12 research outputs found

    Structure from Recurrent Motion: From Rigidity to Recurrency

    Full text link
    This paper proposes a new method for Non-Rigid Structure-from-Motion (NRSfM) from a long monocular video sequence observing a non-rigid object performing recurrent and possibly repetitive dynamic action. Departing from the traditional idea of using linear low-order or lowrank shape model for the task of NRSfM, our method exploits the property of shape recurrency (i.e., many deforming shapes tend to repeat themselves in time). We show that recurrency is in fact a generalized rigidity. Based on this, we reduce NRSfM problems to rigid ones provided that certain recurrency condition is satisfied. Given such a reduction, standard rigid-SfM techniques are directly applicable (without any change) to the reconstruction of non-rigid dynamic shapes. To implement this idea as a practical approach, this paper develops efficient algorithms for automatic recurrency detection, as well as camera view clustering via a rigidity-check. Experiments on both simulated sequences and real data demonstrate the effectiveness of the method. Since this paper offers a novel perspective on rethinking structure-from-motion, we hope it will inspire other new problems in the field.Comment: To appear in CVPR 201

    Scalable Dense Non-rigid Structure-from-Motion: A Grassmannian Perspective

    Full text link
    This paper addresses the task of dense non-rigid structure-from-motion (NRSfM) using multiple images. State-of-the-art methods to this problem are often hurdled by scalability, expensive computations, and noisy measurements. Further, recent methods to NRSfM usually either assume a small number of sparse feature points or ignore local non-linearities of shape deformations, and thus cannot reliably model complex non-rigid deformations. To address these issues, in this paper, we propose a new approach for dense NRSfM by modeling the problem on a Grassmann manifold. Specifically, we assume the complex non-rigid deformations lie on a union of local linear subspaces both spatially and temporally. This naturally allows for a compact representation of the complex non-rigid deformation over frames. We provide experimental results on several synthetic and real benchmark datasets. The procured results clearly demonstrate that our method, apart from being scalable and more accurate than state-of-the-art methods, is also more robust to noise and generalizes to highly non-linear deformations.Comment: 10 pages, 7 figure, 4 tables. Accepted for publication in Conference on Computer Vision and Pattern Recognition (CVPR), 2018, typos fixed and acknowledgement adde

    PENGENALAN MANUSIA BERBASIS PADA SINGLE-GAIT MENGGUNAKAN METODE MODIFIKASI LATENT CONDITIONAL RANDOM FIELD (L-CRF)

    Get PDF
    Pengenalan gait merupakan salah satu bagian dari computer vision yang berfungsi untuk mengenali subjek (manusia) dengan jarak tertentu tanpa memperhatikan aspek biometrik seperti iris, wajah, dan sidik jari. Latent Conditional Random Field (L-CRF) merupakan salah satu algoritma pengenalan single-gait dengan hasil yang lebih baik.Walaupun hasil performansi akurasi subjek dengan kondisi berjalan normal (#NM) yang lebih baik, tapi masih terdapat masalah performansi akurasi terhadap kondisi berjalan lain seperti membawa tas (#BG) dan memakai jas (#CL). Modifikasi Latent Conditional Random Field (mL-CRF) merupakan salah satu metode yang masih berkaitan dengan L-CRF, tapi memiliki perbedaan pada parameter pairwise. Keunggulannya adalah hasil yang lebih baik dalam melatih dan menguji data dari domain yang identik. Penelitian ini menggunakan silhouette frames pada data set CASIA gait database B yang berisi 124 subjek dengan 110 sequence tiap subjek. Proses pengolahan data mLCRF dilakukan berdasarkan sampel training (LT74 & MT62) dan 11 sudut pengamatan yang akan dibandingkan dengan L-CRF tanpa modifikasi, serta penelitian-penelitian sebelumnya. Pada penelitian ini, LT74 pada mL-CRF merupakan sampel training yang paling baik yang menghasilkan peningkatan akurasi sebesar 0,89% (#NM), 1,32% (#BG), 1,54% (#CL) terhadap LCRF tanpa modifikasi

    GaitSet: Regarding Gait as a Set for Cross-View Gait Recognition

    Full text link
    As a unique biometric feature that can be recognized at a distance, gait has broad applications in crime prevention, forensic identification and social security. To portray a gait, existing gait recognition methods utilize either a gait template, where temporal information is hard to preserve, or a gait sequence, which must keep unnecessary sequential constraints and thus loses the flexibility of gait recognition. In this paper we present a novel perspective, where a gait is regarded as a set consisting of independent frames. We propose a new network named GaitSet to learn identity information from the set. Based on the set perspective, our method is immune to permutation of frames, and can naturally integrate frames from different videos which have been filmed under different scenarios, such as diverse viewing angles, different clothes/carrying conditions. Experiments show that under normal walking conditions, our single-model method achieves an average rank-1 accuracy of 95.0% on the CASIA-B gait dataset and an 87.1% accuracy on the OU-MVLP gait dataset. These results represent new state-of-the-art recognition accuracy. On various complex scenarios, our model exhibits a significant level of robustness. It achieves accuracies of 87.2% and 70.4% on CASIA-B under bag-carrying and coat-wearing walking conditions, respectively. These outperform the existing best methods by a large margin. The method presented can also achieve a satisfactory accuracy with a small number of frames in a test sample, e.g., 82.5% on CASIA-B with only 7 frames. The source code has been released at https://github.com/AbnerHqC/GaitSet.Comment: AAAI 2019, code is available at https://github.com/AbnerHqC/GaitSe

    GII Representation-Based Cross-View Gait Recognition by Discriminative Projection With List-Wise Constraints

    Get PDF
    Remote person identification by gait is one of the most important topics in the field of computer vision and pattern recognition. However, gait recognition suffers severely from the appearance variance caused by the view change. It is very common that gait recognition has a high performance when the view is fixed but the performance will have a sharp decrease when the view variance becomes significant. Existing approaches have tried all kinds of strategies like tensor analysis or view transform models to slow down the trend of performance decrease but still have potential for further improvement. In this paper, a discriminative projection with list-wise constraints (DPLC) is proposed to deal with view variance in cross-view gait recognition, which has been further refined by introducing a rectification term to automatically capture the principal discriminative information. The DPLC with rectification (DPLCR) embeds list-wise relative similarity measurement among intraclass and inner-class individuals, which can learn a more discriminative and robust projection. Based on the original DPLCR, we have introduced the kernel trick to exploit nonlinear cross-view correlations and extended DPLCR to deal with the problem of multiview gait recognition. Moreover, a simple yet efficient gait representation, namely gait individuality image (GII), based on gait energy image is proposed, which could better capture the discriminative information for cross view gait recognition. Experiments have been conducted in the CASIA-B database and the experimental results demonstrate the outstanding performance of both the DPLCR framework and the new GII representation. It is shown that the DPLCR-based cross-view gait recognition has outperformed the-state-of-the-art approaches in almost all cases under large view variance. The combination of the GII representation and the DPLCR has further enhanced the performance to be a new benchmark for cross-view gait recognition

    Recognizing gaits across views through correlated motion co-clustering

    Full text link
    Human gait is an important biometric feature, which can be used to identify a person remotely. However, view change can cause significant difficulties for gait recognition because it will alter available visual features for matching substantially. Moreover, it is observed that different parts of gait will be affected differently by view change. By exploring relations between two gaits from two different views, it is also observed that a part of gait in one view is more related to a typical part than any other parts of gait in another view. A new method proposed in this paper considers such variance of correlations between gaits across views that is not explicitly analyzed in the other existing methods. In our method, a novel motion co-clustering is carried out to partition the most related parts of gaits from different views into the same group. In this way, relationships between gaits from different views will be more precisely described based on multiple groups of the motion co-clustering instead of a single correlation descriptor. Inside each group, a linear correlation between gait information across views is further maximized through canonical correlation analysis (CCA). Consequently, gait information in one view can be projected onto another view through a linear approximation under the trained CCA subspaces. In the end, a similarity between gaits originally recorded from different views can be measured under the approximately same view. Comprehensive experiments based on widely adopted gait databases have shown that our method outperforms the state-of-the-art. © 2013 IEEE
    corecore