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Abstract: Action understanding is a fundamental computer vision branch for several applications,
ranging from surveillance to robotics. Most works deal with localizing and recognizing the action
in both time and space, without providing a characterization of its evolution. Recent works have
addressed the prediction of action progress, which is an estimate of how far the action has advanced
as it is performed. In this paper, we propose to predict action progress using a different modality
compared to previous methods: body joints. Human body joints carry very precise information about
human poses, which we believe are a much more lightweight and effective way of characterizing
actions and therefore their execution. Estimating action progress can in fact be determined based on
the understanding of how key poses follow each other during the development of an activity. We
show how an action progress prediction model can exploit body joints and integrate it with modules
providing keypoint and action information in order to be run directly from raw pixels. The proposed
method is experimentally validated on the Penn Action Dataset.

Keywords: action progress prediction; body joints; body pose

1. Introduction

Action recognition is an important field of research in computer vision that focuses
on the problem of identifying and categorizing the actions that are being performed by
individuals. This is a challenging task, as the same action can be performed in many
different ways, and can be affected by factors such as the viewpoint, lighting conditions,
and the presence of other objects in the scene. Despite these challenges, action recog-
nition has many potential applications in fields such as video surveillance [1,2], sports
analysis [3-5], and human-computer interaction [6-8].

There are several different techniques that can be used to perform action recognition
in images or videos, exploiting different input modalities [4,9,10]. The simplest and most
common method is to directly infer the action from raw frames [11]. This approach uses
RGB frames as the input to a machine learning model, which is trained to identify and
classify the actions that are being performed. This is a widely used approach, as it is
relatively simple and can be effective for many types of actions. Other methods exploit
optical flow to perform action recognition [4,12,13]. These approaches use the movement of
pixels between consecutive frames in a video to determine the motion of the objects in the
scene. This information can then be used to identify and classify the actions that are being
performed. This approach can be more robust to factors such as viewpoint and lighting,
but can be sensitive to noise.

Following a recent crop of literature [14-18], in this paper we are interested in rec-
ognizing the action from a pose-based point of view. Pose-based action recognition is an
approach that uses information about the position and orientation of human body joints
to identify and classify actions. This approach is based on the idea that the movements of
body joints are a key element of many actions, and that by analyzing the positions of these
joints over time, it is possible to accurately identify and classify the actions that are being
performed. To perform action recognition using body joints, the most common approach
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is to use a convolutional neural network (CNN) to process frames and identify the key
features or elements that are relevant to the body joints in question [19,20]. This information
can then be used to train a model that can make predictions about the likely actions that
are being performed in a given image or video.

Regardless of data modality, action recognition can be declined under several as-
pects. The action must be recognized, but it must also be localized in time [21,22] and
space [23-25]. In addition, one recent development in the field of action recognition is the
ability to predict the progress of the ongoing action [26,27]. This allows to not only identify
the action that is being performed, but also to make predictions about how the action is
evolving over time. It has many potential applications, such as in the fields of medicine and
sports, where being able to predict the progress of an action can help to identify potential
problems or injuries, and allow for early intervention [27]. Additionally, this ability to
predict the progress of an action can also be useful in other areas, such as video surveillance
and video summarization, where it can help to identify key events and highlight important
information for the user.

In this paper, we propose to exploit a pose-based approach for action progress predic-
tion. By leveraging body joints we are able to train a lightweight and efficient model that is
able to estimate how far an observed action has progressed. The usage of body joints rather
than RGB pixels allows the model to analyze sequences of poses which compose an action,
thus allowing it to identify relevant motion patterns that correlate with the development
of the action itself. We complement our model with an action classification module to
understand which action is being performed and we show the effect of using predicted
body joints rather than accessing a source of joints (e.g., a 3D sensor such as a Kinect [28]).
The main contributions of our paper are the following:

*  We present a joint-based action prediction model. The architecture is based on a
recurrent model that estimates the progress of the observed action as it is performed,
emitting predictions online, for every frame. To the best of our knowledge, we are the
first to adopt a joint-based approach for action progress prediction.

*  We add to our progress prediction model additional modules to estimate body joints
and the category of the ongoing action. This allows us to estimate progress directly
from raw RGB pixels, reasoning on joint positions.

*  The proposed progress prediction model is highly efficient and can be used in real-time
online settings. We propose an analysis of the execution cost under different scenarios,
depending on different degrees of data availability.

2. Related Work

Action recognition is an extensively studied area in computer vision [13,29-31]. Tradition-
ally, action recognition methods have dealt with simply classifying still images [32] or video
clips [13]. In [33], the authors use action banks—large sets of individual, viewpoint-tuned
action detectors. The method exploits the fact that a large number of small action detectors,
when pooled together, can yield better results than traditional low-level handcrafted features
in discriminating videos.

Fully understanding actions in videos however requires us to solve more complex
tasks such as temporal localization and spatial detection. Temporal action localization
attempts to identify video segments in which certain actions take place [34,35]. This is
important to process untrimmed, arbitrarily long, videos. On the other hand, methods
for action detection yield spatial locations in the form of bounding boxes [23]. Recent
works have addressed both tasks simultaneously by generating spatio-temporal action
tubes [24,30,36] or frame coordinates [37].

In general, a noteworthy approach for action recognition is to process two separate
sources of data: RGB frames and optical flow. This approach, first presented in [13] and
dubbed the Two-Stream Convolutional Network, adopts two separate CNNs to deal with
the two input modalities and then applies a late fusion strategy to blend the predictions.
This approach has then been used in several applications, also for spatiotemporal action
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detection [24,36]. In particular, [36] uses a two-stream network to process untrimmed
videos and, thanks to a detection head inspired by Fast-RCNN [38], is able to gener-
ate framewise-detections, which are then linked in time with a Hungarian algorithm.
Singh et al. [24] adopt a similar approach, but improve the data association module by
linking detections online and using a single stage action detector [39] to work in real-time.
Another approach which is commonly used for action recognition is to exploit 3D convolu-
tions [40-42]. The 3D convolutions consist of using convolutional filters that can also span
over the temporal dimension in addition to the traditional spatial ones. This allows us to
take into account multiple frames by processing video chunks as individual samples.

A further characterization of the evolution of an action has been recently proposed
in [26], where the authors learn to predict its ongoing progress, as the action is observed.
To do so, a CNN backbone extracts features of the whole frame and, thanks to a spatio-
temporal detection module, feeds roi-pooled crops to a temporal model that emits the
percentage of progress at every timestep. This opens up to interaction applications and has
found usage also in surgical methods [27,43]. Similarly, [25] have estimated progress values
by proposing a cycle-consistency learning strategy: by aligning similar frames of different
videos in an embedding space, they are able to infer progress values of action subphases.

All methods that have dealt with estimating action progress, however, have disre-
garded the notion of pose in modeling the action. We argue that an action can be inter-
preted as a sequence of body poses, which can better convey progress cues rather than
raw pixels. Therefore, in this work we propose to address the problem of action progress
prediction from a body pose perspective, feeding our model with 2D body joints, directly
inferred from the frames. A large crop of literature has studied the problem of estimating
body joints from videos and single images [15,20,44,45]. One of the first approaches to
do so, was a declination of Mask-RCNN, which added a joint regression head to its in-
stance segmentation backbone [44]. Noteworthy methods from the state-of-the-art such as
UniPose [20], OpenPose [45] or Alpha-Pose [46]. In this work we adopt UniPose [20] as
a source for extracting body joints and train our model to estimate action progress. The
model exploits Waterfall Atrous Spatial Pooling [47], which provides multiscale processing
and network efficiency, in order to output heatmaps for each joint.

In our work, we combine several different modules to be able to estimate action
progress directly from the pixels. Recently, a research trend known as Automated Machine
Learning (AutoML) has been intensively studied to automate the processes of finding an
optimal architecture for a given problem [48,49]. AutoML has given remarkable results in
challenging fields such the medical one [50] and has been also successfully adopted for
action recognition [51]. This could be an interesting starting point for future developments
to further improve our proposed approach.

3. Joint-Based Action Progress Prediction

In this paper we propose a joint-based model to address the task of action progress
prediction. The labels for action progress were generated To define the progress of an
action, we follow the work of Becattini et al. [26], in which a linear definition is given. The
same formulation has been also adopted in [25] and it defines the current progress p; of an

action as:
t—S

P"TESS
where t is the current frame, S is the frame in which the action begins and E is the frame
where the action ends.

Our proposed approach leverages skeleton joint information to model the progression
of an action as a progression of human poses. We combine several modules, in charge of
inferring the pose, classifying the action and, finally, estimating action progress. The model
architecture is shown in Figure 1. In the following, we first define an oracle model, capable
of accessing precise pose and action class labels and we then present a fully functional
model which estimates pose, category, and progress directly from raw video sequences.

€[0,1] 1
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Figure 1. Proposed architecture for localization, action classification, and progress estimation. Blocks
in purple are the outputs produced.

3.1. Action Progress Prediction

The module for action progress estimation is given sequences of joints positions
to predict the progress of the action. Architectures specifically designed to deal with
sequences are Recurrent Neural Networks [52], which are able to memorize information
progressively with the input sequence. As a result the outputs will be influenced by all
previous observations.

In our work, we adopt a declination of RNN called Gated Recurrent Units (GRUs) [53].
GRUs are a simplified variant of Long Short-Term Memories (LSTM) [54]. A GRU has a
hidden state acting as a memory, which gets updated at every timestep and two gates,
regulating which information to store. A reset gate controls the flow of information from the
previous time step, while an update gate controls the flow of information from the current
input. This makes it possible to decide how much information to retain from previous time
steps or how much new information to store when updating the internal state.

The update gate is typically implemented using a sigmoid activation function, while
the reset gate is typically implemented using a tanh activation function. The output of
the update and reset gates is multiplied element-wise with the input and the hidden state,
respectively, and the resulting values are used to compute the new hidden state for the
current time step.

One advantage of GRUs over LSTMs is that they have fewer parameters, which makes
them faster to train and easier to optimize. They also tend to perform well on a wide range
of tasks, including language modeling, machine translation, and speech recognition. Dense
layers are employed before the GRU stage, in order to learn a feature representation for
joints positions. A final dense layer is also used in order to produce the progress percentage.

As input to the model we also assume to have access to a class label for the observed
action. In practice, this can be estimated by an action classifier, as detailed in Section 3.3.
When dealing with trimmed actions, each action starts end ends with the video. The
starting point S of the action is always found in the first frame and the ending point E in the
last one. In real applications, S can be estimated by the action classifier, which signals the
model to start estimating the progress only when an action is detected. In a similar fashion,
E can be estimated by the action classifier once no-action is detected, or heuristically when
the model understands that the action is at its end (e.g., progress above a threshold). In
such a way;, it is possible to understand when an action takes place in a video and what its
progress is, including in cyclic scenarios (e.g., multiple push-ups). As we assume the action
classification is already available at the time the action progress model is executed, we add
as input the one-hot encoded class to the model.

Our action progress prediction model is depicted in detail in Figure 2: the first dense
stage builds a feature representation of the input, then the GRU stage allows a degree of
memorization which is fundamental for the task, finally, the two time-distributed dense
layers produce the progress prediction for each frame.
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Figure 2. Action Progress Prediction architecture.

We study two possible paradigms that can be used in our task:

*  Many-to-One: we consider a window of N frames that are passed sequentially to the
network. After all such frames have been considered, a single output is produced, that
is the progress prediction for the last frame in the input sequence. When a new frame
is available, the window is moved in order to consider the N most recent frames.

*  Many-to-Many: each frame of the sequence is passed in real-time to the network,
producing the progress prediction for that frame. The network has an internal state
which is maintained and updated throughout the whole sequence so that previous
frames influence the prediction relative to the current frame.

We feed to the model normalized joints with coordinates scaled in [0, 1], dividing
coordinates by the size of the frame.

To train the model we used the Adam Optimizer [55] with a learning rate & = 5 x 1072,
and batches of 16 videos. The loss employed is mean absolute error (MAE). During
training, data augmentation was applied, performing a random rotation of joints positions
in [—10°, +10°] and a horizontal flip with p = 0.5.

3.2. Joint Extraction—UniPose

In order to test our model directly on videos, we need a module for body-joints
extraction. We use the state-of-the-art body-joints extractor UniPose, by Artacho et al. [20].
This model makes use of ResNet [? | as a backbone module, followed by a Waterfall Atrous
Spatial Pooling [47]. Given a frame, the output of UniPose consists in K heatmaps, each
associated to a distinct joint. A peak in a heatmap constitutes the location prediction for the
corresponding joint (an example is shown in Figure 3).

We use the UniPose model pretrained on the COCO dataset [57], which predicts
the position of 17 key-points of the human body. We then finetune UniPose performing
50 additional training epochs. Once again, the Adam optimizer is used, with a learning rate
of 1 x 1075 and a batch size of 8. Data augmentation techniques were employed during the
training, applying a random rotation of videos in [-10°,4+10°] and a horizontal flip with
p=05.

The UniPose model is then connected to the progress estimation module in order to
process videos directly from raw pixels rather than an oracle source of joints. A confidence
threshold of 0.5 is applied to the predictions of UniPose, so that the model is given only
trustworthy joints. The ones that do not respect the threshold are placed in (0,0) thus
ignored for progress estimation. In order to enhance the performances when dealing with
joints extracted by UniPose, a fine-tuning of the progress prediction module is performed,
training further for 50 epochs. Adam optimizer is used with a learning rate of 1 x 10~%.
The same joint data augmentation is applied, as outlined in Section 3.1.
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Figure 3. Output of UniPose when an example image is processed. Below are available (left to right)
the heatmaps produced for the head position, the left elbow and the right elbow.

3.3. Classification Module

In order to feed classification labels to the network, a classifier is needed to estimate
when an action takes place in a video and what action is being performed. The classification
module needs to estimate if an action is being performed in the current frame and, if so, to
detect which action is executed. This behavior can be achieved with different strategies.

A first idea could be to decompose the module into two classifiers: a binary classifier
able to distinguish among action and no-action, followed by a multi-class classifier able
to detect the class of the action being performed, which is activated only if the first classifier
detects an action. Another idea could be to have a single multi-class classifier in which a
no-action class is available together with all the possible action classes.

In order to train such models, frames labeled as no-action need to be available in the
training set. As a simple solution, we distinguish among action and no-action by looking
at the confidence of the prediction of the action classifier: we can consider that no action is
performed when the confidence for a prediction is below a fixed threshold.

Several architectures were tested in order to obtain the best performances over this
classification task. In particular, two types of backbones were tested: VGG16 [58] and
InceptionV3 [59]. As we are dealing with videos, we also tested a fine-tuned architecture
containing a GRU layer.

We trained the various configurations of the classifier making use of the Adam Op-
timizer [55] and Categorical Cross-Entropy Loss. Data augmentation techniques were
employed during training, applying a random rotation of videos in [—7r/10,+7/10], a
horizontal flip with p = 0.5, a random zoom with 0.2 as maximum factor, and other image
manipulations: random brightness, saturation, hue, and contrast.

The classifier is then completed, adding a confidence threshold at 0.9 in order to
distinguish among action and no-action. Finally, this module can be added to the overall
architecture which is reported in Figure 1.

4. Dataset

The dataset used to train and test each module of the architecture is Penn Action
dataset [60], which consists of 2326 video sequences of 15 different human actions. Each



Sensors 2023, 23, 520

7 of 15

frame in the dataset is annotated with 13 human joints positions and their visibility, together
with bounding-box position. An example of such annotations can be seen in Figure 4.

Figure 4. Example of annotated frame in Penn Action dataset.

As our goal is to train a model able to estimate the progress of an action. We discarded
two classes of videos that were not suitable (jump_rope and strumming_guitar), as both the
starting and ending of the action are hard to identify due to its cyclic nature. All other videos
were already trimmed to precisely show one single action in its entirety, without repetitions.

We focused on the remaining 13 classes, for a total of 2150 videos. The train/test splits
of the original dataset are used, with 1172 videos for the training set and 978 for the test set.
Among the 1172 train videos, 26 (2 per each class) were selected for validation purposes. In
Figure 5 (left), more details are available about the video distribution over the 13 classes in
train and test sets. The videos are on average 70 frames long and are distributed as shown
in Figure 5 (right).
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Figure 5. (left) Number of videos per class in train and test sets; (right) length distribution of Penn
Action videos in frames.

This dataset is well suited for our task, as we are given labels to perform a supervised
training for joints extraction and action classification. Most importantly, we can define
progress estimation labels as a linear definition for action progress can be used, in a similar
fashion to what was used in Becattini et al. [26]. This dataset was used previously used
in [25], proving its appropriateness with action progress related tasks. Other datasets used
in prior works such as UCF-101 [61] do not have annotated joints and therefore are not
suitable for our work.

5. Experiments

In this section we experimentally validate our joint-based approach for action progress
prediction on the Penn Action Dataset. We first present the results for the oracle model,
which directly receives ground truth joint positions and action labels and we then evaluate



Sensors 2023, 23, 520

8 of 15

our model by adding the joint extraction and action classification modules. We also provide
an inference time analysis.

5.1. Oracle Model

In Table 1, we report the configurations tested for the oracle model, together with their
performances over the test set. The evaluation metric here is Mean Absolute Error (MAE)
as it allows good interpretability for this task. We test the two inference configurations,
many-to-one and many-to-many, as detailed in Section 3.1. Among the two, the many-to-
many model proved to yield the best results. We attribute this to the ability to keep track of
the ongoing action in its entirety, starting from the beginning and up to the current point.
On the other hand, the many-to-one approach only observes a fixed sliding window of
frames. We also trained the model by changing the number of GRU stages by stacking
two layers on top of each other. Interestingly, using two stages leads the model to overfit,
thus slightly rising the mean absolute error on the test set. Overall, the best configuration
resulted in a many-to-many configuration with a single GRU stage, with a mean absolute
error on the test set of 6.22%. As a reference, we show also a variant of the model without
the class data as input. This version only takes joints into account, having to understand
the ongoing action as well as its development. This leads to an increase in almost 2% in
the error.

Table 1. Mean absolute error of progress predictions over the test set of the various configurations
tested for our model. Best result in bold.

Paradigm Class Data Available #GRU Stages MAE
Many-to-One X 1 8.65
Many-to-One 4 1 6.91
Many-to-One v 2 7.05

Many-to-Many v 1 6.22
Many-to-Many 4 2 6.39

From a computational point of view, the trained model turns out to be extremely fast
thanks to its simplicity. Table 2 reports the average execution times for our model to process
all the 72,342 frames of the 978 test videos, when running in CPU and in GPU. To benchmark
our model, we used an NVIDIA Tesla T4 GPU and an Intel Xeon CPU@2.20GHz.

Table 2. Inference time of the oracle model when processing the 978 test videos of the Penn Action
dataset (72,342 frames in total).

Computing Total Average
Unit Execution Time Inference Time
Intel Xeon CPU
CPU @2.20GHz 69.24 s 1044.86 FPS
GPU NVIDIA Tesla T4 43.77 s 1652.82 FPS

5.2. Progress Prediction with Body Joints Estimation

In order to make the model usable in a real application, we need to infer body joints
from RGB frames. Here, we show the results of our model when replacing the joints
oracle with Unipose, as explained in Section 3.2. We use a Unipose model pretrained
on COCO [57], which is able to estimate 17 body joints, including the 13 keypoints used
by the Penn Action dataset. To obtain joints similar to the ones used to train our action
prediction module we simply discard the points not annotated in Penn Action. Unipose
is then finetuned on the action dataset to generate only joints of interest. We evaluate
the quality of the estimated body joints using the Percentage of Correct Key-points (PCK)
metric, in particular PCK@0.2. This metric considers the prediction of a key-point as correct
when the distance between a joint detection and the ground truth is below 20% of the torso
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diameter. The resulting model has a PCK@0.2 of 86.94% on the test set, which is obtained
taking into account also occluded and out-of-the frame joints.

Once the joint extractor is well trained, we perform an additional finetuning step of
the progress estimation module, in order to make it more robust to noisy joints. Table 3
shows the performances of the architecture when the two tuning phases are applied. The
evaluation metric considered is once again Mean Absolute Error (MAE), which is evaluated
over the test set of the Penn Action dataset. In this setup, the model is also given as input
the ground truth class labels of each video. It is clear from the results that the two tuning
phases allow a great boost in performances, proving the architecture is suitable for the task
and is well trained. The table also highlights the slight drop in performances when moving
from ground truth joints on to extracted ones.

Table 3. Mean Absolute Error of progress predictions over the test set of Penn Action dataset when
finetuning of the various modules is applied. The last line represents the model with oracle joints.
Best result in bold.

Joint Source UniPose Finetuning Progress Finetuning MAE
X X 19.82

Unipose v X 11.51
v 4 7.90

Oracle X X 6.22

The 72,342 frames of the 978 test videos were processed at a frame-rate of around
30 FPS on an NVIDIA Tesla T4 GPU. The architecture is much slower now due to UniPose,
but can still run in real-time.

5.3. Progress Prediction with Action Classifier

We complete the evaluation of our model by including an action classifier, instead of
directly feeding action category labels to the progress prediction module. We tested several
architectures for classification, as explained in Section 3.3. Table 4 reports the training
details of the tested architectures, together with the performance achieved over the test
set in terms of accuracy. As we can see the InceptionV3 [? ] backbone achieves the best
results compared to a VGG16 [58] backbone. We test the InceptionV3 model in different
settings. We either finetune a pretrained model in Imagenet or we use it to extract features
and just learn an action classifier to categorize them. Finetuning the whole model leads
to an improvement, although not so significant. On the other hand, a considerable gain
is obtained when including a GRU layer right before the dense output stage. This model
accumulates information over time and emits a prediction at every timestep. Temporal
modeling appears to be highly important for this type of task. To compact the features
extracted from InceptionV3, we apply a 2D convolution after the last convolutional layer
of the model and then we flatten and squeeze to a 256-dimensional vector the resulting
feature map. The overall action classification architecture is depicted in Figure 6.

This InceptionV3-based architecture proved to be fast enough to run in real time.
On average, to process 15 consecutive frames it achieves a throughput of approximately
112 FPS on an NVIDIA Tesla T4 GPU.

Table 4. Accuracy and Cross-Entropy loss of the tested classifiers over Penn Action Dataset test set.
When finetuning is not used, we simply use the model as a feature extraction and train an action
classifier on top of the features. The GRU layer instead accumulates information over time and emits
a classification at every timestep. Best result in bold.

Backbone Finetuning GRU Layer Test Accuracy
VGG16 4 X 70.94
InceptionV3 X X 7221
InceptionV3 4 X 77.23
InceptionV3 v v 83.04




Sensors 2023, 23, 520

10 of 15

CLASSIFICATION MODULE

TimeDistributed

368x368

15!

TimeDistributed

|

(- ™\
CLASS PREDICTION

[l -

%'Q ﬁﬁm w2 2

2 3 Q3 s 03 E = &

23 SE Z2:ES "oull uo”
@ x (U]

g8 ged Beg| |98 pull_up

= o - d

FLATTEN
DROPOUT @0.5

|

Figure 6. Proposed architecture for classification based on InceptionV3 backbone.

UniPose and the Classification Module could work in parallel, as their task is com-
pletely independent. As a result the whole architecture can run at about 30 FPS as UniPose
is the slowest between the two. Although, even running the two models in series, the
overall throughput is ((30 FPS)~! + (112 FPS)~!)~! ~ 23 FPS.

5.4. Results

Here we test the overall architecture, highlighting the impact of every module in
the final action progress results. Once again the evaluation metric for the model is Mean
Absolute Error (MAE), evaluated over Penn Action dataset test set. Figure 7 reports a
per-class comparison in terms of MAE when both joints and class labels are estimated by
the architecture. For body joints we use UniPose, as explained in Section 3.2 and for class
labels we use the action classifier presented in Section 3.3. Figure 7 also reports the results
obtained by the model when either the joints or the action label are given. Interestingly,
when estimating joints using UniPose, the classes of bench_press and situp become much
more challenging. We impute this to a higher level of body self-occlusion, which makes it
harder for UniPose to estimate the joints correctly.

When introducing also the action classifier, there is a small increase in MAE distributed
over all classes with the notable exception of clean_and_jerk, which results much more
problematic. Looking back at Figure 5 we can notice that only 40 videos are available in the
train set for clean_and_jerk, hence the training of the classifier results harder for this class
compared to the others. To limit the effect of the data unbalance, during training we build
a batch by selecting at random a video per class. This slightly helps the model, yielding an
MSE of 0.1743 for the clean_and_jerk, as reported in Figure 7, rather than the 0.2154 that
we obtain without a balanced training. Overall, the batch balancing improves the MAE
averaged over all categories from 0.1151 to 0.1094.

Overall MAE results are reported in Table 5, where Mean Absolute Error of the
architecture is shown in comparison with its variants using oracle joints or class labels. It
is clear that the addition of the classification module causes a slight drop in performance
of about 3%, as ground truth class labels are no longer used. We also report a static 50%
progress baseline for reference.

Table 5. Mean absolute error of progress predictions over the test set of Penn Action dataset of the
complete architecture, compared to partial ones and to the constant prediction of 50%. The last
column is referred to the scenario in which clean_and_jerk is ignored.

0,
50% Constant Joint-Based Progress Prediction

Prediction
Joint source - Oracle Unipose Unipose
Class source - Oracle Oracle Classifier
MAE 25.00% 6.22% 7.90% 10.94%

In addition, in Figure 8, we show some example outputs when videos from the Penn
Action dataset are processed by the overall architecture. Here joints are estimated using
UniPose and the action is predicted with the action classifier. As can be seen in the figure,
as the actions advance, the model is able to correctly estimate their ongoing progress. For
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each reported frame we show the predicted joints, the predicted class with the confidence
of the classifier and the estimated progress. In Figure 8, we also show a few qualitative
samples obtained processing videos from YouTube to show the generalization capabilities
of the model to unseen videos that are out of the distribution of the Penn Action dataset.
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Figure 7. Per-class Mean Absolute Errors when using ground truth joints and ground truth class
labels (in blue), when using extracted joints and ground truth class labels (in steelblue) and when
everything is extracted by the architecture (in lightblue).

5.5. Cyclic Actions

Actions such as push_up, jumping_jacks and other bodyweight exercises are very
likely to be performed more than once in a row when it comes to real-life videos. As it is,
our model was not trained to cope with cyclic scenarios, thus, when the first repetition
ends, the progress prediction will remain stuck at around 95% for all the following ones.
The problem stems from the fact that the recurrent neural network of the action progress
prediction module will end in a stationary state once the action has reached the end. In
order to make the model work in presence of cyclic actions without retraining the model,
it would be necessary to identify the end of the action and re-initialize the hidden state
of the model to start predicting correctly again. This can be easily achieved by setting a
threshold to the predicted action progress: when the esteem is over 95% we reset the model.
As a result, it will be ready to evaluate the next action without any previous bias. On the
other hand, retraining the model for cyclic actions would solve the issue by instructing the
recurrent model to automatically reset the state. If such cyclic actions are not available, data
augmentation techniques could be performed in order to generate artificial cyclic actions
by repeating of concatenating samples. This could allow a better training of the model,
making it able to cope with such situations without the usage of heuristics.
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Figure 8. Some examples of the outputs produced by the overall architecture. The first 4 videos are
taken from Penn Action dataset whilst the last 2 are taken from YouTube at https://www.youtube.
com/watch?v=UgKaDSA3ulg (accessed on 29 December 2022) and at https:/ /www.youtube.com/
watch?v=I0DxDxX70i4 (accessed on 29 December 2022).

6. Conclusions

In this paper we have proposed an approach for estimating action progress in videos
based on human poses. Human poses are encoded as body joints, which can be easily
extracted by models such as UniPose. We build our model leveraging gated recurrent units
to capture temporal dynamics of actions which can be extracted by processing sequences
of body poses. The resulting model is extremely lightweight, being able to work in real
time, even when estimating joints directly from each frame, as the video is observed. In
particular, the action progress estimation module alone can run at more than 1500 FPS on a
GPU and can still run at approximately 23 FPS when combining it with UniPose and the
action classification module. We tested our model on the Penn Action Dataset, obtaining
different levels of prediction accuracy depending on how much precise information can be
accessed by the model. However, the model can still obtain low Mean Absolute Errors even
when estimating both joints and action categories directly from raw pixels. As for future
developments, we intend to merge UniPose and the action classifier in a multi-task fashion:
the ResNet backbone module used in UniPose could behave as a feature extractor for the
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classifier as well. The resulting architecture would be more efficient in terms of resources,
and could benefit from information sharing in the multi-task setting.
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