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GII Representation-Based Cross-View Gait
Recognition by Discriminative Projection

With List-Wise Constraints
Zhaoxiang Zhang, Senior Member, IEEE, Jiaxin Chen, Qiang Wu, and Ling Shao

Abstract—Remote person identification by gait is one of the
most important topics in the field of computer vision and pattern
recognition. However, gait recognition suffers severely from the
appearance variance caused by the view change. It is very com-
mon that gait recognition has a high performance when the view
is fixed but the performance will have a sharp decrease when
the view variance becomes significant. Existing approaches have
tried all kinds of strategies like tensor analysis or view trans-
form models to slow down the trend of performance decrease
but still have potential for further improvement. In this paper,
a discriminative projection with list-wise constraints (DPLC) is
proposed to deal with view variance in cross-view gait recogni-
tion, which has been further refined by introducing a rectification
term to automatically capture the principal discriminative infor-
mation. The DPLC with rectification (DPLCR) embeds list-wise
relative similarity measurement among intraclass and inner-class
individuals, which can learn a more discriminative and robust
projection. Based on the original DPLCR, we have introduced
the kernel trick to exploit nonlinear cross-view correlations and
extended DPLCR to deal with the problem of multiview gait
recognition. Moreover, a simple yet efficient gait representation,
namely gait individuality image (GII), based on gait energy image
is proposed, which could better capture the discriminative infor-
mation for cross view gait recognition. Experiments have been
conducted in the CASIA-B database and the experimental results
demonstrate the outstanding performance of both the DPLCR
framework and the new GII representation. It is shown that
the DPLCR-based cross-view gait recognition has outperformed
the-state-of-the-art approaches in almost all cases under large
view variance. The combination of the GII representation and
the DPLCR has further enhanced the performance to be a new
benchmark for cross-view gait recognition.
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I. INTRODUCTION

GAIT is an attractive biometric with the advantages
of being long-distance, noninvasive, and hard to hide.

Despite its prevalence in video surveillance applications, gait-
based recognition is still very challenging due to variations
such as viewpoint, walking speed, walking surfaces, cloth-
ing, and carry conditions [1]. Among all these variations,
the change of view may be the most common and critical
one, considering that gaits from the same person appear to
be quite different when observed from different views (see
Fig. 2). On the other hand, in real scenarios, camera view is
always unconstrained, making cross-view gait recognition a
rather challenging problem. Taking CASIA-B [2], as shown
in Fig. 1, a widely used public gait dataset for evaluating
different cross-view gait recognition methods, for example,
when the probe and gallery gaits are from the same view (for
all 11 views, evenly distributed from 0◦ to 180◦), even the
baseline Euclidean distance [2] could achieve a rather high
performance with 97.6% correct classification rates. However,
the performance drops sharply from 97.6% to 4.8%, when the
gallery view is 90◦ and the probe view varies from 90◦ to 36◦.

A common way to deal with this problem is by transforming
gait features from one view to another or exploiting their corre-
lations before measuring gait similarities. In works [3] and [4],
view transformation model (VTM) based on singular value
decomposition (SVD) was introduced to handle feature trans-
formation across views. In addition, a regression-based VTM
was proposed for mappings to single-pixels [5]. These meth-
ods can cope with view variations without relying on multiple
cameras or camera calibration. However, the transformation
process may fail to work because either complete gait feature
mapping or single-pixel mapping is sensitive to self-occlusion.
An alternative is the subspace projection method, aiming to
transform features from two views into a common discrimina-
tive subspace. Canonical correlations analysis (CCA), which
treats features under two distinct views as two random vari-
ables and constructs projections by maximizing their statistical
correlations. However, CCA is an unsupervised dimensional-
ity reduction method without exploiting the label information,
resulting in a limited recognition performance.
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Fig. 1. Sample images from the CASIA gait database B [2] under 11 different
views. The images in the same row belong to the same person.

Generally, all the aforementioned approaches attempt
to explore the underling cross-view relations, namely,
transformations or correlations between features from dis-
tinct views. When the view variation is relatively small (for
instance, smaller than 36◦), the underlying cross-view rela-
tions would take on simple forms (for instance, approximately
linear), which could be properly handled with existing meth-
ods. However, when the view variation is sufficiently large (for
instance, the view change is large than 36◦), the appearance of
human gait would be seriously distorted. The underlying cross-
view relations would become rather complicated, and take on
highly nonlinear characteristics, which is fundamentally diffi-
cult to be recovered. Thus, most existing approaches focusing
on feature transformation or correlation modeling always yield
rather poor performance under large view variations.

To handle the cross-view gait recognition under large view
variations, we propose the discriminative projection method
with list-wise constraints (DPLC), which is further enhanced
by adding a rectification term to be DPLC with rectification
(DPLCR). Intuitively, DPLCR aims to learn a discrimina-
tive projection by maximizing the relevances of instances of
the same person from distinct views while minimizing the
relevance of instances of different persons in the projection
subspace. To achieve this goal, we introduce the list-wise
constraints, which encodes similarity information between the
probe instance and any of the remaining instances. Specifically,
we predefine a similarity list for each person with others,
and the similarity list obtained after the discriminative pro-
jection is enforced to be as close as to the predefined one.
Compared with the tractional pairwise constraint where only
the similarity of an instance pair is concerned, the list-wise
constraint contains more abundant similarity information, thus
yields more discriminative projections. We formulate the learn-
ing of discriminative projections into an optimization problem,
which can be solved by an iterative algorithm. Different from
CCA, our DPLCR method utilizes the label information and
seeks only one projection, instead of two projections for the
probe view and the gallery view, respectively. Furthermore, in
order to capture the nonlinear characteristics of the cross-view
correlation under large view variations, we employ the kernel
trick, and propose a kernel-DPLCR.

Moreover, we propose a simple yet efficient gait represen-
tation. The currently most widely used gait representation is
gait energy image (GEI), which is the average of a silhouette

Fig. 2. Motivation of the proposed method: θp denotes the probe view and
θg stands for the gallery view.

sequence. Although GEI contains discriminative information
for gait recognition under the same view, it is sensitive to
view variations, of which the performance drops sharply with
increasing view variations. In this paper, we propose a novel
gait representation based on GEI. Specifically, we first con-
struct a synthetic common “GEI template” of a certain view
by averaging GEIs from all training individual gaits cap-
tured under the corresponding camera view. We believe that
the GEI template mainly contains view dependent informa-
tion and has little individual identify information, which is
thus less discriminative for cross-view gait recognition. It
is then reasonable to subtract this common GEI template
from each individual GEI, since during this operation the
individual identity information is reserved while the view
dependent information contained in GEI template is elimi-
nated. Therefore, we could finally obtain a more discriminative
and view-independent gait representation, which we called gait
individuality image (GII) throughout this paper.

The contributions of this paper lie in twofold.
1) We propose a novel model for cross-view gait recogni-

tion, namely DPLCR. Different from excising methods,
DPLCR employs list-wise constraints to learn a projec-
tion, which can map gait representations from different
views into a common discriminative subspace. We fur-
ther extend this model to multiview DPLCR, which can
efficiently incorporate multiview information.

2) We present a new feature gait representation, called
gait individual image (GII), for cross-view identity
recognition. GII removes redundant view-dependent
parts from GEI while reserving individual identifica-
tion information, which are more discriminative and
view-independent.

The remainder of this paper is organized as follows. In
Section II, we briefly review the existing work for cross-view
gait recognition. In Section III, we introduce the formulation
of DPLCR and its optimization solution. In Section IV, the
extraction of GII is described in detail. In Section VI, we eval-
uate the performance of the proposed method on CASIA-B
gait database and USF gait database. Finally, conclusions are
drawn in Section VII.

II. RELATED WORK

A. Gait Feature Extraction

Over the past decade, a large number of methods on gait
feature extraction have been proposed. Generally, they can
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be divided into two categories: 1) model-based methods and
2) model-free methods. Model-based methods [6]–[10] aim
to model the body motion when he/she is walking so that
static gait physical parameters can be extracted. However,
these methods usually have limitation performance due to the
highly complex structure of human body and self-occlusion.

Most model-free methods focus on extracting the static
information of a walking person. Among them, GEI [11] have
proved to be the most popular one for its simpleness and
effectiveness. GEI is the average of a gait sequence in one
or more cycle(s) and turns out to be robust to noise from
individual image. Enhanced GEI was proposed in [12] by
assigning different weights to each pixel in GEI based on
its variance. Similarly, Choudhury and Tjahjadi [13] used the
entropy of the limb region in GEI and applied Gaussian filter in
order to achieve insensitiveness to boundary shape alterations
caused by carrying conditions and clothing variations. To get
more dynamic information, Zhang et al. [14] proposed active
energy image, which is the average of the difference images
between two adjacent silhouettes. Wang et al. [15] proposed
a new gait representation based on body contour called
chrono-gait image (CGI). More recently, Arora et al. [16]
introduced a new period dependent gait representation called
gait information image, which was derived by applying the
concept of information set to remove the uncertainty of
the pixel intensities in a silhouette image of a person over
a gait cycle. Similarly, CGI is the average of body con-
tours which are mapped into RGB space based on the
time it occurs and thus reverses more temporal information.
Besides, there are also gait representations based on optical
flow [17], radon transform [18], and Gabor transform [19].
All these features are designed for gait recognition under
the same condition and get poor performance in handling
the view change situation without using view-independent
methods.

B. Cross-View Gait Recognition

To meet the requirement of applications such as video
surveillance, the research interests in cross-view gait recog-
nition have been increased recently. There are three major
approach categories for this issue: 1) constructing 3-D gait
information by using multiple cameras or camera calibra-
tion; 2) extracting gait features robust to view change; and
3) learning projection relationship of gaits across views.

The first category is to construct 3-D gait information based
on cooperative multiple cameras [20]–[23] or camera calibra-
tion [24]. Theoretically, 2-D gaits of any arbitrary view can
be synthesized if 3-D model of gaits are constructed reli-
ably. However, the needs for multiple cameras and camera
calibration limit the practicability of gait recognition in real
applications.

The second category is to perform cross-view
gait recognition by obtaining view-invariant features.
BenAbdelkader et al. [25] made use of self similarity plot
to enhance the robustness to view changes, which achieved
good performance with a limited range of view change.
Kale et al. [26] proposed a method to obtain the side-view

gaits from any arbitrary view by using the perspective pro-
jection model. Similarly, Jean et al. [27] normalized the body
trajectories of any arbitrary view to a standard plane so that
their similarities can be compared directly. Han et al. [28]
developed a statistical approach for view-insensitive gait
recognition by analyzing the common properties of GEI
along different directions. Goffredo et al. [29] extracted
model-based gait feature, namely angular measurements and
trunk spatial displacements, which are then reconstructed
using view-rectification method. Although this method has
outperforming results than the methods in the same category
when view change is large enough, its performance may be
worse than many other methods across similar views. In this
category, method [29] achieves the state-of-art performance.

The third category is to transfer gait features from one view
to another by learning their projection relationship before sim-
ilarity measurement. Martín-Félez and Xiang [30] formulated
gait recognition as a bipartite ranking problem and lever-
aged training samples from different persons. Liu et al. [31]
proposed a joint subspace learning method for view-invariant
gait recognition. Makihara et al. [3] introduced view transfer
model (VTM) into cross-view gait analysis, in which SVD is
applied on frequency domain features to construct the VTM.
Kusakunniran et al. [4] adopted linear discriminant analysis
(LDA) to optimize the GEI feature, and they also used the
VTM based on SVD. In method [32], Zheng et al. further
proposed a method to establish a robust VTM via robust prin-
cipal component analysis. There are also methods constructing
VTM based on support vector regression (SVR) [5], multilayer
perceptron [33], and sparse regression [34]. Chen et al. [35]
constructed the view transformation matrix based on projection
of gravity center trajectory.

More recently, CCA is introduced to project gaits from dif-
ferent views onto two subspaces, in which their correlations
are mutually maximized. Such methods based on CCA also
belong to the third category in this paper. Compared with
VTM, the CCA model can capture the projection relation-
ship better between gait features of different views because
it is more robust against feature noise and deal with fea-
ture mismatch across views better. The method in [36] model
the correlations of gaits across views by using CCA on
global gait feature. To further improve the performance,
Kusakunniran et al. [37] first carried out motion co-clustering
to partition the most related parts of gaits from different views
into the same group. After that, CCA is applied on the differ-
ent groups and the final similarity is the sum of similarities
calculated from the different groups. Their method achieves
the start-of-art performance of cross-view and multiview gait
recognition.

III. DISCRIMINATIVE PROJECTION WITH LIST-WISE

CONSTRAINTS FOR CROSS-VIEW GAIT RECOGNITION

A. Problem Formulation

For brief description, we suppose that the training data con-
sists of instances of Ntr persons from the probe view θp and
the gallery view θg, denoted by X = {XT

1 , XT
2 , . . . , XT

Ntr
}, where

Xi = {xi
θp,1

, . . . , xi
θp,ni

p
, xi

θg,1
, . . . , xi

θg,ni
g
} are ni = ni

p + ni
g
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D-dimensional features of the ith person consisting of ni
p

features from view θp and ni
g features from view θg. For sim-

plicity, we assume that the complete training data X is an
N × D matrix, where each row xi of X is a feature vector, and
N = ∑Ntr

i=1 ni.
As previously described, we treat the cross-view gait recog-

nition as an image retrieval task, that is, taking X as the
candidate set and every feature vector xi as an input query.
Specifically, for every input query xi

θ,j, or the jth instance of
person i from view θ , we seek for a projection P ∈ RD×d such
that in the projection d-dimensional subspace with respect to P

sim
(

xi
θ,mP, xi

θp,uP
)

≈ sim
(

xi
θ,mP, xj

θg,v
P
)

u ∈
{

1, . . . , ni
p

}
, v ∈

{
1, . . . , ni

g

}
. (1)

sim
(

xi
θ,mP, xi

θ ′,lP
)

≥ sim
(

xi
θ,mP, xj

θ ′′,kP
)

+ �

θ ′, θ ′′ ∈ {
θp, θg} and i �= j (2)

where sim(·, ·) is a similarity measure and � is the margin.
Intuitively, (1) indicates that the projection P would

diminish the cross-view variations of the same person, and
(2) implies that P could enlarge the interclass dissimilarities.
Through these two inequalities, we can expect that the projec-
tion P satisfying (1) and (2) will be discriminative to recognize
human identities and robust to view variations.

In this paper, we select the inner product as the similarity
measure. That is to say, for two feature vectors xi, xj, their
similarity sP(i, j) in the projected subspace with respect to P
is calculated as follows:

sP(i, j) =< xiP, xjP >= (xiP) · (
xjP

)T = xiPPTxT
j .

Thus, for each instance xi, we could measure its similar-
ities in the projected subspace with all the other instances
x1, . . . , xN , and could obtain a similarity list S(i) =
[sP(i, 1), . . . , sP(i, N)]. As shown previously, (1) and (2) could
yield a discriminative projection matrix P. Concretely, in
this paper we implement these two inequalities by intro-
ducing list-wise constraints, i.e., minimizing the discrepan-
cies between S(i) and the ground truth similarities L(i) =
[l(i, 1), . . . , l(i, N)]

P = argminP∈RD×d

N∑

i=1

‖S(i) − L(i)‖2
2. (3)

By reformulating (3) into a more compact matrix form, we
can obtain the following equivalent problem:

min
P∈RD×d

∥
∥XPPTXT − L

∥
∥2

F (4)

where the ith row of L is L(i), and ‖ · ‖F stands for the matrix
Frobenius norm.

In practice, L(i) is rarely available in practice. While, in
order to satisfying (1) and (2), it is usually expected that
l(i, j) = l(i, k) > l(i, l), where the ith, jth, and kth instances
own the same human identity, and lth instance has different
identity from the ith instance. Here, we predefine the following
approximations:

L(i, j) =
{

1, if xi, xj have the same person identity
0, otherwise.

(5)

From (5), it could be observed that the optimal projection P
learned from (3) implicitly satisfies (1) and (2), where the
margin term � equals 1.

However, (5) predefines L by hand, which only roughly cap-
ture the principal discriminative information. It is preferred
to automatically exploit the similarity information from train-
ing data, and refine the hard assigned similarity lists in (5).
Based on this motivation, we add a rectification term ci,j to
each L(i, j) defined in (5), and get the final similarities as
L̃(i, j) = L(i, j) + βci,j, where β is a tradeoff parameters to
balance the effect of the principal similarity term L(i, j) and
the rectification term ci,j. Equation (4) is then turned into

min
P∈RD×d,C∈RN×N ,CT C=IN

∥
∥XPPTXT − (L + βC)

∥
∥2

F (6)

where C is the rectification matrix satisfying C(i, j) = ci,j. It
is worth noticing that an additional constraint CTC = IN is
added in order to prevent C from getting too large to deteri-
orate the principal discriminative information L and yielding
meaningless similarity similarities.

Finally, we introduce an additional regularization term
tr(PTP) to avoid over-fitting, by which (4) is finally turned to

min
CT C=IN

∥
∥XPPTXT − (L + βC)

∥
∥2

F + λ · tr
(
PTP

)
(7)

where λ is the tradeoff parameter balancing the error term and
the regularization term. Here, we omit the trivial constraints
P ∈ RD×d, C ∈ RN×N for a neat description.

As can be seen in (5) and (7), by minimizing the dif-
ference between XPPTXT and L, the intraperson similarities
(similarities between instances belonging to the same person
from different views) is forced to be 1, while the interper-
son similarities (similarities between instances belonging to
distinct persons) are forced to be 0, with a maximum mar-
gin 1. Through this way, the discriminative capability of the
learned subspace projection P in handling with cross-view
variations can be enhanced. On the other hand, the elements
in rectification variable C perform as slack variables, allow-
ing for violations of maximum margins. As a consequence,
the generalization ability of P may be boosted. Therefore, the
list-wise constraints can improve the overall performance of
the projection matrix P.

B. Optimization Method

It is obviously that (7) is a nonconvex optimization problem,
which means that the global optimal solution may not exist.
Here, we alternatively optimize P with fixed C, and in turn
optimize C with fixed P.

Concretely, we first denote the objective function by
F(P, C) = ‖XPPTXT − (L + βC)‖2

F + λ · tr(PTP). Assuming
that we have obtained values of variables P, C in the (t − 1)th
step. For fixed P(t−1), the subproblem for optimizing C is as
the following:

min
CT C=IN

∥
∥
∥XP(t−1)P(t−1)T

XT − (L + βC)

∥
∥
∥

2

F

+ λ · tr
(

P(t−1)T
P(t−1)

)
. (8)
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Let E = XP(t−1)P(t−1)T
XT − L and considering the constraint

CTC = IN , it is not difficult to derive that (8) is equivalent to
the following problem:

max
CT C=IN

tr
(
CTE

)
. (9)

Though the problem above is not convex due to the constraint
CTC = IN , (9) has a closed form solution. Suppose that the
eigenvalue decomposition of E is E = UE�EUT

E , then

tr
(
CTE

) = tr
(
CTUE�EUT

E

) = tr
(
UT

E CTUE�E
)

(10)

where �E = diag(λ1, . . . , λN), λi is the ith largest eigenvalue
of E. The second equality in (10) holds, due to the property
tr(AB) = tr(BA).

Denoting Z = (zij)N×N = UT
E CTUE, then tr(CTE) =

tr(Z�E) = �N
i=1λizii. On the other hand, from the constraint

CTC = IN , it is easy to derived that ZZT = IN , which yields
that |zii| ≤ 1. Therefore, tr(CTE) is maximized when

z∗
ij =

⎧
⎨

⎩

−1, if i = j, and σi < 0
1, if i = j, and σi ≥ 0
0, if i �= j.

(11)

Denoting that Z∗ = (z∗
ij)N×N , then the close form solution

to subproblem (8) is as follows:

C∗ = UEZ∗UT
E . (12)

By setting C(t) = C∗, we finally obtain the update of C(t).
When C is fixed, for instance, C = C(t), the original

problem (7) turns into the following subproblem:

min
∥
∥
∥XPPTXT −

(
L + βC(t)

)∥
∥
∥

2

F
+ λ · tr

(
PTP

)
. (13)

The subproblem above is not convex, either. We apply the
gradient descend method with backtracking line search to get
a local minima where the start point is set as P(t−1), and obtain
the update of P in the tth step

P(t) = P(t−1) − α · ∂F

∂P

(
P(t−1), C(t)

)
(14)

where (∂F/∂P) denotes the partial derivative of F with
respect to P.

The formulation in Algorithm 1 can be further generalized to
support nonlinear projection by using the kernel trick. Similar
to [38], we first project the data into a reproducing kernel
Hilbert space (RKHS) H via a feature map φ with correspond-
ing kernel function k(x, y) = <φ(x), φ(y)>H. Thereafter, the
data is project to R

d by a linear projection M : H → R
d. The

projection matrix P then can be expressed as P = �P̃, where
�i = φ(xi). Thus, we can reformulate (7) as an optimization
problem over P̃ rather than P. Since �T�P̃P̃T�T� = KP̃P̃TK,
where Ki,j = k(xi, xj), (7) could be rewritten as

min
CT C=IN

∥
∥KPPTKT − (L + βC)

∥
∥2

F + λ · tr
(
PTP

)
. (15)

We can see that (15) has the same form as (7) except that
X is replaced by K. Therefore, (7) can be solved by using
the same approach. We summarize the overall solution in
Algorithm 1. The proof of convergence of Algorithm 1 is
straightforward, and we therefore omit it here.

Note that the optimization problem (13) in the initialization
step has an efficient close form solution, according to [38].

Algorithm 1 (Kernel) DPLCR for Cross-View Gait
Recognition
Input: training instances of Ntr persons from the probe view
θp and gallery view θg X = {XT

1 , . . . , XT
Ntr

} where Xi =
{xi

θp,1
, . . . , xi

θp,ni
p
, xi

θg,1
, . . . , xi

θg,ni
g
} (in Kernel DPLCR, X = K

where K is the kernel matrix), projection dimension d, tradeoff
parameters β, λ.
Output: the projection matrix P.

1: Initialization: t = 1, principal similarity matrix L as
defined in (5) and

P(0) = argmin
P∈RN×d

‖XPPTXT − L‖2
F + λ‖P‖2

F. (16)

while not convergence do
2: Calculate E = XP(t−1)P(t−1)T

XT − L, do eigenvalue
decomposition of E as E = UE�EUT

E , and update the
rectification term C as in (12): C(t) = UEZ∗UT

E , where Z∗
is defined in (11).

3: Calculate the step length α(t) using backtracking line
search, and update P as follows:

P(t) = P(t−1) − α(t) · ∂F

∂P
(P(t−1), C(t)),

where F = ‖KPPTKT − (L + βC)‖2
F + λ · tr(PTP).

4: t := t + 1.
end while

IV. PROPOSED GAIT INDIVIDUALITY

IMAGE REPRESENTATION

In this section, we will introduce a novel gait representation,
namely, GII, which is simple yet efficient. As GII is mostly
based on GEI, a brief description for GEI is presented first.
And GII is described in detail, including its motivation and
intuitive explanation.

A. Gait Energy Image

Given sequences of silhouettes from multiple views, sil-
houette process including size normalization and alignment
is carried out for GEI extraction. Two different definitions of
GEI are introduced in [2] and [11]. The first one considers
the gait cycle and GEI is the average image of gait sequences
from one or more complete gait period(s) [11]. The second
one just defined GEI as the average image of all available
silhouettes [2]. In fact, there is no significant difference on
performance when gait sequences are long enough according
to our observation. However, the periodicity detection of gait
sequences near the front view or rear view is another chal-
lenging field of gait analysis. In this paper, we use the second
definition as follows:

G(x, y) = 1

N

N∑

t=1

Ft(x, y) (17)

where N is the number of available frames in a gait sequence,
Ft(x, y) is the tth frame and x and y are 2-D image coordinates.

The GEI feature contains rich information for recognition
including global body shape, temporal, and spatial changes
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Fig. 3. Comparison of GEI, average GEI, and GII under 11 different views.
All the images belong to the same person. From up to down, the images in
each row correspond to GEI, average GEI, and GII, respectively. Note that
the image values are normalized for the convenience of visualization.

(see Fig. 3). It is also robust against image noise from indi-
vidual image. Note that view of the gait can be estimated by
support vector machine or Gaussian process [36]. In this paper,
we assume that all gait sequences are from known views.

B. Gait Individuality Image

Despite its discriminative capability in recognizing people
captured from the same view, GEI suffers as the view varies.
So we propose a novel representation based on GEI to bridge
the gap between different views. The motivation of GII lie on
that we attempt to filter the personal GEI by using a common
gait template which is defined as the average GEI of a training
set. In this paper, we obtain the individual gait information by
simply subtracting the common gait template.

Formally, GII for person p in view v is defined as the
following:

Iv
p(x, y) = Gv

p(x, y) − 1

M

M∑

m=1

Gv
m(x, y) (18)

where M is the total number of GEIs in training data from the
probe (gallery) view, Gv

m(x, y) is the mth GEI in view v. Note
that Gv

p(x, y) can be an instance either from training data or
test data in view v.

Fig. 3 shows the comparison of GEI, average GEI, and GII
under different views. Since many elements in GII are nega-
tive values, we normalize all of them to [0, 255]. From (18),
it could be observed that elements in GII are distributed in
[−255, 255]. Thus, values of GII can be divided into three
parts: 1) large positive values, indicating the positions where
the personal GEI owns more than the average GEI and cor-
responding to the “light” part in Fig. 3; 2) large negative
values with opposite meanings, corresponding to “dark” parts
in Fig. 3; and 3) values proximately equaling to 0 corre-
sponding to the “gray” part in Fig. 3. Compare with existing
features such as GEI, CGI, and GFI, the proposed features con-
tain more abundant information for gait recognition, especially
for cross-view gait recognition. Moreover, GII avoids com-
puting the distance of the common part across views, which
are less discriminative to cross-view gait recognition, and may
bring interferences due to appearance distortion cased by view
variations.

In detail, body parts in legs, arms, head, and contour of the
trunk in GII are important parts which contain rich informa-
tion for cross-view gait recognition. It can be observed from
Fig. 3 that the gait appearances just change a little as the view
ranges from 36◦ to 144◦. But when it is near frontal view
(0◦) or rear view (180◦), they are quite different. So GII has
outperforming advantages across views in a certain range but
still encounters problems for large view variants (e.g., view
18◦ versus view 90◦).

V. GAIT RECOGNITION UNDER VARIOUS VIEWS

A. Cross-View Gait Recognition

As described in Algorithm 1 of Section III, we could obtain
a projection matrix P for the probe view θp and gallery view
θg. In the cross-view phase, given any gait instance xθp,j

from the probe view, and gait instance xθg,k from the gallery
view, we first transform them into a common subspace by
P: x̃θp,j = xθp,jP, x̃θg,k = xθg,kP, and calculate the inner
product in the projected space as the final similarity score:
sim(xθp,j, xθg,k) = xθp,jPPTxT

θg,k. Higher similarity score indi-
cates higher probability that xθp,j, xθg,k own the same human
identity.

For kernel DPLCR, the overall transformation matrix in the
RKHS space is P̃ = �P. The similarity sim(xθp,j, xθg,k) can
be calculated by using the learned P̃

sim
(
xθp,j, xθg,k

) = φ
(
xθp,j

) · P̃P̃T · φ
(
xθg,k

)

= φ
(
xθp,j

) · �PPT�T · φ
(
xθg,k

)

= �θpPPT�θg
T

where �θp(i) = k(xθp,j, xi), and �θg(i) = k(xθg,k, xi), and xi

is the ith instance from training data.

B. Multiview Gait Recognition

In multiview gait recognition, there are available data from
at least two views for gallery and/or probe. Assuming that
we have A views available for probe (Xθp1 , Xθp2 , . . . , , XθpA),
and B views available for gallery (Xθg1 , Xθg2 , . . . , , XθgB). In
this paper, we adopt three different strategies for multiview
fusion: feature level fusion strategy (S1), score level fusion
strategy (S2), and strategy 3 (S3) by extending the cross-view
DPLCR to multiview DPLCR.

1) S1 (Feature Level Fusion): This kind of fusion strat-
egy is widely used in gait recognition [37], where probe and
gallery gait feature vectors are defined as

XθA = [
Xθp1 : Xθp2 : · · · : XθpA

]

XθB = [
Xθg1 : Xθg2 : · · · : XθgB

]
. (19)

Here, “:” means the concatenation. Then, replacing Xθp , Xθg by
XθA and XθB , the cross-view gait recognition could be directly
applied to multiview gait recognition.

2) S2 (Score Level Fusion): Besides the feature level
fusion, we can also solve the multiview gait recognition uti-
lizing score level fusion. Specifically, we separately train a
projection matrix Pθpi,θgj for each probe and gallery view pair
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(θpi, θgj) (i ∈ {1, . . . , A}, j ∈ {1, . . . , B}) by solving the fol-
lowing optimization problem using Algorithm 1 for cross-view
gait recognition:

min
CT

pi,gjCpi,gj=IN

∥
∥
∥Xpi,gjPpi,gjP

T
pi,gjX

T
pi,gj − (

L + βCpi,gj
)∥∥
∥

2

F

+ λ · tr
(

PT
pi,gjPpi,gj

)
(20)

where Xpi,gj = (X(pi,pj)
1

T
, . . . , X(pi,pj)

Ntr

T
) and X(pi,pj)

k =
(xk

θpi1
, . . . , xk

θpink
pi
, xk

θpgj1
, . . . , xk

θgjnk
gj
).

After training, we could obtain A × B projections
{Pθpi,θgj : i = 1, . . . , A; j = 1, . . . , B}. For two instances
{xθpi,m}A

i=1, {xθgj,n}B
j=1 consisting of multiview gaits, their sim-

ilarity then could be calculated as follows:

sim
({

xθpi,m

}A
i=1

,
{
xθgj,n

}B
j=1

)
=

A∑

i=1

B∑

j=1

xθpi,m Pθpi,θgj P
T
θpi,θgj

xT
θgj,n

.

(21)

3) S3 (Multiview DPLCR): Intuitively, since S2 learns a
projection matrix for each probe and gallery view pair, it could
yield more discriminative projections than S1, which takes the
multiview gaits as a whole and learns a unitary projection.
However, this strategy trains each Pθpi,θgj separately, and has
ignored the relations among these projections. For instance,
intuitively the refined similarity matrix L +βC should consis-
tently be the same for various probe view and gallery view
pairs {(θpi, θgj) : i = 1, . . . , A; j = 1, . . . , B}, which is not
considered in S2. Here, we propose an extension of DPLCR
for multiview gait recognition by co-training all projection
matrices as follows:

min
CT C=IN

A∑

i=1

B∑

j=1

[∥
∥
∥Xpi,gjPpi,gjP

T
pi,gjX

T
pi,gj − (L + βC)

∥
∥
∥

2

F

+ λ · tr
(

PT
pi,gjPpi,gj

)]

. (22)

Similar to S2, we could also obtain A × B projections
{Pθpi,θgj : i = 1, . . . , A; j = 1, . . . , B} after training. The score
level fusion as shown in (21) can then be adopted for final
evaluation.

It can be observed that the only difference between S2 and
S3 lies on the training of the rectification matrices. In (20) the
rectification matrices {Cpi,gj : i = 1, . . . , A; j = 1, . . . , B} are
trained independently, while in (21) {Cpi,gj : i = 1, . . . , A; j =
1, . . . , B} are consistently kept the same over all probe and
gallery views, and are jointly trained. Intuitively, by forc-
ing Cpi,gj to be constant over different pi and gj would
yield the following advantage: the inconsistences among the
similarity matrices L + Cpi,gj would be eliminated, and the
performance of the score level fusion therefore could be
enhanced.

Like the training process of DPLCR, we can approach
a local optimal solution of (22) by alternatively optimizing
{Pθpi,θgj} and C. For fixed C, training {Pθpi,θgj} is equivalent to
training each Pθpi,θgj separately, which could be implemented

Algorithm 2 (Kernel) DPLCR for Multiview Gait Recognition
(Multiview DPLCR)
Input: training gaits of Ntr persons from A probe views
{θpi}A

i=1 and B gallery view {θgj}B
j=1 {Xpi,gj : i = 1, . . . , A; j =

1, . . . , B} (in Kernel Multi-view DPLCR, Xpi,gj = Kpi,gj

where Kpi,gj is the corresponding kernel matrix), projection
dimension d, tradeoff parameters β, λ.
Output: A × B projection matrices {Ppi,gj : i = 1, . . . , A; j =
1, . . . , B}.

1: Initialization: t = 1, principal similarity matrix L as
defined in (5) and

P(0) = argmin
P∈RN×d

‖XPPTXT − L‖2
F + λ‖P‖2

F. (23)

while not convergence do
2: Calculate

EAB = ∑A
i=1

∑B
j=1(Xpi,gjP

(t−1)
pi,gj P(t−1)

pi,gj
T

XT
pi,gj − L),

do eigenvalue decomposition of EAB as
EAB = UEAB�EABUT

EAB
, and update the rectification

term C as in (12): C(t) = UEABZ∗UT
EAB

, where Z∗ is
defined in (11) by replacing E with EAB.

3: Calculate the step length α
(t)
pi,gj using backtracking line

search, and update Ppi,gj as follows:

P(t)
pi,gj = P(t−1)

pi,gj − α(t) · ∂FAB

∂Ppi,gj
(P(t−1)

pi,gj , C(t)), (24)

where

FAB =
A∑

i=1

B∑

j=1

[
‖Xpi,gjPpi,gjP

T
pi,gjX

T
pi,gj

− (L + βC)‖2
F + λ · tr(PT

pi,gjPpi,gj)
]
.

4: t := t + 1.
end while

by adopting step 3 in Algorithm 2. For fixed {Pθpi,θgj}, it is
not difficult to derive that

C = max
CT C=IN

tr
(
CTEA,B

)
(25)

where EA,B = ∑A
i=1

∑B
j=1 Epi,gj, and Epi,gj =

Xpi,gjPpi,gjPT
pi,gjX

T
pi,gj −L. As described in Section III, (25) has

a closed form solution, which could be solved by adopting
step 2 in Algorithm 2.

We summarize the previously described solution to (22) in
Algorithm 2, and propose the multiview DPLCR.

VI. EXPERIMENTAL RESULTS

We test the proposed method on the CASIA gait
database B [2] for experimental evaluations. The CASIA gait
database B is the largest public multiview gait dataset, which
contains 124 subjects captured from 11 views including 0◦,
18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, and 180◦.
Under each view, there are ten sequences for each person:
two sequences when walking with a bag, two sequences when
walking with a coat, and six normal walking sequences. In this
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR CROSS-VIEW GAIT RECOGNITION

WHEN PROBE VIEW IS 54◦ AND GALLERY VIEW IS FROM 0◦ TO 180◦ EXCEPT 54◦

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR CROSS-VIEW GAIT RECOGNITION

WHEN PROBE VIEW IS 90◦ AND GALLERY VIEW IS FROM 0◦ TO 180◦ EXCEPT 90◦

paper, we use all the six normal gait sequences of 124 sub-
jects from 11 views and thus obtain 6 × 124 × 11 = 8184
sequences. Sample images from the CASIA gait database B are
shown in Fig. 2.

The experimental setup is similar to [37]. In each experi-
ment, 24 subjects from the probe view and gallery view are
randomly chosen as training data. And the rest 100 subjects
are used for evaluating the performance of cross-view recogni-
tion. We report the mean recognition accuracy and cumulative
matching score (CMS) curve after ten rounds. For all exper-
iments in this paper, the parameters in the proposed method
are selected by cross validation, and the radial basis function
kernel is utilized.

A. Gait Recognition With Single Probe View

For one single probe view, we select one view degree as the
probe view, and the rest 10 view degrees as gallery views. In
this paper, we follow the same experimental setting as [37],
and choose 54◦, 90◦, and 126◦ as probe views. Thus, there
are totally 3 × 10 combinations of the probe view and gallery
view.

To validate the performance of the proposed DPLCR
method and GII feature, we report the recognition results by
using DPLCR with GEI feature (denoted as GEI-DPLCR) and
DPLCR with GII feature (denoted as GII-DPLCR), respec-
tively. We compare our method with the-state-of-art meth-
ods such as co-clustering [37], GInI-EF [16], GInI-SF [16],

GEI-CCA [36], GEI-SVD [4], FT-SVD [3], GEI-SVR [5],
view-rectification [29], and the baseline method [2] which
match GEIs across views using Euclidean distance directly.
Note that the view-rectification method [29] uses 65 subjects
for testing and some of its results are not reported.

Tables I–III show the rank-1 recognition rates of differ-
ent methods for probe view 54◦, 90◦, and 126◦, respectively.
It can be seen that the proposed DPLCR with GEI feature
achieves competitive performance compared with the state-of-
the-arts. As to the setting where the probe view is 54◦, the
performance of GEI-DPLCR is at least 13 percents higher
than co-clustering (highest in the comparison methods), for
gallery views 90◦ to 144◦, and is slightly better for gallery
views 18◦ and 162◦. For the rest gallery views, GEI-DPLCR
also achieves compatible results. As to probe view 90◦,
GEI-DPLCR outperforms co-clustering (highest in the com-
parison methods), for most gallery views except 0◦ and 18◦,
where GEI-DPLCR still achieves competitive performance.
As to probe view 126◦, the performance of GEI-DPLCR
is at least 11 percents superior to co-clustering for gallery
views 36◦ to 72◦, and slightly higher for gallery views 18◦,
90◦, and 180◦.

Furthermore, following [37], we also report the CMS curves
for the setting where the gallery view is 90◦ and probe view
ranges from 36◦ to 126◦ (except 90◦). As shown in Fig. 4. Our
method DPLCR with GEI feature (denoted by the dotted red
line) always gains the best performance than the-state-of-art
methods for various probe views. Therefore, we can see that
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR CROSS-VIEW GAIT RECOGNITION

WHEN PROBE VIEW IS 126◦ AND GALLERY VIEW IS FROM 0◦ TO 180◦ EXCEPT 126◦

Fig. 4. CMS comparison of different methods when the gallery view is 90◦
and probe view ranges from 36◦ to 144◦.

the proposed DPLCR could boost the performance of cross-
view gait recognition with one single probe view based on GEI
feature in most situations. The enhancement of performance
by using DPLCR may due to the following.

1) By using list-wise constraints, the intraclass similarities
are enlarged, and the interclass similarities across dis-
tinct views are diminished in the projected subspace with
maximum margins, which might strengthen the discrim-
inative ability of the proposed method in dealing with
cross-view variations. Meanwhile, the rectification term
could further exploit the relative similarities and allow
for violations of maximum margins, thus may enhance
the generalization ability of the learned projection.

2) The kernelization could embed nonlinear mapping,
which can better describe the complicated cross-view
correlations under large view variations, compared to
existing methods.

From Tables I–III and Fig. 4, we can also validate the
performance of the proposed GII feature. We can see that
GII-DPLCR further boosts the performance of GEI-DPLCR in
all situations. For instance, for probe view 90◦ under gallery
views 36◦, 54◦, and 126◦, GII-DPLCR gaits more than 10 per-
cents improvements, compared with GEI-DPLCR. And from
Fig. 4, the performance of GII-DPLCR (denoted by solid
red line) is obviously higher than GEI-DPLCR. We detail
the comparison of GEI-DPLCR and GII-DPLCR in Fig. 5.
The gain of performance by using GII feature compared with
GEI may due to the fact that GII could partially eliminate
the cross-view shape distortion. More specifically, GII first
constructs a synthetic common GEI template of a certain
view by averaging GEIs from all training individual gaits cap-
tured under the corresponding camera view. The GEI template
mainly contains view dependent information and has little
individual identify information, which is thus less discrimi-
native for cross-view gait recognition. It is then reasonable
to subtract this common GEI template from each individ-
ual GEI, since during this operation the individual identity
information is reserved while the view dependent informa-
tion contained in GEI template is eliminated. Therefore,
GII could be more discriminative and view-independent,
compared to GEI.

B. Gait Recognition With Multiple Probe Views

When gaits from multiple probe views are available, we
evaluate the performance of DPLCR using the proposed three
multiview fusion strategies following the same experimental
setting as [37]. Specifically, we select 54◦ as the galley views
under (36◦, 72◦), (18◦, 90◦), and (0◦, 108◦) as probe views,
and 126◦ as the gallery view under (108◦, 144◦), (90◦, 162◦),
and (72◦, 162◦) as probe views. Some of the experimental
results are shown in Tables IV and V. We compare our method
with methods FT-SVD [3], GEI-SVD [4], GEI-SVR [5], and
co-clustering [37], which also report multiview to one-view
performance. It can be observed that the results of multiview to
one view gait recognition are all significantly better than one-
to-one view situation. This is due to that more information can
be exploited by our combined method when provided multiple
probe views. It also can be seen that all the three fusion strate-
gies outperforms the comparison approaches. Especially, for
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k)

Fig. 5. Comparison of recognition accuracy at rank 1 by using GEI and GII.
(a) Gallery view: 0◦. (b) Gallery view: 18◦. (c) Gallery view: 36◦. (d) Gallery
view: 54◦. (e) Gallery view: 72◦. (f) Gallery view: 90◦. (g) Gallery view:
108◦. (h) Gallery view: 126◦. (i) Gallery view: 144◦. (j) Gallery view: 162◦.
(k) Gallery view: 180◦.

gallery view 54◦, the performance of DPLCR using different
fusion strategies is at least 8 percents higher than co-clustering
(the best performance in the comparison methods) under probe
views 18◦, 90◦, and 15 percents higher under probe views
0◦ and 108◦. For gallery view 126◦, the performance of

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR MULTIVIEW

TO ONE VIEW GAIT RECOGNITION WHEN GALLERY VIEW IS 54◦ BY

USING GEI FEATURE (S1: FEATUER LEVEL FUSION, S2: SCORE

LEVEL FUSION, AND S3: PROPOSED MULTIVIEW DPLCR)

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR MULTIVIEW

TO ONE VIEW GAIT RECOGNITION WHEN GALLERY VIEW IS 54◦ BY

USING GII FEATURE (S1: FEATUER LEVEL FUSION, S2: SCORE

LEVEL FUSION, AND S3: PROPOSED MULTIVIEW DPLCR)

DPLCR using different fusion strategies boosts co-clustering
(the best performance in the comparison methods) by 2 per-
cents under probe views 90◦, 162◦, and by 14 percents under
probe views 0◦ and 108◦. We also compared the performance
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TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR MULTIVIEW

TO ONE VIEW GAIT RECOGNITION WHEN GALLERY VIEW IS 126◦ BY

USING GEI FEATURE (S1: FEATUER LEVEL FUSION, S2: SCORE

LEVEL FUSION, AND S3: PROPOSED MULTIVIEW DPLCR)

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR MULTIVIEW

TO ONE VIEW GAIT RECOGNITION WHEN GALLERY VIEW IS 126◦ BY

USING GII FEATURE (S1: FEATUER LEVEL FUSION, S2: SCORE

LEVEL FUSION, AND S3: PROPOSED MULTIVIEW DPLCR)

of different fusion strategies as shown in Tables IV–VII. As
can be seen, the proposed Algorithm 2, namely Strategy 3,
performs better than the feature level fusion and score level

Fig. 6. CMS comparison of DPLC and DPLCR for cross-view gait
recognition when probe views are 54◦, 90◦, and 126◦.

fusion. The performance improvement indicates that by co-
training the rectification term, or the unknown list-wise simi-
larities, is superior to the straightforward feature or score level
fusion.

C. Cross-View Gait Recognition Under Outdoor Environment

We further evaluate the proposed method by the USF gait
database [1], which was collected in outdoor environment.
Many experiments were designed to investigate the effect of
five factors on performance, including surface type, shoe-wear
type, weight carried, camera angle, and time. In this paper, we
only adopt experiment A for evaluation since it observes view
variations for gait-based identification, which is the focus of
this paper. In this dataset, two gait sequences were recorded
from two cameras L and R, respectively. There are 122 sub-
jects in this dataset in which 22 ones are used for training. We
also compare our method with others which also report their
results on USF experiment A in Table VIII. The performance
of GEI-DPLCR is better that most of the others although
2 percents worse than [37]. The reason is that DPLCR require
sufficient large training data than CCA-based method for a reli-
able projection. In the previous experiments on the CASIA-B
dataset, there are total 24 × 6 × 2 (24 subjects, 6 instances,
2 views) samples for training in the one to one situation while
only 22 × 2 (22 subjects, 2 views) on the USF gait database.
While, GII-DPLCR gains a 2 percents improvement compared
with co-clustering, which indicates the effectiveness of GII
feature.

D. Evaluation of the Rectification Term

Experiments are conducted to evaluate the effect of the rec-
tification term with results are shown in Table IX and Fig. 6.
It can be observed that the recertification term could signifi-
cantly boosts the performance of DPLC. The reason may lie
on that the rectification term could exploit relative similarity
information. From a statistic learning perspective, the rectifi-
cation term serves as slack variables, which could enhance the
generalization ability.
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TABLE VIII
PERFORMANCE ON THE USF GAIT DATABASE BY DIFFERENT METHODS

TABLE IX
PERFORMANCE COMPARISON OF DPLC AND DPLCR FOR CROSS-VIEW

GAIT RECOGNITION WHEN PROBE VIEWS ARE 54◦ , 90◦ , AND 126◦

VII. CONCLUSION

In this paper, we propose a novel gait feature, i.e., GII,
together with a discriminative projection for cross-view gait
recognition. GII is introduced to deal with small view varia-
tions by using cosine similarity measurement. For large view
changes, we project the GIIs onto a common subspace such
that the instances belong to the same person are closer to each
other. To further improve the performance, a weighted com-
bination model is presented. Experimental results on CASIA
gait database B and USF demonstrate the superiority of the
proposed method compared with the-state-of-arts in both one-
to-one cross-view gait recognition and multi-to-one view gait
recognition.
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