379 research outputs found

    Automatic analysis of electronic drawings using neural network

    Get PDF
    Neural network technique has been found to be a powerful tool in pattern recognition. It captures associations or discovers regularities with a set of patterns, where the types, number of variables or diversity of the data are very great, the relationships between variables are vaguely understood, or the relationships are difficult to describe adequately with conventional approaches. In this dissertation, which is related to the research and the system design aiming at recognizing the digital gate symbols and characters in electronic drawings, we have proposed: (1) A modified Kohonen neural network with a shift-invariant capability in pattern recognition; (2) An effective approach to optimization of the structure of the back-propagation neural network; (3) Candidate searching and pre-processing techniques to facilitate the automatic analysis of the electronic drawings. An analysis and the system performance reveal that when the shift of an image pattern is not large, and the rotation is only by nx90°, (n = 1, 2, and 3), the modified Kohonen neural network is superior to the conventional Kohonen neural network in terms of shift-invariant and limited rotation-invariant capabilities. As a result, the dimensionality of the Kohonen layer can be reduced significantly compared with the conventional ones for the same performance. Moreover, the size of the subsequent neural network, say, back-propagation feed-forward neural network, can be decreased dramatically. There are no known rules for specifying the number of nodes in the hidden layers of a feed-forward neural network. Increasing the size of the hidden layer usually improves the recognition accuracy, while decreasing the size generally improves generalization capability. We determine the optimal size by simulation to attain a balance between the accuracy and generalization. This optimized back-propagation neural network outperforms the conventional ones designed by experience in general. In order to further reduce the computation complexity and save the calculation time spent in neural networks, pre-processing techniques have been developed to remove long circuit lines in the electronic drawings. This made the candidate searching more effective

    Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks

    Get PDF
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to a faculty of abstraction. Rationalists have frequently complained, however, that empiricists never adequately explained how this faculty of abstraction actually works. In this paper, I tie these two questions together, to the mutual benefit of both disciplines. I argue that the architectural features that distinguish DCNNs from earlier neural networks allow them to implement a form of hierarchical processing that I call “transformational abstraction”. Transformational abstraction iteratively converts sensory-based representations of category exemplars into new formats that are increasingly tolerant to “nuisance variation” in input. Reflecting upon the way that DCNNs leverage a combination of linear and non-linear processing to efficiently accomplish this feat allows us to understand how the brain is capable of bi-directional travel between exemplars and abstractions, addressing longstanding problems in empiricist philosophy of mind. I end by considering the prospects for future research on DCNNs, arguing that rather than simply implementing 80s connectionism with more brute-force computation, transformational abstraction counts as a qualitatively distinct form of processing ripe with philosophical and psychological significance, because it is significantly better suited to depict the generic mechanism responsible for this important kind of psychological processing in the brain

    Artificial neural networks for image recognition : a study of feature extraction methods and an implementation for handwritten character recognition.

    Get PDF
    Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1996.The use of computers for digital image recognition has become quite widespread. Applications include face recognition, handwriting interpretation and fmgerprint analysis. A feature vector whose dimension is much lower than the original image data is used to represent the image. This removes redundancy from the data and drastically cuts the computational cost of the classification stage. The most important criterion for the extracted features is that they must retain as much of the discriminatory information present in the original data. Feature extraction methods which have been used with neural networks are moment invariants, Zernike moments, Fourier descriptors, Gabor filters and wavelets. These together with the Neocognitron which incorporates feature extraction within a neural network architecture are described and two methods, Zernike moments and the Neocognitron are chosen to illustrate the role of feature extraction in image recognition

    A Taxonomy of Deep Convolutional Neural Nets for Computer Vision

    Get PDF
    Traditional architectures for solving computer vision problems and the degree of success they enjoyed have been heavily reliant on hand-crafted features. However, of late, deep learning techniques have offered a compelling alternative -- that of automatically learning problem-specific features. With this new paradigm, every problem in computer vision is now being re-examined from a deep learning perspective. Therefore, it has become important to understand what kind of deep networks are suitable for a given problem. Although general surveys of this fast-moving paradigm (i.e. deep-networks) exist, a survey specific to computer vision is missing. We specifically consider one form of deep networks widely used in computer vision - convolutional neural networks (CNNs). We start with "AlexNet" as our base CNN and then examine the broad variations proposed over time to suit different applications. We hope that our recipe-style survey will serve as a guide, particularly for novice practitioners intending to use deep-learning techniques for computer vision.Comment: Published in Frontiers in Robotics and AI (http://goo.gl/6691Bm

    Visual pattern recognition using neural networks

    Get PDF
    Neural networks have been widely studied in a number of fields, such as neural architectures, neurobiology, statistics of neural network and pattern classification. In the field of pattern classification, neural network models are applied on numerous applications, for instance, character recognition, speech recognition, and object recognition. Among these, character recognition is commonly used to illustrate the feature and classification characteristics of neural networks. In this dissertation, the theoretical foundations of artificial neural networks are first reviewed and existing neural models are studied. The Adaptive Resonance Theory (ART) model is improved to achieve more reasonable classification results. Experiments in applying the improved model to image enhancement and printed character recognition are discussed and analyzed. We also study the theoretical foundation of Neocognitron in terms of feature extraction, convergence in training, and shift invariance. We investigate the use of multilayered perceptrons with recurrent connections as the general purpose modules for image operations in parallel architectures. The networks are trained to carry out classification rules in image transformation. The training patterns can be derived from user-defmed transformations or from loading the pair of a sample image and its target image when the prior knowledge of transformations is unknown. Applications of our model include image smoothing, enhancement, edge detection, noise removal, morphological operations, image filtering, etc. With a number of stages stacked up together we are able to apply a series of operations on the image. That is, by providing various sets of training patterns the system can adapt itself to the concatenated transformation. We also discuss and experiment in applying existing neural models, such as multilayered perceptron, to realize morphological operations and other commonly used imaging operations. Some new neural architectures and training algorithms for the implementation of morphological operations are designed and analyzed. The algorithms are proven correct and efficient. The proposed morphological neural architectures are applied to construct the feature extraction module of a personal handwritten character recognition system. The system was trained and tested with scanned image of handwritten characters. The feasibility and efficiency are discussed along with the experimental results

    Integration of traditional imaging, expert systems, and neural network techniques for enhanced recognition of handwritten information

    Get PDF
    Includes bibliographical references (p. 33-37).Research supported by the I.F.S.R.C. at M.I.T.Amar Gupta, John Riordan, Evelyn Roman
    • …
    corecore