the second term in Formula

3.3 becomes inapplicable when Hungarian Method is in use. Therefore, in this

case, we employ Formula 3.4.



CHAPTER 3. OUR APPROACH 18

3.2.2 Utilizing Other Visual Clues

As indicated previously, similarity matrix SMsc holds the shape context similar-

ity between each pair of points in given frames f1 and f2. Both Left-To-Right

matching and Hungarian Method operate on SMsc and generate a set of matched

points. In order to calculate the similarity between points, one can utilize other

visual clues along with the shape context descriptor. It is observed that combin-

ing these clues together with the shape context usually results in more accurate

matches and consequently higher recognition rates.

In our work, we know the orientation θ of each line which originates our

sample points. We define the orientation distance between any two points pi and

pj by using Formula 3.5. Here, θi and θj denote the orientation values of the lines

where the points i and point j originate from.

dθ(i, j) =
|θi − θj|
π/2

(3.5)

By finding the orientation similarity between each pair of points, we generate

a similarity matrix SMθ. We can make use of the orientation similarity in the

point matching process by adding SMθ to SMsc and letting the matching strategy

operate on the resulting matrix. In fact, this approach can be generalized by

introducing other visual clues and taking a weighted combination of them as

depicted in Formula 3.6. In the experiments section, we show how using different

weights affect the overall recognition performance.

SM = αsc × SMsc + αθ × SMθ + αx × SMx + . . . (3.6)

3.2.3 Spatial Binning

An important constraint that can be exploited during the matching process is

the locations of the generated points in the image. For example, matching a
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Figure 3.6: This figure illustrates the spatial binning applied to a human pose.
Spatial binning approach can be generalized to any N X N binning. In this work,
we use N as 2, which results in 2 X 2 spatial binning as shown in (a) and (b). (c)
illustrates the tolerance value we define on spatial binning. Points in red shaded
transparent rectangles are the ones which are affected by the tolerance value. For
example, the point shown in small yellow circle is considered as belonging to both
Region 1 and Region 2.

point lying on an upper body contour to a point lying on a lower body contour

is not meaningful even if they have similar shape context descriptors. In order to

guarantee that no two points located on different parts of the human contour can

be matched, we first divide the human figure represented in a given frame into

4 bins such as upper body left, upper body right, lower body left and lower body

right. During the matching process, allowing the points to be matched only if

they come from the same bin region ensures this constraint. Figure 3.6 illustrates

dividing the human figure in an image into four bins. Clearly, this constraint can

be generalized into any N ×N binning.

When dividing a given frame into any N × N bin regions, we first calculate

the range of x and y coordinates of the points forming the human figure. Then,

we divide both ranges into N equal pieces. Drawing horizontal and vertical lines

which intersect the division points seperating these pieces gives us a N ×N grid

on the human figure. During the calculation of the boundaries that define a bin

region, it is likely to have some offsets in the x and y coordinates because of the
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unsymmetrical shape of the human pose and/or imperfect edge detection results.

Such shifts may lead to some points to be contained in bin regions where they do

not belong.

In order to deal with this problem, we define a tolerance value on the spatial

binning. According to that, if a sample point is within a certain pixel distance to

the boundary that divides two bin regions, we consider that point to be contained

in both of them. Again, Figure 3.6 illustrates the tolerance value and its effect

on a point in the given example frame.

3.3 Finding Key Frames

Our approach presented in this thesis depends on the key frames we extract

from the available video sequences of each action. We define key frames as a

set of frames that uniquely distinguishes an action from others. Intuitively, to

find key frames, it is reasonable to group the frames which show common pose

appearances. Thus, we base our key frame extraction process on the k-medoids

clustering algorithm.

For each action ai consisting of n frames such as {f1, f2, . . . , fn}, a set of key

framesKFi with sizeK can be found as follows; first, a similarity matrix SMfrm is

created by means of Formula 3.3 or Formula 3.4, depending on the choice of point

matching strategy. Every element SMfrm (j, k) corresponds to the similarity be-

tween frame fj and fk. Then, similarity matrix SMfrm is given as the input to

k-medoids clustering algorithm. k-medoids partitions the frames {f1, f2, . . . , fn}
into K clusters, where cluster medoids are {KFi1, KFi2, . . . , KFiK}. Since the

cluster medoids tend to represent common poses in each action, we define the

cluster medoids as the key frame set KFi for action ai. As the work in [24] in-

dicates, simple human actions can be classified almost instantaneously. In most

cases, using a very short sequence (1-10 frames) of key frames for each action is

enough to classify actions successfully. In our experiments, we keep the number

of representatives for each action as small as possible. On the other hand, we
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Figure 3.7: This figure shows two extracted key frames for actions bend, jack,
walk and wave presented in Columns 1 to 4, respectively.

observe that there are some factors which may result in a certain increase in the

number of required representatives for accurate classification. One example of

such factors is the actors performing a particular action in different ways. More-

over, the viewpoint and zoom factor of the camera can be listed as other factors

that have an affect on the number of key frames. We believe that increasing the

number of representatives to a certain point resolve such issues in most cases. In

the experiments section, we show the effects of K on the recognition performance.

Figure 3.7 illustrates the key frames that are extracted by our approach for two

different actions.

3.4 Utilizing Motion Information

Pose information itself is powerful enough to recognize most of the actions. How-

ever, ignoring the motion information encoded in an action sequence might be

intolerable when distinguishing actions such as walking and running which con-

tain similar pose appearances. Unfortunately, it is hard to involve a global motion

information in key frame based approaches, since the classification is performed

generally on a frame-by-frame basis. In order to deal with this shortcoming, we

associate two displacement vectors with each frame and introduce a level of mo-

tion information in the key frame selection process. These vectors, which we name

as fw (“from where”) and tw (“to where”), reflect the general displacement of
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the points in a frame with respect to their positions in previous and next frame.

For a frame fi, we extract ~fwi vector in the following steps; first, we

initialize ~fwi with all zeros. ~fwi consists of 4 nonnegative components{
fw+x

i , fw−xi , fw+y
i , fw−yi

}
which represent magnitude of the total displacement

of the points in +x,−x,+y and −y directions, respectively. Then, we gener-

ate points on the human contour of frames fi−1 and fi as described in Section

3.1.3. Next, by using the same point matching techniques explained in Section

3.2, we find corresponding matches between points of fi−1 and fi. Let (pj, pk) be

a matched pair of points, where pj lies on fi−1 and pk lies on fi. We calculate the

displacement in x and y coordinates of these points with Formula 3.7.

xdiff = xi−1,j − xi,k
ydiff = yi−1,j − yi,k

(3.7)

After calculating the displacement in x and y coordinates, we accumulate the

computed difference to the corresponding cell of ~fwi vector. For instance, if xdiff

is a positive value, we add |xdiff | to fw+x
i . Otherwise, we add |xdiff | to fw−xi .

We update fw+y
i or fw−yi in the same fashion depending on the sign of ydiff .

Repeating the same procedure for each matched pair of points results in ~fwi

which provides a level of motion information with respect to the previous frame.

We extract ~twi vector in a similar fashion. This time, instead of matching the

points with fi−1, we match the points of fi with next frame fi+1. As described

previously, we calculate the displacement magnitudes for each matched pair of

points and accumulate those values in ~twi vector. Figure 3.8 gives a feel of this

process by illustrating the counterpart of a point in the previous and next frames

and shows the displacement vectors for a single point.

There are multiple ways to integrate the extracted motion information into the

key frame selection process. In section 3.2.2, we emphasized that combining other

visual clues together with the shape context descriptors results in more accurate

measurements in defining the similarity between points. Moreover, in Formula

3.6, we showed how we can obtain a weighted combination of the similarity values
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Figure 3.8: This figure shows the displacement vectors (drawn in red in middle
frame) for the yellow point pk in the middle frame i. The point pj is the counter-
part of pk in previous frame i - 1 whereas the point pm is its counterpart in next
frame i + 1. The red line going from yellow point to blue point shows where the
yellow point is previously whereas the red line going from yellow point to green
point shows where it goes next. fw and tw vectors described below are composed
by accumulating the individual displacement vectors for each matched point.

coming from different clues and produce an overall similarity matrix. We can

extend formula 3.6 in order to introduce motion information which are represented

by fw and tw vectors. We calculate the similarity between any two fw and tw

vectors by employing chi-square distance X2. Thus, the new formula becomes

the following;

SM = αsc×SMsc +αθ×SMθ +αfw×X2(fwi, fwj) +αtw×X2(twi, twj) (3.8)

As an alternative to incorporate motion information right into similarity ma-

trix, we can integrate the constants coming from X2(fwi, fwj) and X2(twi, twj)

in Formula 3.3 and 3.4. If this alternative approach is to be adopted, these

formulas take the following forms, respectively;

sim (f1, f2) =

∑|M |
i=1 d(Mi)

|M |
+penalty×max (|P1| , |P2|)− |M |

max (|P1| , |P2|)
+X2(fwi, fwj)+X

2(twi, twj)

(3.9)
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Figure 3.9: This figure demonstrates action recognition using Majority Voting
classification scheme. The given sequence is classified as “run” with 8 votes.

sim (f1, f2) =

∑|M |
i=1 d(Mi)

|M |
+X2(fwi, fwj) +X2(twi, twj) (3.10)

3.5 Recognizing Actions

In order to classify a given action sequence, we use three different classification

techniques; Majority Voting, Sum of Minimum Distances and Dynamic Time

Warping.

3.5.1 Majority Voting

Majority Voting can be described as a frame-by-frame basis comparison approach.

Given an action sequence consisting of frames {f1, f2, f3, . . . , fn}, for each frame

fi, we first compute the similarity values dj(i, k) between fi and all of the frames
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KFjk in key frame set KFj = {KFj1, KFj2, KFj3, ..., KFjK} where j represents

an action in the available action set {a1, a2, a3, . . . , am} and K is the number of

key frames for each action.

Next, we find the minimum of dj (i, k) for all j and k and assign fi the action

label j which contains the minimum similarity value dj (i, k). In other words, we

apply a 1-NN classifier to fi and assign the action label of the nearest key frame

of all actions. Equation 3.11 describes this step in formal notation.

arg minj dj (i, k) ∀j 1 ≤ j ≤ m and ∀k 1 ≤ k ≤ K (3.11)

While labeling each frame in the same way, we keep a vector V =

{V1, V2, V3, . . . , Vm} which holds the number of frames assigned to each action.

Once all the labeling is done, we compare the values in V and classify the se-

quence {f1, f2, f3, . . . , fn} as the action that has the maximum number of votes.

This step is formulated in Equation 3.12. Moreover, Figure 3.9 illustrates classi-

fication of a sequence with Majority Voting.

arg maxc Vc ∀c 1 ≤ c ≤ m (3.12)

As an alternative to 1-NN classifier used for assigning an action label to a

frame, we can employ 3-NN classifier which we believe provides more accurate

results. While using 3-NN, we find the nearest three neighbours of each frame

fi. If any two of the three neighbours (key frames) belong to the same action j,

we assign fi action label j. However, if all of the three neighbours are contained

in key frame sets of different actions, we exclude frame fi from the classification

process. In the experiments section, we compare 1-NN and 3-NN and show which

one is superior over the other.



CHAPTER 3. OUR APPROACH 26

3.5.2 Sum of Minimum Distances

During our analysis, we observe that the poses in some key frames of different

actions may be very similar. For example, walking and running actions in Weiz-

mann dataset [9] share instances where it is very difficult to differentiate the two

actions from each other just by looking at the pose information in the figures.

Similarly, handclapping and handwaving actions in KTH dataset [25] contain

some frames where the human figure is facing the camera with arms sticking

to the body. Majority Voting labels such frames with the action which has the

most similar key frame. Therefore, when classifying a handwaving sequence, a

large number of frames can be labeled as handclapping. This clearly results in a

decrease in the recognition performance.

In order to minimize the effects of such common poses, we make use of the Sum

of Minimum Distances classification scheme. Given an action sequence consisting

of frames {f1, f2, f3, . . . , fn}, for each frame fi, we again compute the similarity

values dj (i, k) between fi and all of the frames KFjk in key frame set KFj =

{KFj1, KFj2, KFj3, ..., KFjK}. (We use the same notation in Section 3.5.1)

Instead of using a k-NN classifier for labeling fi right away, we find the mini-

mum dj(i, k) for each action j and accumulate those distances within a seperate

vector MD = {MD1,MD2,MD3, . . . ,MDm}. Equation 3.13 describes the up-

date of each element MDj (1 ≤ j ≤ m) of vector MD more formally. After

processing each frame of sequence {f1, f2, f3, . . . , fn} and updating the elements

of MD vector accordingly, we classify the sequence as action c which has the

smallest value MDc in MD vector. Equation 3.14 depicts how the final decision

is taken in mathematical notation.

MDj = MDj + min dj (i, k) ∀k 1 ≤ k ≤ K (3.13)

arg minc MDc ∀c 1 ≤ c ≤ m (3.14)
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3.5.3 Dynamic Time Warping

Both of the previous classification schemes are based on the individual compar-

ison of each frame to key frames extracted for each action. Although they are

simple and straightforward to implement, Majority Voting and Sum of Minimum

Distances fail to catch the relative ordering of the poses occurred in an action

sequence. This drawback may manifest itself in deterioration of the recognition

rate when there exists some actions which consist of a set of poses encountered

in reverse order in time. As an example we can give sitting down and standing

up as a representative pair for these kind of actions.

Dynamic Time Warping (DTW) [23] is a technique that is being extensively

used in speech recognition. Taking its power from dynamic programming, DTW

compares two series with different sizes by finding an optimal alignment between

them. We employ DTW in order to align the poses of two action sequences and

find a correspondence between their pose order.

We classify a given action sequence as follows. By means of DTW, we

first compare the test sequence {f1, f2, f3, . . . , fn} with each training sequence

t = {t1, t2, t3, . . . , tl} where l is the length of the training sequence. An im-

portant point to emphasize here is that we do not use the training sequence

t = {t1, t2, t3, . . . , tl} as is. Instead, we represent it with a set of key frames of

action j which the training sequence belongs to. For example, instead of using

t1 during the comparison, we use key frame KFjc for a particular c (1 ≤ c ≤ K)

which is the most similar key frame to t1 among all of the key frames in KFj.

After comparing it with the training sequences of all actions, we classify the test

sequence as the action which has the training sequence that is most similar to

test sequence in DTW distance.



Chapter 4

Experiments

This chapter consists of the experiments that we have conducted to evaluate

our action recognition scheme. First, we describe the state of the art action

recognition datasets (Section 4.1). Then, we present the results we obtain on

these datasets (Section 4.2). Finally, we compare our results with the existing

works in the literature (Section 4.3).

4.1 Datasets

4.1.1 Weizmann

Weizmann dataset was introduced by Blank et al. in [9]. It consists of 9 actions

such as walk, run, jump, side, bend, wave1 (one-hand wave), wave2 (two-hands

wave), pjump (jump in place) and jack. The actions are performed by 9 different

actors. There are total of 81 videos in the entire dataset. When testing our

approach on Weizmann, we used the silhouette images, which are provided as part

of the dataset, for point generation step. We apply leave-one-out classification for

all of the experiments performed on this dataset. Figure 4.1 shows the example

poses taken from Weizmann dataset.

28



CHAPTER 4. EXPERIMENTS 29

Figure 4.1: This figure shows samples taken from 9 actions in Weizmann dataset.
Top Row: bend, jack, jump Middle Row: pjump, run, side Bottom Row:
walk, wave1,wave2

4.1.2 KTH

KTH dataset contains 6 actions (boxing, hand-clapping, hand-waving, jogging,

running, walking) performed by 25 different actors in 4 scenarios; outdoors (s1),

outdoors with changing scale and viewpoints (s2), outdoors with different clothes

(s3) and indoors with changing illumination (s4). There are total of 600 videos

in the entire dataset. Because of the large number of available frames for each

action, the key frame extraction step requires a significant amount of time. For

this reason, we split the dataset into two as training and test samples. Moreover,

instead of extracting K number of key frames for each action, we extract K

number of key frames for each scenario of each action. This leads having a total

of 4 × K number of key frames for each action. In KTH dataset, actions are

performed with varying periodicity. For consistency, we trim action sequences

to 20-50 frames so that the action is performed only once. Figure 4.2 shows the

sample frames taken from KTH dataset.
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Figure 4.2: This figure shows samples taken from 4 different shooting conditions
(s1, s2, s3 and s4) of KTH dataset. Boxing, hand-clapping, hand-waving, jogging,
running and walking actions are shown in Column 1 to 6 in the respective order.

4.2 Experimental Results

This section presents the experimental results we obtained by testing our ap-

proach on the Weizmann and KTH datasets.

4.2.1 Evaluation of Number of Key Frames

As our first experiment, we show how the number of key frames (K) affects recog-

nition performance. In Section 3.3, we indicated that human brain can recognize

an action instantenously just by looking at a single frame. This observation en-

courages us in using a small number for K in our experiments. Figure 4.3 shows

the recognition rate when the number of key frames extracted for each action is

2, 5, 10, 15, 20 and 50. The same figure also demonstrates the effect of spatial

binning discussed in Section 3.2.3. Previously, we noted that the spatial binning

approach can be generalized into any N × N binning. For our experiments, we
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Figure 4.3: This figure illustrates the effect of the number of key frames and
spatial binning option on recognition performance. grid off and grid on labels
on x-axis represent the results when the spatial binning option is off and on,
respectively.

use N = 2 to show the effectiveness of spatial binning.

As shown in the figure, the highest recognition rates are %93 and %94 and

they are obtained when the number of key frames employed to represent each

action is 20 and 50, respectively. The most noticeable trend in the results is the

large improvement of recognition rate when we increase the number of used key

frames from 2 to 5 and from 5 to 10. Once a saturation point is reached in terms

of K, increasing it (from 20 to 50) further results in a small step up of the overall

performance (from %93 to %94).

Figure 4.4 presents the confusion matrices of the best results in Figure 4.3.

Most of the confusion occur among jump-pjump and run-side-walk actions. Since

for this experiment we only utilize shape of human pose, it is quite reasonable

to have such misclassifications. Jump and pjump are basically variations of the

same action (jump is performed with motion towards a certain direction whereas

pjump is performed in place). Similarly, run, side and walk actions show quite

similar pose appearances and they mostly differ in speed the action is performed.
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Figure 4.4: This figure shows the confusion matrices of the best results in Figure
4.3. We achieve %93 and %94 accuracy values when K = 20 (given in (a)) and
K = 50 (given in (b)). Most of the confusions occur among jump - pjump and
run - side - walk actions.

Introducing a certain level of motion information would resolve these issues.

4.2.2 Evaluation of Spatial Binning and Tolerance

An important observation about the results in Figure 4.3 is the positive effect of

spatial binning option upto a certain point. Placing a 2×2 imaginary grid over the

human figure and allowing the points to be matched only if they come from the

same grid region leads to reasonable jumps in the accuracy (from %50.6 to %59.3

when K = 10 and from %74.1 to %76.1 when K = 15). However, the results when

K = 15, 20, 50 and spatial binning turned off overperform the results with the

same number of key frames when spatial binning is turned on. As emphasized in

Section 3.2.3, we believe that this expected decrease is caused by the imperfections

in the boundary coordinates of spatial bin regions for some test sequences. To

reduce negative effect of the miscalculations, we introduce a tolerance value which

enables the points that fall in two neighbor bin regions to be matched if they
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Figure 4.5: This figure illustrates the effect of tolerance on results when spatial
binning is turned on. Tolerance value is defined in pixel units. (3 pixels, 5 pixels,
7 pixels and 9 pixels)

are located within a certain distance to the boundary between those regions.

Figure 4.5 shows the effect of tolerance value on recognition performance when

repeating the experiment in Figure 4.3 with tolerance = 3, 5, 7, 9 and K = 20.

Increasing tolerance value from 3 to 9 provides a considerable elevation (%7) and

provides the same recognition rate %93 as its counterpart when spatial binning

is disabled. Defining a tolerance value gives us a more flexible version of original

spatial binning constraint. Moreover, it clearly provides a better recognition

performance for all K when compared to the results where no spatial binning

constraint is enforced.

4.2.3 Adjusting Sampling Factor for Point Generation

In Section 3.1.3, we emphasized the importance of feeding the shape context al-

gorithm with a good set of points for the accurate representation of the pose in

a given frame. As the number of points sampled from human contour increases,
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Figure 4.6: This figure shows the effect of sampling factor s used in point gen-
eration. As the sampling factor gets larger, the recognition rate improves to a
certain point and then fluctuates slightly within a certain band of accuracy.

shape context gets better in fetching the shape formed by the human pose. Fig-

ure 4.6 illustrates the effect of sampling factor s we use for point generation on

recognition accuracy. When sampling factor s is 0, we only utilize the center

points of the extracted lines as sampled points. As the figure clearly shows, using

only center points is not enough for good classification. The big jump in recog-

nition rate (from %61.5 to %93.1) after setting sampling factor to 1 is a strong

indication of sampling factor being a crucial parameter.

4.2.4 Evaluation of Different Classification Techniques

For recognizing actions, we utilize four different classification schemes; Majority

Voting with 1-NN, Majority Voting with 3-NN, Sum of Minimum Distances and

Dynamic Time Warping. The first three schemes can be described as having

similar natures since all three of them are based on individual comparison of each

frame to key frames of all actions. On the other hand, aligning two pose sequences

and finding the best possible pose order between them, Dynamic Time Warping
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Figure 4.7: This figure illustrates the recognition accuracies provided by each
classification method. In the figure, MV 1-NN, MV 3-NN, SD and DTW stand
for Majority Voting with 1-NN, Majority Voting with 3-NN, Sum of Minimum
Distances and Dynamic Time Warping, respectively.

provides a different recognition alternative. Figure 4.7 shows the performances

of each scheme in an experiment on Weizmann dataset, where the number of key

frames K for each action is 40 with spatial binning option turned off. As expected,

the first three methods (MV 1-NN, MV 3-NN and SD) are able to recognize

almost the same amount of samples and present recognition rates between %91

and %93. Surprisingly, DTW appears as the worst classifier and remains at

merely %50 accuracy. From these observations, we can conclude that Dynamic

Time Warping is not suitable to be used along with a key frame based action

recognition approach. For the rest of the experiments, we drop DTW and utilize

MV 1-NN, MV 3-NN and SD as our classifiers.

4.2.5 Evaluation of Matching Methods

In Section 3.2.1, we present two point matching techniques Left-To-Right Match-

ing (LRM) and Hungarian Method which are used to find a matching between

the point sets of a given pair of frames. Looking at different perspectives, these

two matching methods provide different strategies. LRM tries to match each
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Figure 4.8: This figure demonstrates how using Left-To-Right Matching (LRM)
or Hungarian Method affects the recognition performance. LRM provides a %93
recognition rate whereas Hungarian Method remains at %86

.

point in first frame to the most similar point in second frame, but it does not

necessarily provide a match for each and every point. On the other hand, provid-

ing a match for each point, Hungarian Method seeks to minimize summation of

individual similarities by avoiding to match the closest points right away. Figure

4.8 shows that using Left-To-Right Matching (LRM) overperforms Hungarian

Method. This observation is important since it is an indication of Hungarian

Method not being applicable to human action recognition as a point matching

technique to define the similarity between two human poses. Although Belongie

et al. in [1] suggest Hungarian Method when using Shape Context Descriptor,

LRM is more successful in analysing similarities and dissimilarities of a given pair

of human pose. Moreover, Hungarian Method, which is essentially a combina-

torial optimization algorithm, takes a considerable time when looking for global

optimum. For the rest of the experiments, we do not test Hungarian Method and

utilize Left-To-Right Matching as our point matching scheme.
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4.2.6 Utilizing Other Visual Clues

It is desirable to use other visual clues such as image appearance in combination

with Shape Context Descriptor when defining a similarity value between two

points. As we emphasized in Section 3.2.2, these individual distances can be

summed up by a weigted manner and similarity matrix between points can be

generated accordingly. With Formula 3.5, we defined a distance which measures

the similarity of two points in terms of orientation of the lines that the points are

originated from. Our results show that none of different weight sets (αsc, αθ) that

we give to each similarity value (shape context distance and orientation distance)

improves our previous results. In fact, increasing the effect of orientation distance

may sometimes result in the deterioration of recognition performance. We believe

that involving the other line characteristics such as line length in Formula 3.5

may give us the improvement we seek for. We leave the exploration of such

supplemental line features as a future work.

4.2.7 Involving Motion Information

In Section 3.4, we explained how we can introduce a level of motion information to

the key frame selection process. We described how we compute two displacement

vectors referred as “from where” and “to where” for each frame in a sequence.

As mentioned previously, there are two ways to integrate the motion information.

One way is to calculate the distance between displacement vectors of two frames

and to add the resulting value as a constant to shape context similarity values of

points at the beginning of point matching. This method is desribed by Formula

3.9. Alternatively, after point matching is done, we can add the same values to the

distance between two frames as depicted in Formula 3.10. In our experiments, we

observed that the first alternative does not give us the performance improvement

we seek for. Thus, in this section, we only focus on the second alternative.

Figure 4.9 illustrates the effect of using motion information on Weizmann

dataset. As we expected, we obtained a %4-5 increase in performance and

achieved a %98 accuracy when the number of key frames K for each action was
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Figure 4.9: This figure illustrates the effect of using Motion information along
with Shape on Weizmann dataset. When the number of key frames K for each
action is 80, we obtained a %98 accuracy.

80. Figure 4.10 presents the confusion matrix of the same result. As it can be

seen, the only confusions occur between pjump-wave1 and run-walk. This result

seems quite reasonable since pjump and wave1 actions only differ by a single

hand in shape. Besides this confusion, the same up and down movement of the

points in their poses is another factor which makes them hard to be distinguished

by our displacement vectors. Moreover, the second confusion between run and

walk sequence might be a good indication of the need to use a global motion

information.

Figure 4.11 shows the performance of using only shape information and using

shape and motion information together on KTH dataset. Our approach without

using motion information achieves a %77 recognition rate when the number of key

frames we extracted for each action is 120 (30 key frames for each scenario for each

action). When involving motion information, we obtain %4 improvement and

achieve %81 accuracy. In this result, the individual performance values obtained

for each shooting scenario are %92 for SC1, %64 for SC2, %85 for SC3 and %79 for

SC4. SC2 videos are shot in presence of scale and viewpoint variations leading

to a considerably large number of possible pose appearances for each action.
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Figure 4.10: This figure shows the confusion matrix for the best result in Figure
4.9

.

Therefore, SC2 appears as the shooting condition where our approach works the

worst. Here, increasing the number of poses should increase the performance

upto a certain point. However, increasing K further also increases the required

time for the classification step. Figure 4.12 presents the confusion matrix for the

best result in Figure 4.11. Generally, the confusions occur among two groups;

boxing-handclapping-handwaving and jogging-running-waving. Especially, the

failure in recognizing running action stands as a striking observation. Again, this

observation is another clear indication of the absolute need in utilizing a global

motion feature.

We believe that the results we obtained on this dataset are acceptable since

KTH is quite a challenging dataset with different shooting conditions. Moreover,

because of time concerns we split this dataset as testing and training, but it

is known that applying leave-one-out cross validation may provide performance

improvements upto %10.
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Figure 4.11: This figure illustrates the effect of using Motion information along
with Shape on KTH dataset. When the number of key frames K for each action
is 120 (30× 4), we obtained a %81 accuracy.

.

Figure 4.12: This figure shows the confusion matrix for the best result in Figure
4.11

.
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4.3 Comparison to Related Studies

In this thesis, our first goal was to present a new representation that combines

shape and motion information in an action sequence within a key frame based

approach. Most of the recent approaches have perfect recognition rates (%100)

on Weizmann dataset. Although we achieved %98 accuracy on this dataset, we

were unable to classify only 2 sequences out of 81 and we managed to get better

results compared to the studies in [20] (%73) and [27] (%87). In KTH dataset,

the performance values previous studies achieve range from %73 [25] to %95 [16].

Using a split-based testing method, our approach achieves a %81 accuracy and

performs better than the studies in [13] (%80), [18] (%73) and [25] (%72).



Chapter 5

Conclusion

5.1 Summary and Discussion

In this thesis, we present an action recognition approach that is based on a num-

ber of stored pose prototypes (“key frames”) for each action. To describe the

human pose represented in a frame, we use the well-known Shape Context De-

scriptor which is generally employed for object recognition purposes. We compare

the shapes of the poses in a given pair of frames by means of Shape Context De-

scriptor. During the shape comparison phase, we also utilize simple displacement

vectors (“from where” and “to where”) that we compute for each frame and in-

troduce a level of motion information to the key frame selection process. As a

final step, grouping the frames into a predefined number of clusters provides us a

set of key frames for each action which makes it easier to distinguish that specific

action from the rest of the action set.

For classifying a given sequence of poses, we utilize three schemes; Majority

Voting, Sum of Minimum Distance and Dynamic Time Warping. Majority Voting

and Sum of Minimum Distances can be categorized as frame-by-frame comparison

schemes and they are simple and powerful enough to find the most similar action

to a given pose sequence. On the other hand, Dynamic Time Warping, which

finds a correspondence between the pose order of two action sequences, can also
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be utilized as an alternative classification scheme.

The experiments we have conducted on Weizmann and KTH datasets show

that Shape Context is a powerful shape descriptor and it is efficient to grasp

the nature of the poses formed by the human figure during the time an action

is performed. Moreover, on top of describing the shapes by Shape Context,

employing a set of frames as “key frames” is indeed desirable compared to using

whole sequences in training samples. Moreover, our results indicate that even

simple displacement vectors for motion can eliminate shortcomings of merely

using the human pose and elevate recognition accuracy considerably.

5.2 Future Work

Classification performance of our approach presented in this thesis mostly de-

pends on the step in which we group the similar frames of an action into a

predefined number of clusters. Measuring how well the frames of an action are

grouped appears as the preferred work for future research. Evaluation of clusters

by existing Data Mining techniques and reassigning frames into clusters if neces-

sary may lead to significant increases in recognition accuracy. Our experimental

work shows that utilizing the local motion information present in a frame boosts

up performance to a certain point. Yet still, employing some features that reflects

the global motion information in the sequence is desirable. Therefore, inspecting

the motion in each frame and generating a general displacement vector for the

entire sequence stands as a second future work. When calculating similarity be-

tween two points, combining Shape Context distance with orientation distance in

weighted fashion does not elevate recognition performance. We will modify the

orientation distance in a way such that it reflects other line characteristics such

as length as well. As a last future work, we plan on letting each classification

technique take a role in the overall decision process. Although the individual

performance of Dynamic Time Warping is far from being acceptable, we believe

that combining Majority Voting or Sum of Minimum Distances with Dynamic

Time Warping would give us a more powerful classifier.
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