79 research outputs found

    A Framework for Symmetric Part Detection in Cluttered Scenes

    Full text link
    The role of symmetry in computer vision has waxed and waned in importance during the evolution of the field from its earliest days. At first figuring prominently in support of bottom-up indexing, it fell out of favor as shape gave way to appearance and recognition gave way to detection. With a strong prior in the form of a target object, the role of the weaker priors offered by perceptual grouping was greatly diminished. However, as the field returns to the problem of recognition from a large database, the bottom-up recovery of the parts that make up the objects in a cluttered scene is critical for their recognition. The medial axis community has long exploited the ubiquitous regularity of symmetry as a basis for the decomposition of a closed contour into medial parts. However, today's recognition systems are faced with cluttered scenes, and the assumption that a closed contour exists, i.e. that figure-ground segmentation has been solved, renders much of the medial axis community's work inapplicable. In this article, we review a computational framework, previously reported in Lee et al. (2013), Levinshtein et al. (2009, 2013), that bridges the representation power of the medial axis and the need to recover and group an object's parts in a cluttered scene. Our framework is rooted in the idea that a maximally inscribed disc, the building block of a medial axis, can be modeled as a compact superpixel in the image. We evaluate the method on images of cluttered scenes.Comment: 10 pages, 8 figure

    Recognition of Two-dimensional Shapes Based on Dependence Vectors

    Get PDF
    The aim of this paper is to present a new method of two-dimensional shape recognition. The method is based on dependence vectors which are fractal features extracted from the partitioned iterated function system. The dependence vectors show the dependency between range blocks used in the fractal compression. The effectiveness of our method is shown on four test databases. The first database was created by the authors and the other ones are: MPEG7 CE-Shape-1PartB, Kimia-99, Kimia-216. Obtained results have shown that the proposed method is better than the other fractal recognition methods of two-dimensional shapes

    Shape Classification Via Contour Matching Using the Perpendicular Distance Functions

    Get PDF
    We developed a novel shape descriptor for object recognition, matching, registration and analysis of two-dimensional (2-D) binary shape silhouettes. In this method, we compute the perpendicular distance from each point on the object contour to the line passing through the fixed point. The fixed point is the centre of gravity of a shape. As a geometrically invariant feature, we measure the perpendicular distance function for each line that satisfies the centre of gravity of an object and one of the points on the shape contour. In the matching stage, we used principal component analysis concerning the moments of the perpendicular distance function. This method gives an excellent discriminative power, which is demonstrated by excellent retrieval performance that has been experimented on several shape benchmarks, including Kimia silhouettes, MPEG7 data set

    Perceptually Motivated Shape Context Which Uses Shape Interiors

    Full text link
    In this paper, we identify some of the limitations of current-day shape matching techniques. We provide examples of how contour-based shape matching techniques cannot provide a good match for certain visually similar shapes. To overcome this limitation, we propose a perceptually motivated variant of the well-known shape context descriptor. We identify that the interior properties of the shape play an important role in object recognition and develop a descriptor that captures these interior properties. We show that our method can easily be augmented with any other shape matching algorithm. We also show from our experiments that the use of our descriptor can significantly improve the retrieval rates

    A New Histogram-based Descriptor for Images Retrieval from databases

    Get PDF
    International audienceIn this paper, we propose a new approach for designing histogram-based descriptors. For demonstration purpose, we generate a descriptor based on the histogram of differential-turning angle scale space (d-TASS) function and its derived data. We then compare the proposed histogram-based descriptor with the traditional histogram descriptors in terms of retrieval performance from image databases. Experiments on three shapes databases demonstrate the efficiency and the effectiveness of the new technique: the proposed technique of histogram-based descriptor outperforms the traditional one. These experiments showed also that the proposed histogram-based descriptor using d-TASS function and the derived features performs well compared with the state-of-the-art. When applied to texture images retrieval, the proposed approach yields higher performance than the traditional histogram-based descriptors. From these results, we believe that the proposed histogram-based descriptor should perform efficiently for medical images retrieval so we will focus on this aspect in the future work
    corecore