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ABSTRACT 

AUTOMATIC ANALYSIS OF ELECTRONIC DRAWINGS 
USING NEURAL NETWORK 

by 
Yi Shi 

Neural network technique has been found to be a powerful tool in pattern 

recognition. It captures associations or discovers regularities with a set of patterns, where 

the types, number of variables or diversity of the data are very great, the relationships 

between variables are vaguely understood, or the relationships are difficult to describe 

adequately with conventional approaches. 

In this dissertation, which is related to the research and the system design aiming 

at recognizing the digital gate symbols and characters in electronic drawings, we have 

proposed: (1) A modified Kohonen neural network with a shift-invariant capability in 

pattern recognition; (2) An effective approach to optimization of the structure of the back-

propagation neural network; (3) Candidate searching and pre-processing techniques to 

facilitate the automatic analysis of the electronic drawings. 

An analysis and the system performance reveal that when the shift of an image 

pattern is not large, and the rotation is only by nx90°, (n = 1, 2, and 3), the modified 

Kohonen neural network is superior to the conventional Kohonen neural network in terms 

of shift-invariant and limited rotation-invariant capabilities. As a result, the 

dimensionality of the Kohonen layer can be reduced significantly compared with the 

conventional ones for the same performance. Moreover, the size of the subsequent neural 

network, say, back-propagation feed-forward neural network, can be decreased 

dramatically. 



There are no known rules for specifying the number of nodes in the hidden layers 

of a feed-forward neural network. Increasing the size of the hidden layer usually improves 

the recognition accuracy, while decreasing the size generally improves generalization 

capability. We determine the optimal size by simulation to attain a balance between the 

accuracy and generalization. This optimized back-propagation neural network 

outperforms the conventional ones designed by experience in general. 

In order to further reduce the computation complexity and save the calculation 

time spent in neural networks, pre-processing techniques have been developed to remove 

long circuit lines in the electronic drawings. This made the candidate searching more 

effective. 
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CHAPTER I 

INTRODUCTION 

1.1 Research Objective 

Traditionally, paper documents are frequently utilized format for transmission and storage 

of information. In the last decade, the prevalence of fast computers with large memory 

space, and inexpensive scanners has fostered an increasing interest in the process and 

analysis of document images. With many paper documents being sent and received via 

fax machines and stored digitally in large document databases, the interest has grown to 

do more with these images than simply to view and print them. Just like humans extract 

information from these images, researches are being carried out and automatic 

recognition systems are being built up to read characters on pages, locate lines and 

recognize symbols on diagrams. 

Document analysis has become more and more important than ever before. Look 

around our workplace, we can see stacks of paper. Some may be computer generated, but 

if so, inevitably by different computers and software such that even their electronic 

formats are incompatible. Some will include both formatted text and tables as well as 

handwritten entries. There are different sizes. from 3.5"x2" business cards to 34"x44" 

engineering drawings. In many businesses today, imaging systems are being used to store 

images of pages to make storage and retrieval more efficient. Future document analysis 

systems will recognize types of documents, enable the extraction of their functional parts, 

and facilitate translation from one computer-generated format to another. There are many 

other examples of the use of and need for document systems. Glance behind the counter 
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in a post office at the piles of letters and packages. In some US post offices, over a 

million pieces of mail must be handled each day. Machines to perform sorting and 

address recognition have been used, but there is a need to process more mail, more 

quickly and more accurately. As a final examine the stacks of a library, where row after 

row of paper documents are stored. Loss of material, misfiling, limited numbers of each 

copy, and even degradation of materials are common problems, and the problems may be 

alleviated by document analysis techniques. All of the above examples serve as 

applications ripe for the potential solutions of document image analysis. 

Many researches are leading to new applications. For instance, millions of old 

books now in libraries will be replaced by computer files of page images that can be 

searched for content and accessed by many people at the same time and will never be 

misshelved. Business people will carry their file cabinets in their portable computers. 

Paper copies of new product literature, receipts, and other notes will be instantly filed and 

accessed in computers. Signatures will be analyzed by computers for verification and 

security access. Musical scores and other symbolic and diagrammatic documents will be 

read and their contents recognized and interpreted. 

The ultimate solution would be for computers to deal with paper documents as 

they deal with other forms of computer media. That is, paper would be as readable by 

computers as magnetic and optical disks are now. if this were the case, then the major 

difference between paper documents and magnetic and optical disks would be that, unlike 

current computer media, paper documents could be read by both computers and human 

beings. This is, on the other hand, the major advantage of paper documents. 
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Nowadays the Department of Defense(DOD) maintains a large inventory of 

documentation of electronic systems. The existing documentation is in the form of circuit 

drawings and scanned image files, which cannot be directly used as an input to computer-

aided design tools. In order to respecify or remanufacture an electronic part, board, or 

system, a considerable amount of time and human effort must be expended to collect and 

understand the circuit information from circuit drawings. On the other hand, VHSIC 

(Very High Speed Integrated Circuit) Hardware Description Language (VHDL) is an 

industry and DoD standard [I] for documentation, design, and simulation of electronic 

circuits. Most commercial computer-aided design (CAD) tools provide a fully automated 

and integrated manufacturing path from VHDL documentation to integrated circuit (IC) 

fabrication. Since VHDL provides manufacturing technology independent documentation 

of an IC, it is ideal to document Army systems in terms of VHDL so as to have full life 

support. Therefore, the automated generation of VHDL models is an urgent and important 

research topic, which is a research in the US Army Research Laboratory, Ft. Monmouth, 

NJ. In this research and system design, we address a part of their research: How to locate 

digital gate symbols' position and how to recognize various digital gate symbols and 

characters in electronic engineering drawings. 

The objective of this research is to build a system which is a bridge connecting 

yesterday's documentation to today's modern computer and people. The proposed system 

will be used not only in the military but also in the civil industry of electrical 

manufacturing. We propose to develop a neural network as a recognition unit in the 

system. Neural network has been proved to be very capable in recognizing image 

patterns. The post offices use it to automatically recognize zip codes on daily basis. It 
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demonstrates that neural network is successful in the practical usage. Because the gate 

symbol patterns are larger than the zip codes, we proposed to design a larger neural 

network. Evidently, a large neural network needs more calculation time than a small one. 

Therefore, to use neural network efficiently is an important topic. We proposed not to use 

neural network to search and recognize gate symbols over the entire drawings, but to use 

it only to recognize just a few candidates on the entire drawings. We proposed and used 

some pre-processing techniques and developed some algorithms to find out gate symbol 

candidates. This makes the overall searching and recognition much more quickly. 

In the early stage of this research, we did some survey (refer to the APPENDIX). 

In the survey, three techniques in the recognition of various gate symbols were 

investigated. Three types of neural network developed for recognition of characters and 

digits, and moments method used in image pattern recognition were studied as well. 01 

these three existing techniques [2-4], two of them are actually not practical yet. The 

practical one can work well only for well-standardized drawings. It involves feature 

extraction, template matching, and decision tree. Hence it is very complicated and can 

only be implemented in special hardware. It does not work well for noisy and deformed 

images. The moments method [5] is not practical. However, in practical setting, 

Fukushima's neocognitron [6] and AT&T's neural networks [7,8] can recognize 

characters and digits, respectively. Both of the neural networks can be implemented in 

software. We therefore propose to develop a NN to handle this part of the project. 

Considering that the neocognitron neural network needs complicated human efforts (hard 

work!) to define features and design templates in the training process, we decided to 
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combine the Kohonen neural network and the feed-forward back-propagation neural 

network as the main recognition unit instead of the neocognitron NN. 

This system is divided into three parts. Refer to Figure I I This thesis is 

organized in a very sequence in which the image pattern in the electronic drawing flows 

through the system. 

       

  

Unit One 
Image 

Pre-processing 
Unit 

Unit Two 
Kohonen 

Neural Network 
Classifier 

Unit 

Unit Three 
Back-Propagation 
Neural Network 

Recognition 
Unit 

  

    

       

       

Figure 1.1 The Diagram of the System 

In this chapter, Chapter 1, we briefly introduce this research topic, image pattern 

recognition and artificial neural network. 

In Chapter 2, Image Pre-Processing Unit, we focus on how to pinpoint the 

candidate gate symbols. It is mainly for an effective usage of the neural network. Some 

pre-processing methodologies are described in this part. 

The third chapter is a Kohonen Neural Network Classifier. It works as a bridge 

connecting between the Pre-Processing Unit and the Back-Propagation Neural Network 

(BPNN) Recognition Unit. Through this unit, the gate symbols and characters are roughly 

classified. The output of this unit is a categorized map. Because the map is of small 

dimension, the input layer of the subsequent BPNN can be small. Moreover, the overall 

dimension of the BPNN is much smaller than the dimension of the BPNN whose input is 

original image signals to be recognized. 
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In the fourth chapter, the BPNN Recognition Unit, we state about how to 

recognize various digital gate symbols by using BPNN and how to design and train a 

feedfoward neural network. 

Chapter 5 is about neural network generalization and training with noise: A 

further training. After the further training, the overall capability of the neural network gets 

more powerful. 

In the last chapter, we summarize all the contributions in our research and system 

design. We also raise a problem for the future research: how to verify the gate symbols 

which have been recognized? The motivation behind it originates from the fact that the 

correctness and the reliability of the recognition are more important than the processing 

speed of the proposed system, 

1.2 Pattern Recognition 

Traditional pattern recognition [9-12] techniques include statistical pattern recognition 

algorithms, probability and decision theory, and feature extraction. The latter techniques 

are concerned with the decomposition of an input into pattern primitives. These 

techniques overlap and are not really separable, As an example of a statistical approach, 

assume that a two-class problem is to be solved. That is, a given input pattern must be 

classified to belong to either class A or class B. For purposes of this example, assume that 

there are only two features that can be measured to determine classification with 

distributions as shown in Figure 1.2. 
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Figure 1.2 Two Class Problem 

An example is taken here. Let's assume that the problem is to build an assembly 

line monitor that determines whether a product is to be shipped or is defective. Let's also 

assume that the product is a bottle that we must make sure is full and capped. To 

determine whether it is full we set up an optical beam to pass through the bottle at a point 

just below the required fill level. Again, for simplicity, assume that the liquid is basically 

opaque. If the bottle is full, the amount of light sensed by the photodetector will be less 

than that would be sensed if it were empty. The amount of light sensed by the 

photodetector will be the first feature, a measured parameter that enables the network to 

discriminate between the classes. Low values of this feature are associated with a full 

bottle (because the liquid blocks the light ) and thus represent good bottles. To determine 

whether there is a cap on the bottle, a similar approach will be taken. 

So let's take a beam of light and direct it at the top of the bottle. A strong 

reflectance off the top (resulting in a relatively large number for the second feature) 

would imply that the bottle has a top on it. This amount of light reflected off the top 

would be the second feature. In the feature space, good bottles, determined as being full 

and having a cap, are found in the upper left portion of the first quadrant of the feature 

space, denoted as solid circles. Bad bottles, determined by really being bad in the sense 
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that they are not full and do not have a cap, are found in the lower right portion of the first 

quadrant, denoted with circles. 

A statistical approach to this problem is to find the K-nearest neighbors to the 

unknown input and check their respective class membership. This is clone by first 

collecting a lot of bottles that have been observed to be either good or bad. Then, by 

placing these bottles through the measurement process, points in the feature apace are 

marked as being associated with either good or bad values. When a bottle is input that is 

not classified and must be tested to determine goodness, it is also mapped to the feature 

space. Measurements are made to determine which of the previous mapped points are 

closest to this unknown input. For example, some Minkowski distance could be used to 

measure the closeness to a previously classified point. 

Minkowski n-distance is defined as the nth root of the sum of the difference of feature, 

|xt -yi|, values raised to the nth power. Thus if n =1 this is just the sum of the magnitude of 

the differences of the feature values; this is frequently known as taxi distance. If n=2, we 

have the square root of the sum of the squares of the differences of the feature values, 

Euclidean distance. 

For example, the closest k points by a Minkowski metric could be determined. If the 

majority of the k-nearest neighbors are from some particular class, then the unknown 

input is also assumed to be of that class. To accomplish this, a large amount of labeled 

data is required. If we assume that the data are distributed in a Gaussian manner, then the 

means and standard deviations are computed for the classes of good and bottles. Then 
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when some unknown input is tested, a likelihood quantity can be calculated that 

maximizes the probability that the classification is correct. Of course, assumptions on the 

form of the density are questionable. One of the biggest potential advantages of artificial 

neural networks is the hope of eliminating the need for specific code development for a 

given discrimination task. Let the network make the probability estimates and computer 

the distance. We can show that when networks are trained to minimize the mean squared 

error, they become functionally equivalent to the common Bayes discriminant functions. 

For this example, we've provided some obvious features. In feature extraction, a set of 

primitives is extracted from the data and compared to some internal representation of 

classes. These primitives, along with information about their relationships that distinguish 

the classes of interest, could be used for classification. The primitives could in fact be 

statistical measures. For example, the moments of the data could be calculated. For a two 

dimensional shape, f(x, , the ninth moment is defined below as mot,„,: 

Alternately there exist invariant moments that could have been calculated. The encoding 

of position, scale and rotation invariance in the extracted features might be preferable to 

making the artificial neural networks learn the invariance from the raw input images. The 

advantage of moments is that they can be computed optically, and in fact one may want to 

compute moments in both the Fourier and space domains to enhance recognition. Feature 

extraction is very important. Good features make good recognition. 

Comparison of artificial neural network to other solution techniques is very 

instructive. It is easy to construct a simple neural network to solve the two-class problem. 
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The artificial neural network solution to the good or bad bottle problem could then be 

compared to the K-nearest neighbor to the density function estimator, the Bayesian 

classifier. 

1.3 Artificial Neurons and Neural Networks 

Artificial neurons and neural nets [13-16] are both aspects of a style of computing (some 

people call it neural computing) that attempts to mimic {to a greater or lesser extent) the 

activities of animal neural systems, like the human brain. The motivation for doing this 

varies from person to person. Some people use neural computing as a way to examine 

real neural systems. These people are not really interested in the artificial neural systems 

for their own sake; they are using artificial systems because the real animal neural 

systems are difficult to use in research. The real systems tend to be very large and 

complicated, with millions of interrelated neurons. Real neurons are so small and delicate 

that it is difficult to isolate them for study. Individual tasks done by real neural systems 

are often distributed in unknown ways throughout the entire system in such a fashion that 

it is almost impossible to tell which neurons are participating in the task and which are 

not. There are also legal and ethical problems involved in the study of living animal 

neural systems that make such research awkward. We cannot, for example, remove bits of 

a living human brain in order to see what functions of speech or cognition stop working. 

Other people want to get computers to perform actual tasks, doing things for us that we 

previously would have had to do ourselves. Without the techniques of neural computing, 

we can have the computer do only what we can describe algorithmically, that is, with a 

very complete and explicit set of instructions. As we shall see, neural computing allows 
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us to 'train' the computer to do tasks without us really having to understand how the tasks 

are being accomplished. There are products on the market today that employ neural 

computing. And, of course, there are other people who examine neural computation 

because they are interested in it for its own sake. They want to know its characteristics 

and limitations; the kinds of problems it can solve and the kinds of problems it can't 

solve. Their interest is like the theoretical chemist's interest in the interaction of matter; if 

it has a practical application down the road that's great, but the first interest is in the basic 

science of the field of study. Neural computing is usually considered to be a part of 

artificial intelligence. 

Artificial Neurons An artificial neuron is a machine-based object that mimics both the 

internal and external behavior of a real animal neuron. It will have a variable number of 

inputs and outputs. The artificial neuron will have some process by which it combines all 

of the inputs with weights, called the integration step. The value resulting from this 

process is fed to a threshold function which will determine if the neuron produces output. 

Diagrammatically, we might draw a single neuron as follows: 

Figure 1.3 Single Neuron 

However, we usually represent a neuron by a single dot. In most cases, a single neuron is 

so simple that it can't do very much. However, it is possible to get useful work even out 

of one neuron. Let's examine a neural system consisting of one neuron. The neuron will 
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have three inputs, the (x, y, z) coordinates of a point in three-dimensional space, and one 

output, +1 or -1. We want the neuron to tell us if the point given as input is above the 

plane (x + y + z = 0) or below it by giving an output of +1 if the input point is above the 

plane and —1 if the input point is below the plane. In this case, the neuron's processing 

need only consist of only two steps. First, in the integration step, the input values are 

simply added together. The threshold function is uncomplicated. The resulting value is 

checked. If it is positive, then the neuron sets the output value to +1 If the result of the 

addition is negative, the neuron sets its output to 	To the practical mind of the 

engineers in the crowd, it may seem that this simple one-neuron classifier doesn't really 

do anything useful. However, the three-dimensional space that it partitioned can represent 

any number of things. We could view the three dimensions as being the operating 

characteristics of sonic machine; temperature, pressure, and rotational speed. The plane 

represents the boundary between safe and unsafe conditions. The neuron's output could 

be connected to an emergency shutdown system. Whenever the combination of 

characteristics left the safe area, the neuron's output would change and activate the 

shutdown system. Of course, it may be that the boundary between safe and unsafe 

conditions may be too complicated to describe with such a simple classifier. In that case, 

either the neuron could have more complicated integration and threshold functions or we 

could add more neurons. 

Neural Nets A neural net is a collection of some number of neurons along with the 

connections between them. Also referred to as connectionist architectures, parallel 

distributed processing, and neuromorphic systems, an artificial neural network (ANN) is 

an information-processing paradigm inspired by the way the densely interconnected, 
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parallel structure of the mammalian brain processes information. Artificial neural 

networks are collections of mathematica models that emulate some of the observed 

properties of biological nervous systems and draw on the analogies of adaptive biological 

learning. The key element of the ANN paradigm is the novel structure the information 

processing system. It is composed of a large number of highly interconnected processing 

elements that are analogous to neurons and are tied together with weighted connections 

that are analogous to synapses. Learning in biological systems involves adjustments to the 

synaptic connections that exist between the neurons. This is true of ANNs as well. 

Learning typically occurs by example through training, or exposure to a truthed set of 

input/output data where the training algorithm iteratively adjusts the connection weights. 

These connection weights store the knowledge necessary to solve specific problems. 

Although ANNs have been around since the late 1950's, it wasn't until the mid-1980's that 

algorithms became sophisticated enough for general applications. Today ANNs are being 

applied to an increasing number of real world problems of considerable complexity. They 

are good pattern recognition engines and robust classifiers, with the ability to generalize 

in making decisions about imprecise input data. They offer ideal solutions to a variety of 

classification problems such as speech, character and signal recognition, as well as 

functional prediction and system modeling where the physical processes are not 

understood or are highly complex. ANNs may also be applied to control problems, where 

the input variables are measurements used to drive an output actuator, and the network 

learns the control function. The advantage of ANNs lies in their resilience against 

distortions in the input data and their capability of learning. They are often good at 

solving problems that are too complex for conventional technologies (e.g., problems that 
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do not have an algorithmic solution or for which an algorithmic solution is too complex 

to be found) and are often well suited to problems that people are good at solving, but for 

which traditional methods are not. There are different types of ANNs. Some of the more 

popular include the multilayer perception which is generally trained with the 

backpropagation of error algorithm, learning vector quantization, Hopfield, and Kohonen 

network. Some ANNs are classified as feedforward while others are recurrent (i.e., 

implement feedback) depending on how data is processed through the network. Another 

way of classifying ANN types is by their method of learning (or training), as some ANNs 

employ supervised training while others are referred to as unsupervised or self-

organizing. Supervised training is analogous to a student guided by an instructor. 

Unsupervised algorithms essentially perform clustering of the data into similar groups 

based on the measured attributes or features serving as inputs to the algorithms. This is 

analogous to a student who derives the lesson totally on his or her own. ANNs can be 

implemented in software or in specialized hardware. 

Implementation Each neuron could be represented entirely by specialized hardware 

(wires, silicon transistors, or chips) or entirely in software (a collection of data and the 

instructions to manipulate it) running on a general-purpose computer, or as some 

combination of the two. A hardware implementation is usually very fast but quite 

expensive to build, and it is difficult to change the structure of the net once it is built. 

Software implementations are usually comparatively slow, but the structure and 

characteristics of each neuron and of the net as a whole can be easily changed, 

Researchers tend to use software implementations almost exclusively. Engineers trying to 

build neural net controlled devices will also often use software implementations while 



15 

they are designing and testing the nets. When the design is finished and a software 

prototype tested, hardware versions can be built. For our purposes, it doesn't really matter 

how the neurons are implemented; hardware, software, or a combination. The capabilities 

of the system don't really change, just how fast it runs and how difficult it would be to 

build. 

Comparison Finally, let's compare the ANN and the conventional computer. A 

serial computer has a central processor that can address an array of memory locations 

where data and instructions are stored. Computations are made by the processor reading 

an instruction as well as any data the instruction requires from memory. The instruction is 

then executed and the results are saved in a specified memory location as required. In a 

serial system, the computational steps are sequential and logical, and the state of a given 

variable can be tracked from one operation to another. In comparison, ANNs are not 

sequential but parallel. There are no complex central processors, instead there are many 

simple ones which generally do nothing more than take the weighted sum of their inputs 

from other processors. ANNs do not execute programmed instructions, they respond in 

parallel (either simulated or actual) to the pattern of inputs presented to it There are also 

no separate memory addresses for storing data. Instead, information is contained in to 

overall activation 'state' of the network. 'Knowledge' is thus represented by the network 

itself. ANNs can deal with 'unseen' patterns and generalize from the training set. It is 

robust in the presence of noise, small changes in an input pattern will not drastically 

affect a node's output. ANNs are good at "perceptual" tasks and associative recall. These 

are just the tasks that the symbolic approach has difficulties with. 



CHAPTER 2 

CANDIDATE SEARCHING 

The neural network is used in the gate symbol recognition in this system. The calculation 

of the neural network involves quite a lot floating point calculations and it takes longer 

time. On the other hand, there are only a few gate symbols on a diagram. It is not practical 

to use neural network to search the gate symbols all over the diagram. That will waste a 

lot of time and make the processing very slow. 

In order to save the whole processing time, reduce the calculation time spent in 

neural network is crucial. We have two choices. One is to reduce the time spent in each 

neural network recognition. The other is to reduce the times using neural network. The 

latter one is suitable and easy to implement. 

Before using neural network to recognize gate symbols, a pre-processing [17-20] 

can be implemented to pinpoint them. This procedure, known as candidate searching, is 

to use a few fast algorithms to quickly find out the gate symbol positions. After that, 

neural network will be connected to those areas one after another to detect whether they 

are gate symbols and what kind of gate symbols they are. In this way, the overall time 

spent in the gate symbol recognition is greatly lessened. The candidate searching consists 

of 3 parts. They are long line removal, thinning and pyramid algorithms. 

16 
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2.1 Long Line Removal 

In each digital diagrams, a part of them shown in Figure 2.1, 4 types of elements exist. 

They are straight lines, gates symbols, characters and dots (intersections points). Straight 

lines are divided into long lines and short lines. We define the long lines are those whose 

length is longer than the length or width (whichever is longer) of the gate symbols. 

Usually long lines may occupy up to 90% of "1" pixels. However, for the gate symbol 

recognition, lines are useless. In order to implement the succeeded algorithm, straight 

long lines have to be removed as more as possible. This makes the searching algorithm 

more accurate and fast. 

Long line removal algorithm: 

input: digital diagram image and the length of the gate 

output: image without long lines 

begin 

while pixel is on the image do 

detect the horizontal lines 

for each detected horizontal line do 

if the length of the horizontal line > length of the gate then 

make the marks b on each pixels 

end if 

end do 

detect the vertical lines 

for each detected vertical line do 



18 

if the length of the vertical line > length of the gate then 

make the marks b on each pixels 

end if 

end do 

end do 

while pixel is on the image do 

if b then remove the line 

end if 

end do 

end 

Figure 2.2 shows the long line removed image. 

2.2 Thinning 

Thinning [19] is an operation in which binary-valued image regions are reduced to lines 

that approximate the center lines of the regions. The purpose of thinning is to reduce the 

image components to their essential information so that further analysis and recognition 

are facilitated. After thinning, it is easier and faster to process I -pixel-wide lines than the 

wider ones. 

In this system, the thinning is particularly important because this can make neural 

network input window and the neural network size smaller. Otherwise, the time used in 

the network training and network recognition would be much longer. If a supercomputer 

was used to do the training and recognition, a large size neural network could be designed 

to recognize arbitrary pixel-wide gate symbols. 
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The thinning requirements are stated as follows: 

(1) Connected image regions must thin to connected line structures. 

(2) The thinning results should approximate the medial lines. 

(3) Approximate end line locations should be maintained. 

The image pattern contour points are assumed to be "1" and the background points 

"0". The algorithm consists of successive passes of two basic steps applied to the contour 

points of the image, where a contour points is any pixel with value "I", having at least 

one 8-neighbor value "0". With reference to the 8-neighbor definition, refer to Figure 2.3, 

step 1 flags a contour 

p9 p2 p3 

p8 
p1 p4 

p7 p6 p5 

Figure 2.3 8-neighbor definition 

point p for the deletion if the following conditions are satisfied: 

(a) 2 =<N(p 1) =< 6; 

(b) S(p1 ) = 1; 

(c) p2 * p4 * p6 = 0; 

(d) p4 * p6 * p8 = 0; 

where N(p1) = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9; S(p1) is the number of 0-1 

transitions in the ordered sequence of p2, p3, p8, p9,p2. In step two, conditions (a) and 

(b) remain the same, while conditions (c) and (d) are changed to 
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(c) p2 * p4 * p8 = 0; 

(d') p2 * p6 * p8 = 0; 

Step I is applied to every border pixel in the binary region under consideration. If 

one or more of conditions (a)-(d) are violated, the value of the point in question is not 

changed. If all conditions are satisfied, the point is flagged for deletion. However, the 

point is not deleted until all border pointed have been processed. This delay prevents 

changing the structure of the data during execution of the algorithm. After step I has 

applied to all border points, those that have been flagged are deleted. Then, step 2 is 

applied to the resulting data in exactly the same manner as step 1. Applying step I and 2 

can satisfy the above 3 conditions to get the desired thinning image. These 2 steps are 

applied iteratively until no further points to be deleted in the image, at that moment the 

thinning process terminates, yielding the thinned image. Figure 2.4 shows the thinned 

image. 

2.3 Pyramid (Multi-Resolution) Algorithm 

Pyramid algorithm is an operation which lower the image resolution. It creates the new 

image's pixels by adding the values of 4 connected pixels in the higher resolution image. 

The new pixel corresponds to 4 pixels at the finer resolution image. Each time, the image 

size is reduced to 1/4 of the higher resolution image. After a specific times of operation, 

the gate symbols are shrunk to single pixels. Therefore, the central coordinates and the 

position of the candidate gate symbols are found. 

Pyramid algorithm: 



input: long line removed digital diagram image, the length of the gate output: low 

resolution (1/4)" sized of input image marked with. candidate gate position 

where n = 1, 2, 3, 4, 5, .... 

begin while n = n 	do 

for each i, j do 

p[i][j] = p[2*i][2*j]+p[2*i+1][2*j]+p[2*i][2*j+1]+p[2*i+1][2*j+1] 

end do 

i=i/2; 

j=j/2; 

end do 

for each i, j do 

if p[i][j]> 3 xlength of gate then 

mark i, j as a candidate position in the low resolution image 

end do 

end 
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Figure 2.5 illustrates the procedure of this algorithm. 
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Figure 2.1 Part of a Digital Diagram 
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Figure 2.2 Long Line Removed Image 



Figure 2.4 The Image After Thinning 
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Figure 2.5 Images of Different Resolution 



CHAPTER 3 

A SHIFT-INVARIANT AND LIMITED ROTATION-INVARIANT 
MODIFIED KOHONEN NEURAL NETWORK 

3.1 Introduction 

An important feature of neural network is the ability to learn from their environment, and 

through learning to improve performance in some sense. In this chapter, we present a 

modified Kohonen neural network with shift-invariant and rotation-invariant capability. 

Kohonen neural network is a type of unsupervised neural network. It is [21] perhaps the 

simplest self-organization system [22], consists of a single layer of neurons (called 

Kohonen layer) and an input buffer layer that is fully connected to the neurons in the 

Kohonen layer through adjustable weights (see Figure 3.1). 

Input buffer layer 

Figure 3.1 Structure of Kohonen. Neural Network 

Kohonen neural network has been successfully applied to speech recognition [21,23]. It is 

also utilized as a pre-processing layer in a more complicated neural network for image 

recognition [24]. A well trained Kohonen network, for example, can be used to classify 

English letters and other characters [25,26]. In our researches aiming at recognizing the 
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digital gate symbols and characters in electronic drawings, it was found, however, that 

when an object in an image is shifted horizontally and/or vertically, Kohonen network 

cannot classify the original image pattern and its shifted version into the same category. It 

is clear that the shift-invariant capability in image pattern recognition is desired in many 

applications. For this purpose, a modified shift-invariant Kohonen network with a two-

dimensional correlation is proposed in this chapter. Owing to its shift-invariant capability, 

the dimension of the Kohonen neuron layer can be reduced dramatically. Moreover, the 

size of its subsequent neural network can be decreased significantly. An analysis of 

computational complexity and some experimental work are presented. The experiments 

have shown that when the shift in an image pattern is not large, the shift-invariant 

modified Kohonen neural network is superior to the original Kohonen neural network. 

The rotation-invariant capability is another modification to the original ones for the nx90° 

rotations (n=1, 2, and 3). 

In order to make the discussion subsequently more concrete, we shall consider 

how image information is captured and input to a neural network. Suppose we have a TV 

camera (monochrome for simplicity) which is viewing a picture that is to be used in 

training. The output from this is a picture where each point is represented by a 

continuously variable voltage (analogue quantity) so that shades of gray may be encoded 

accurately. For a node in Kohonen input buffer layer or a perceptron, however, we require 

a set of Binary values ( 	'0'). The conversion process is done by dividing the picture 

into a grid of picture elements or pixels each of which is allowed to take only one of two 

values black or white. To find the value for each pixel, the average value of the image in 

the pixel area is found and then threshold to determine whether it is white or black. We 
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now make the correspondence white = 1 and black = '0'. This array of Boolean 

quantities may now be stored in a special purpose computer memory. Typically the pixel 

grid may be 512 by 512 giving over 0.26 million pixels. Thus, the pattern space will have 

dimension 0.26 million. This is often reduced to make things more manageable for a 

neural network. In this research aiming at recognizing different digital gate symbols, the 

pixel grid is set to 32 by 32. The total number of pixels is 1024. 

3.2 Conventional Kohonen Neural Network 

Before we discuss conventional Kohonen neural network, let us observe the K-means 

algorithm [27] as the foundation. Pattern vector of n-dimensions may be considered as 

representing point within an n-dimensional Euclidean space. One of the most obvious 

means by which we may establish a measure of similarity between or among such pattern 

vectors is by means of their proximity to one another. The K-means algorithm is one of 

the many clustering techniques that shares this notion of clustering by minimum distance. 

Namely, vectors which identify points that are geometrically close together may be taken 

in some sense as belonging together. For presenting the operation of the K-means 

algorithm, a precise notion of distance metric is needed. The Euclidean norm of a vector, 

x = [x1, x2, .... 	,xn] is defined as follows: 

Equation (3.1) provides the length of the vector x. Since we desire the distance or length 

between two vectors within the pattern space, we need to apply equation (3.1) to the 

vector difference as follows: 
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where x and z are pattern vectors of order n. 

Now that a measure of pattern similarity has been established, the task of 

establishing a procedure by which patterns are partitioned into cluster domains must be 

undertaken. That is, we require a procedure that will establish a set cluster with associated 

cluster centers such that the distance between an input vectors and the closet cluster 

center serves to classify the vector. The K-means algorithm represents one such method. 

K-means makes the assumption that the number of cluster centers that will be 

required to adequately represent the sample space is known a  priori. This assumption in 

itself somewhat limits the utility of the procedure. Other variations on minimum distance 

statistical clustering techniques lack this difficulty but may have other problems such as a 

sensitivity to the order in which input data are presented to the system. 

Let x(P)  represent the pth space vector. The complete set of input vector will then 

be {x(I), x(2), ..., x(P)}. The vector z represents the cluster center for each of the K clusters. 

That is it points to the position in Euclidean space at which the cluster center is located. 

Since there are K cluster centers: Finally the notation, Sj = x I x is closest to cluster j} 

will be used to represent the set of samples that belong to the jth cluster center. The K-

means algorithm is implemented in the following steps. 

Step 1. Initialization choose the number of cluster K. For each of these K clusters choose 

an initial cluster center: { z1(l), z2(l), 	zk(/)}, where zj(l) represents the value of the 

cluster center at the Ith iteration. The starting values can be arbitrary but are generally 

taken to be the value of the first K of the sample vector. 
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Step 2. Sample distribution: Distribute all sample vectors. By this, each sample vector x(P)  

is attached to one of the K clusters according to the following criteria: 

for all i = 1, 2, ...,K, 

Sj(1) represents the population of cluster/ at iteration 1. 

Step 3. New cluster centers calculation: Using the new cluster membership sets 

established in step 2, recalculate the position of each cluster center such that the sum of 

the distances from each member vector to the new cluster center is minimized. 

Specifically we wish to minimize where: 

where j=1, 2, ..., K. The value of zj(l + 1) which minimizes equation (3.4) is simply the 

mean taken over the samples of Sj(l). Therefore the new cluster center is calculated using 

equation (3.5) as follows: 

where N j  is the number of sample vectors attached to Sj  during step 2. 

Step 4. Convergence checking: The condition for convergence is that no cluster center has 

changed its position during step 3. This condition can be expressed mathematically as 

follows: 

z (/ + 1) = zj (/) 	j =I, 2, ..., K 	 (3.6) 

If equation (3.6) is satisfied, then convergence has occurred. Otherwise iteration by going 

to step 2. 
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A number of factors may influence the behaviors of the K-means algorithm. 

Among these are the number of cluster centers, the choice of initial cluster centers, and 

the geometric properties of the input data. Some experiments with the choice of K and the 

initialization parameters may be required. Although no formal proof of convergence 

exists, the method can be expected to do well where the nature of the data is consistent 

with the assumption inherent in using the minimum distance as a similarity measure. 

We begin by illustrating the ability of Kohonen network model to identify cluster 

centers just as the K-means algorithm did. The Kohonen network architecture consists of 

two layers, an input buffer layer and a Kohonen neuron layer (output layer). These two 

layers are fully connected. Each input layer neuron has a feed-forward connection to each 

output layer neuron. Refer to Figure 3.1. There the Kohonen neuron layer is of two-

dimension. Actually one-dimensional and higher dimensional cases are possible. The 

input vectors x are required to normalize (i.e., || x 11=1). Inputs to the Kohonen neuron 

layer can be calculated conventionally using equation 3.7: 

Applying a winner-take-all paradigm, the winning output layer neuron will simply be the 

neuron with the biggest I. The output of the winning neuron will be 1. All other neurons 

in the Kohonen layer will output nothing. In effect equation 3.7 is the dot product 

between a neuron weight vector and the input vector. Thus this method chooses a 

winning neuron such that the angle between the winning neuron weight vector and the 

input vector will be smaller than the corresponding dot product for all other neurons. An 

equivalent method of choosing the winning neuron simply selects the neuron whose 
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weight vector has a minimum of the Euclidean distance from the input vector (i.e., dj  = 

In the next section we will focus on the training of Kohonen neural. network. 

3.3 The Training of Kohonen Neural Network 

Let us consider the training [28-33] of a Kohonen neural network with an input buffer 

layer and a Kohonen neuron layer that are fully connected. An input vector is applied to 

the buffer layer, and its component vectors are transmitted to each neuron in the Kohonen 

layer through randomized connecting weights. The neuron in the Kohon.en layer with the 

strongest response is declared the winner and its value is set equal to one. Then the 

weights connecting all component vectors from the buffer layer to winning neuron 

undergo training in accordance with the process shown in Figure 3.2. 

Figure 3.2 The weights update in Kohonen Network 

Neurons adjacent to the winner are also allowed to undergo training. The second input 

vector is applied to the buffer layer, another neuron in the Kohonen layer is declared the 
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winner, This process continues until all the input data have been applied to the buffer 

layer and the distance between the input vectors and the weights are small enough. The 

training procedure is as follows: 

(I) Initialization: assign small random values to all the weights and a specific value to 

the neighborhood size. 

(2) Input: present an image array to the input buffer layer. 

(3) compute distance to the jth node: 

(4) Winner selection: select a node which corresponds to the highest correlation value as 

the winner. 

(5) Weights update: update the weights of the winner and all the nodes within the 

neighborhood of the winner according to the following equation: 

(3.8) 

where a is decreased over the learning as the size of the neighborhood decreases. Note 

that there is also a parameter that must be initialized, that is the neighborhood. The size of 

the neighborhood determines the size of the area of the Kohonen layer centerd about the 

winner whose weights will be updated for a given input. Initially the size of the 

neighborhood should be some significant fraction of the initial neighborhood. The 

training schedule includes the reduction of the size of these neighborhoods as well as a 

reduction in the learning parameter a. The next step in the learning algorithm is to 

provide an input to the network. Note that no classification is provided to this network, 

thus it is unsupervised learning. In the supervised learning paradigms, like the backward 

error propagation algorithm, the desired output for the network was provided. The next 
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step of the algorithm is to compute the distance of the input from all of the nodes in the 

Kohonen layer. If N is the number of inputs to the network, indexed by i, and j is the 

index over the output nodes, the two-dimensional Kohonen layer, the distance of some 

input from the jth Kohonen node is 

(3.9) 

This is a measure of the similarity between the input and the weights of a given node on 

the Kohonen output layer. The last step in the learning algorithm is to update the weights 

for the winning node, that node with the minimum distance. The weights are also updated 

for the nodes that lie within the neighborhood of the winning node. Finding the winning 

node is common in neural-processing systems and can be accomplished with lateral 

connections in the Kohonen layer. Quite often the Kohonen networks are drawn with 

connecting arcs drawn between the nodes on the output. Layer. These connections could 

accomplish the gaming weight adaptation and the picking of the winner. The weight 

update equation is: 

Let us think of the input vector, x, as being the desired result for the weight vectors w, 

being updated. This update equation pushes each of the vectors being updated toward the 

desired input, x, along the vector that represents the vectoral difference. After all the 

weights within the neighborhood [34-40] of winning node are updated, another input is 

chosen and the process is repeated. For each repetition the learning parameter could be 

slightly reduced linearly. After some number of training inputs the neighborhood size 

could also be decreased. We commonly used a starting a of about 0.9, which is then 
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linearly reduced. For example, if training a 10x10 Kohonen output layer, starting with a 

initial neighborhood size of 7x7 might be appropriate, and after a few thousand training 

iterations, this neighborhood size might be reduced to 5x5. When the weights of the 

network are not changing significantly, and the distance between input patterns and the 

corresponding weights are small enough, the network is done with learning. 

3.4 Similarity Measurement between Images 

The two dimensional correlation function proposed in this research is defined as follows: 

where the symbol "o" represents correlation, f (m,n) is an unknown input image pattern 

array, and g(m,n) is a reference image pattern or template array. Both of them are of size 

P x 0, refer to Figure 3.3. It is assumed that f (m,n) and g(m, n) are equal to 0 u rn P 

or m<  0, or n 0 or n < 0, —(P-1)≤ x ≤.P-1 and -(Q-1) ≤ y ≤ Q-1. 

Figure 3.3 The image array off (m,n) and g(m,n) 
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From equation (3.11) we calculate the correlation starting with f (m,n) and 

g(m, n) . We label the axes in and n, because we are going to sum over the plane, where 

the dummy variable m and n will disappear, and we wish to be left with a function of x 

and y. g(x + m, y + n) is a replica of g(m,n) but displaced by an amount y to the left and 

an amount x upward. We may represent this situation by copying the image g(m, n) on a 

piece of transparency and displacing it. If we move the transparency on the top of the 

original and then displacing it, we have the value the value g(x + m, y + n) . It is 

multiplied by f (m,n) .We can imagine the product as a new function covering the (x, y)-

plane. According to the defined equation, we perform the double summation, that is, to 

find the volume under the product function. That needs a lot of work involving 

multiplications over the area 0 ≤ m ≤ P — 1 and 0 ≤ n ≤ Q - 1, and followed by summing 

the products on the plane. Even so, the result is merely a single value of correlation, 

namely for the particular (x, y) describing the displacement. To get another value we have 

to displace the function to a new position, multiply throughout, and find the volume under 

the production again. To obtain the whole correlation function, we have to repeat over 

and over again until all the desired values of x and y, —(P — 1) x P-1 and -(Q — 1) ≤ y 

≤ Q-1 , are covered. 

The correlation is utilized in image processing to evaluate the match between an 

unknown pattern and a reference pattern, where the problem is to find the closest match 

between an unknown image and a set of known images. One approach is to compute the 

correlation between the unknown image and each of the known images. The closest 

match can then be found by selecting the image that yields the correlation with the largest 
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value. Because the resultant correlation are two dimensional functions, this involves 

searching for the largest amplitude of each function. 

Calculating the correlation defined in (3.11) for all the possible (x, y) is equivalent 

to shifting the reference pattern all over the possible locations on the unknown image 

pattern and find the similarity measurement. During the process, if and only if the two 

image patterns are identical and overlapped, fog yields the largest possible correlation 

value 1 . Otherwise, the correlation between any two different patterns cannot reach this 

maximum value. In Figure 3.4, there are 3 English letter image patterns, letter "A", letter 

"B", and shifted letter "A". The calculation of correlation between them are shown in 

Table 3.2, 3.3 and 3.4. The maximum correlation values are shown in Table 3.1. 

Table 3.1 Comparison between Euclidean distance and correlation 

Measure between 
letters 

Euclidean 
distance 

Correlation 

"A" and "A" 0.000 1.000 
"A" and "B" 0.994 0.783 

"A" and shifted "A" 1.500 1.000 

Figure 3.4 (a) Letter "A", (b) Shifted letter "A", (c) Letter "B" 
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As a result, we can determine if the input pattern is identical to (Table 3.2) or is a shifted 

version (Table 3.4) of the reference pattern. That is, we can achieve the shift-invariant 

capability in recognition. Furthermore, iff(m,n) is a shifted version of g(m,n) , the 

relative position (x, y) between f and g can be found. However, this is not our direct 

interest in this recognition process. 

It is also noted that the 2-D correlation proposed in (3.11) is different from that 

defined in the typical digital signal and/or image processing texts, say in 001. There, both 

f(m,n) and g(m,n) are first extended into 2-D arrays of 2P — 1 by 2Q — I for the sake 

of periodicity in both spatial and frequency domains. In our case, there is no such need. 

But in terms of recognition ability, these two correlation techniques are the same. 

Euclidean distance is another way to measure the distance between two vectors: x 

and w.. The definition is as follows: 

(3.12) 

We will discuss it in detail in the next section. 

It is worth noting that when using the Euclidean distance measure, the smaller 

value indicates the two images are more similar to each other. With the correlation, it is 

just the opposite: The larger the correlation, the more similar the two images are, it is 

easy to prove that zero Euclidean distance implies that the correlation equals to I. In fact, 

having the Euclidean distance equal to 0 is just a special case of the correlation equals to 

I (when there is no shift). 
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Table 3.2 Correlation between letter "A" and itself 

y=6 y=5 y=4 y=3 y=2 y=1 y=0 y=-1 y=-2 y=-3 y=-4 y=-5 y=-6 
0.00 x=8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

x=7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
x=6 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 
x=5 0.00 0.00 0.00 0.06 0.06 0.06 0.00 0.06 0.06 0.06 0.00 0.00 0.00 
x=4 0.00 0.00 0,06 0.06 0.06 0.12 0.19 0.12 0.06 0.06 0.06 0.00 0.00 
x=3 0.00 0.00 0.12 0.06 0.12 0.12 0.38 0.12 0,12 0.06 0.12 0.00 0.00 
x=2 0.00 0.00 0.19 0.19 0.19 0.19 0.38 0.19 0.19 0.19  0.19 0.00 0.00 
x=1 0.00 0.00 0.25 0.19 0.12 0.25 0.50 0.25 0.12 0.19 0.25 0.00 0.00 
x=0 0.00 0.00 0.31 0.12 0.25 0,25 1.00 0.25 0.25 0.12 0.31 0.00 0.00 
x=-1 0.00 0.00 0.25 0.19 0.12 0.25 0.50 0.25 0.12 0.19 0.25 0.00 0.00 

x=-2 0.00 0.00  0.19 0.19 0.19 0.19 0,38 0.19 0.19 0.19 0.19 0.00 0.00 

x=-3 0.00 0.00 0.12  0.06 0.12 0.12 0.38 0.12 0.12 0.06 0.12  0.00 0.00 

x=-4 0.00 0.00 0.06 0.06 0.06  0.12 0.19 0.12 0.06 0.06 0.06 0.00 0.00 

x=-5 0,00 0.00 0.00 0.06 0.06 0.06 0.00 0.06 0.06 0.06 0.00 0.00 0.00 
x=-6 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 

x=-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

x=-8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 

Table 3.3 Correlation between letter "A" and letter "B" 

y=6 y=5 y=4  y=3 y=2 y=1 y=0 y=-1 y=-2 y=-3 y=-4 y=-5 y=-6 
x=8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
x=7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
x=6 0.00 0,00 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.00 0.00 0.00 
x=5 0.00 0.00 0.11 0.06 0.06 0.06 0.17 0.06 0.06 0.06 0.06 0.00 0.00 
x=4 0.00 0.00 0.17 0.11 0.17 0.22 0.45 0.17 0.11 0.06 0.11 0.00 0.00 
x=3 0.00 0.00 0.22 0.17 0.17 0.17 0.34 0.17 0.17 0.17 0.11 0.00 0.00 
x=2 0.00 0.00 0.28 0.17 0.17 0.17 0.45 0.17 0.17 0.17 0.17 0.00 0.00 
x=1 0.00 0.00 0.28 0.17 0.22 0,34 0.78 0.22 0.17 0.06 0.22 0.00 0.00 
x=0 0,00 0.00 0.28 0.22 0.22 0.28 0.50 _0.28 0.17 0.22 0.17 0.00 0.00 
x=-1 0.00 0.00 0.22 0.22 0.22 0.22 0.34 0.22 0.22 0.22 0.11 0.00 0.00 
x=-2  0.00 0.00 0.17 0.17 0.28 0.34 0.56 0.22 0.22 0.06 0.11 0.00 0.00 
x=-3 0.00 0.00 0.11 0.11 0.11 0.17 0.22 0.17 0.06 0.11 0.06 0.00 0.00 
x=-4 0.00 0.00 0.06 0.11 0,11 0.11 0.06 0.11 0.11 0.11 0.00 0.00 0.00 
x=-5 0.00 0,00 0.00 0.06 0.11 0.11 0.11 0.06 	 0.11 0.00 0.0() 0.00 0.00 

x=-6 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.06 0.00 0.00 0.00 0.00 0.00 

x=-7 0.00 0.00 0.00 	 0.00 0.00 0.00 0.00 0.00 0.00 	 0.00 0.00 0.00 0.00 

x=-8 0.00 0.00 0,00 0.00 0.00 	 0.00 0.00 0.00 0.00 0.00 0.00 	 0.00 0.00 
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Table 3.4 Correlation between letter "A" and shifted letter "A" 

y=6 y=5 y=4 y=3 y=2 y=1 y=0 y=-1 y=-2 y=-3 y=-4  y=-5 y=-6 

x=8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
x=7 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00  0.00 
x=6 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.00 0.06 0.06 0.06 0.00 0.00 
x=5 0.00 0.00 0.00 0.06 0.06 0.06 0.12 0.19 0.12 0.06 0.06 0.06 0.00 
x=4 0.00 0.00 0.00 0.12 0.06 0.12 0.12 0.38 0.12 0.12 0.06 0.12 0.00 
x=3 0.00 0.00 0.00 0.19 0.19 0.19 0.19 0.38 	1  0.19 0.19 0.19 0.19 0.00 
x=2 0.00 0.00 0.00 0.25 0.19 0.12 0.25 0.50 0.25 0.12 0.19 0.25 0.00 
x=1 0.00 0.00 0.00 0.31 0.12 0,25 0.25 1.00 0.25 0.25 0.12 0.31 0.00 
x=0 0.00 0.00 0.00 0.25 0.19 0.12 0.25 0.50 0.25 0.12 0.19 0.25 0.00 
x=-1 0.00 0.00 0.00 0.19 0.19 0.19 0.19 0.38 0.19 0.19 0.19 0.19 0.00 

x=-2 0.00 0.00 0.00 0.12 0.06 0.12 0.12 0.38 0.12 0.12 0.06 0.12 0.00 

x=-3 0.00 0.00 0.00 0.06 0.06 0.06 0.12 0.19 0.12 0.06 0.06 0.06 0.00 

x=-4 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.00 0.06 0.06 0.06 0.00 0.00 

x=-5 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 

 
0.00 

x=-6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

x=-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 

x=-8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3.5 Shift-Invariant Modified Kohonen Network 

In the Kohonen network, the square of the Euclidean distance [27] (referred to as the 

Euclidean distance measure in the rest of this thesis) is used to measure the distances 

between an input vector x and various weight vectors w in both the learning and 

classification processes: 

(3.13) 

where j is an index for neurons in the Kohonen neuron layer, x, and 	are the ith 

components of x and w j  respectively. It works effectively when there is no relative shift 

between the input image pattern x and weight pattern w j. However, in the case when 

some shift does happen, this measure is not suitable. To see this, consider a simple 

example shown in Fig. 3.4 There the letter "A", the shifted letter "A" (1 pixel shift both 

horizontally and vertically), and the letter "B" are all shown with a dimension of 9x7. 
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These three binary images are normalized such that the sum of square of all the intensity 

values equals to 1. Under this circumstances, the Euclidean distance measure between 

letter "A" and its shifted letter "A" is as large as 1.500, whereas the distance between 

letter "A" and "B" is 0.994. Now refer to Table 1. Note that the Euclidean distance 

measure is zero when two patterns are identical. From this example, we see that the 

Euclidean distance measure between an object image and its shifted version is larger than 

that between two different object images. This is quite different from what the human 

vision system (HVS) perceives. In recognition, it is natural for the HVS to consider an 

object in an image and its shifted version in another to be identical. Obviously, it is using 

the Euclidean distance measure that causes this shift-variant problem. In order to make a 

neural network work in a more similar way to the HVS, we propose to use a 2-D 

correlation function to replace the Euclidean distance measure in the Kohonen network. 

The 2-D correlation function proposed in our work is defined as follows: 

(3.14) 

where f (m,n) is an unknown input pattern array and g(m,n) is a reference pattern or 

template array. Both of them are of P x Q. It is assumed that f (m,n) and g(m,n) are equal 

to 0 if m P or m  < 0, or n 	Q or n < 0, —(P-1)≤x≤P-1 and -(Q-1)≤y≤Q-1. The 

correlation is utilized to evaluate the match between an unknown pattern and a reference 

pattern. Calculating the correlation defined in (3.14) for all the possible (x, y) is 

equivalent to shifting the reference pattern all over the possible locations on the unknown 

pattern and find the similarity measure. During the process, if and only if the two patterns 

are identical and overlapped, f o g yields the largest possible correlation value 1. 
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Otherwise, the correlation between any two different patterns cannot reach this maximum 

value, as shown in Table 3.1. As a result, we can determine if the input pattern is identical 

to or is a shifted version of the reference pattern. That is, we can achieve the shift-

invariant capability in recognition. Furthermore, if f(m,n) is a shifted version of g(m,n), 

the relative position (x, y) between f and g can be found. However, this is not of direct 

interest in this recognition process. 

Network learning: The network we used is of the same structure as a conventional 

Kohonen network. The input buffer layer is of P x Q, which is connected to the input 

image f (m,n). The neuron layer consists of S nodes, each of which is connected to the 

input buffer layer through weights w, (m, n) where j = 0, 1, 2, ..., S — 1 and m, n are 

spatial coordinates of pixels in the input image. In the learning, only the original patterns 

are required as input to the network. We do not input any shifted patterns to the network 

in the learning in order to minimize the number of patterns the neural network needs to 

memorize, thus decreasing the size of the neuron layer. The network learning algorithm 

consists of the following five steps: initialization, input, correlation, winner selection and 

weights update. They are the same as that for the conventional Kohonen network [23] 

except that in correlation, the Euclidean distance measure in (3.13) is replaced by the 

correlation defined in (3.14) with x and y equal to 0. The learning process continues until 

the correlation values between all the input patterns and their respective weight 

arrays, f o wj , satisfy a certain accuracy criterion. The criterion value, α, is set to a 

number close to 1. That is, α=1-β, where β is a small positive number. In our 

experiments, we let 0.0l >=β>=0.001. 
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Network classification: In the letter recognition, a part of which has been shown in Fig. 

3.4, the correlation values between the input pattern f (m,n) and the jth weight 

array w j (m,n) , j = 1,2,...,S-1, is calculated using (2) with g(m, n) replaced by w1(m,n) 

Nodej corresponding to the maximum correlation arg max{f (x, y) 0 w j(x ,y)} is selected 

as the winner of the network. The unknown input image pattern is then classified as the 

pattern class represented by the jth node. 

Experimental results and discussion: In the experiments, all the capital English letters A, 

B, C 	Z and numeric characters 0, 1, 	9 form a set of training image patterns. The 

results show that in the pattern recognition, the proposed neural network outperforms the 

original Kohonen network in terms of shift-invariant classification capability. That is, our 

network successfully clusters letter "A" and shifted letter "A", shown in Figure 3.4, as the 

same pattern. Other images and their respective shifted versions are also correctly 

recognized as the same pattern class. 

Figure 3.5 Maximum shifting with sx  and sy  equal to 3 

By comparing (3.13) with (3.14), we observe that more computation is required 

for the correlation than for the Euclidean distance measure, especially when the shift 

quantities x and y are large. However, in practice, it is not necessary to compute the 
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correlation all over the theoretical range of —(P-1) ≤x ≤P-1 and -(Q-1) ≤y ≤Q-1 as defined 

in (3.14). Instead, the computation in (3.14) is only required to be conducted within a 

range of 	 and —sy 	≤y ≤sy, where sx ,sy  are the expected maximum horizontal 

and vertical shifts of the object in an image, as shown in Fig. 3.5. Usually sx  ands,. are 

much smaller than P and Q, respectively. As a result, the time spent in correlation 

calculation does not increase drastically. To avoid largest  and s y , it is recommended that 

some pre-processing techniques be used to make sure that the unknown shifted image 

patterns are located within a reasonable range. These techniques have been developed in 

our research on digital gate symbol recognition and will be discussed in other 

publications. 

Because the proposed network is shift-invariant, the shifted image patterns are no 

longer-  different pattern categories. Consequently, the number of neurons are decreased 

remarkably. if we assume that one extra node in the Kohonen neuron layer is needed for 

each horizontal and vertical shifted pattern, and N is the number of categories the network 

is expected to classify, then the total reduction in neurons by using our proposed network 

is: N • [(2sx, +1) . (2sy +1) —1]. 

3.6 Rotation-Invariant Implementation 

The proposed Kohonen network is capable of recognizing an image pattern rotated by 

90°xi, 1=0, 1, 2, 3. See Figure 3.6. 
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Figure 3.6 Rotation-invariant recognition of letter "A" with 0°, 90°, 180°, 270° 

To achieve this type of rotation-invariance, we simply rotate wj  (m, n) array by the same 

degree in the recognition procedure. This capability is useful in recognizing the digital 

gate symbols and characters in electronic drawings. In the electronic drawings, the gate 

symbols and characters may be in different orientation, which is 90°, 180°,or 270°rotation 

from the original form. The training of this shift-invariant Kohonen neural network is 

same as that of the shift-invariant network. We do not input any rotated patterns but the 

patterns with 0° to the network in the training in order to minimize the number of patterns 

the neural network needs to memorize, thus decreasing the size of the neuron layer. In the 

classification, the weight arrays are rotated instead of rotating the input pattern. Then, 

calculate the correlation between the input and the weight arrays. Finally pick up the 

largest correlation value which satisfies accuracy criterion. This value corresponds to the 
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found input pattern. As a result, the rotation-invariant capability is achieved while no 

additional neurons in the Kohonen neuron layer are increased. The total neuron reduction 

compares with the conventional Kohonen neural network with the same capability is 4 

times N [(2 + 1) 
	

+1) —1] . 

3.7 Summary 

The Euclidean distance measure is widely used in the Kohonen. neural network which 

cannot classify an image pattern and its shifted version into the same category. En this 

chapter, a modified Kohonen neuron network using a 2-D correlation, its training and 

classification procedures are presented. Both the theoretical analysis and the experimental 

results demonstrate its shift-invariant capability in image pattern recognition. As a result, 

the modified Kohonen network and any subsequent network can be significantly 

simplified. It is also shown that the modified Kohonen network even possesses some 

limited (i.e., for 90°, 180°, 270° only) rotation-invariant recognition ability. This 

advancement is achieved at the expense of more computation. However, when the 

translation is not very large (which can be assured by using some pre-processing 

techniques), this increase in computation is minor. 



CHAPTER 4 

FEEDFORWARD NEURAL NETWORK WITH 
BACK-PROPAGATION LEARNING 

4.1 Introduction 

Since 1957, when psychologist Frank Rosenblatt proposed the "Perceptron" [41-47], a 

pattern recognition device with learning capabilities, the hierarchical neural network has 

been the most widely studied form of network structure. A hierarchical neural network is 

one that links multiple neurons together hierarchically. The special characteristic of this 

type of network is its simple dynamics. That is, when a signal is input into the input layer, 

it is propagated to the next layer by the interconnections between the neurons. Simple 

processing is performed on this signal by the neurons of the receiving layer prior to its 

being propagated on to the next layer. This process is repeated until the signal reaches the 

output layer completing the processing process for that signal. 

The manner in which the various neurons in the hidden layers process the input 

signal will determine the kind of output signal it is transformed. Then hierarchical 

network dynamics are determined by the weight and threshold parameters of each of their 

units. If input signals can be transformed to the proper output signals by adjusting these 

parameters, then hierarchical networks can be used effectively to perform information 

processing. 

Since it is difficult to accurately determine multiple parameter values, a learning 

method is employed. This involves creating a network that randomly determines 

parameter values. This network is then used to carry out input-to-output transformations 

for actual problems. The correct final parameters are obtained by properly modifying the 

47 
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parameters in accordance with the errors that the network makes in the process. Quite a 

few such learning methods have been proposed. Probably the most representative of these 

is the error back-propagation learning method [48-52] proposed by D. E. Rumelhart et al. 

in 1986. This learning method has played a major role in the recent neural network 

development. 

In our system, we used back-propagation algorithm for the feed-forward neural 

network. In the next several sections, we will introduce perceptrons, multilayer neural 

network, its designing, and the back-propagation algorithm. We mainly focus on the 

structure of this network: How many layer will it be, and how many nodes should be on 

each layer? Because there is no specific answer to these problems, we selected to use 

simulation method to get a better answer. The simulation results will be shown. 

4.1.1 Artificial Neuron: Perceptron 

Figure 4.1 Percceptron 

Perceptron (see Figure 4.1 ) is a basic element of the feed-forward neural network. It is 

originated by Rosenblatt in 1957, which caused significant excitement among researches 

of pattern recognition theory. The reason for the great interest in perceptron was 
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development of mathematical proofs showing that perceptrons, when trained with linear 

separable [53] training sets, would converge to a solution in a finite number of iterative 

steps. In its basic form, the perceptron learns a linear decision function that categorize 

linearly separable training sets. 

Figure 4.1 shows schematically the proceptron model for two pattern classes. The 

response of this basic device is based on a weighted sum of its inputs, that is, 

which is a linear decision function with respect to the components of the pattern vectors. 

The coefficients wi, i =1, 	n, n + 1, called weights, modify the inputs before they are 

summed and fed into the threshold element. In this sense, weights are analogous to 

synapses in the human neural system. The function that maps the output of the summing 

junction into the final output of the device sometimes is called the activation function. 

When d(x) > 0, the threshold element causes the output of the perceptron to be +I, 

indicating that the pattern x was recognized as belonging to class w 1  . The reverse is true 

when d(x) < 0. When d(x) = 0, x lies on the decision surface separating the two pattern 

classes, giving an indeterminate condition. The decision boundary implemented by the 

perceptron is obtained by setting equation 4.lequal to zero: 

(4.2) 

(4.3) 

which is the equation of a hyperplane in n dimensional pattern space. Geometrically, the 

first n coefficients establish the orientation of the hyperplane. Whereas the last 
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coefficient, wn+ 1  =0, the hyperplane goes through the origin of the pattern space. 

Similarly, if wj  = 0, the hyperplane is parallel to the x1  axis, 

The output of the threshold element in Figure 4.1 depends on the sign of' d(x). 

Instead of testing the entire function to determine whether it is positive or negative, we 

could test the summation part of equation (4.1) against the term wn+1, in which case, the 

output of the system would be 

1=1 

(4.4) 

Another formulation commonly found in practice is to augment the pattern vectors 

by appending an additional (n +1)st element, which is always equal to 1, regardless of 

class membership. That is, an augmented pattern vector y is created from a pattern vector 

x by letting yi  = xi, 	i = 1, n, and appending the additional element yn+1 =1. Equation 

(4.1) then becomes 

where y=(y  1, y2,• • • •yn, 1)7  is now an augmented pattern vector, and w = (w1, w2,• • • •, wn, 

wn+1)T  is called the weight vector. This expression is usually more convenient in terms of 

notation. 

In the elementary perceptron, there are no hidden neurons. Consequently, it cannot 

classify input patterns that are not linearly separable. However, non-linearly separable 

[54] patterns are of common occurrence. For example, it arises in the XOR problem, 

which may be viewed as a special case of a more general problem. In the XOR problem, 
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we need consider only the four corners of the unit square that correspond to the input of 

patterns (0,0), (0,1), (1,1), and (1,0). The first and the third input patterns are in class 0, as 

shown by 0 XOR 0 = 0, and 1 XOR 1 = 0. The input patterns (0,0) and (1,1) arc at the 

opposite corners of the unit square, and they produce the identical output 0. On the other 

hand, the input patterns (0,1) and (1,0) are also at opposite corners of the square, but they 

are in class 1, as shown by 0 XOR 1 = 1 and 1 XOR 0 = 1. 

We know that the use of a single neuron with two inputs results in a straight line 

for decision boundary in the input space. For all points on one side of this line, the neuron 

outputs 1, while for all points on the other side of the line, it outputs 0. The position and 

orientation of the line in the input space are determined by the weights of the neuron 

connected to the input nodes, and the threshold applied to the neuron. it is clear that we 

cannot construct a straight line for a decision boundary so that (0,0) and (1,1) lie in one 

decision region. Namely, an elementary perceptron cannot solve the XOR problem. 

4.1.2 Multilayer Perceptrons 

The perceptron learning rule [55] of Frank Rosenblatt were designed to train single-layer 

proceptrons. As we have discussed in the last section, these single-layer perceptrons 

suffer from the disadvantage that they are only able to solve linearly separable 

classification problems. For that reason, multilayer artificial networks are used for 

interesting problems that require greater discrimination. The key to these multilayer 

networks is the learning algorithms that allow the training of the weights on the hidden 

layers, the layers of neurons that are not directly connected to the inputs or the outputs. 
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Figure 4.2 Three-layer Perceptron 

Figure 4.2 is a three-layer perceptron structure. The nonlinearity normally used is the 

sigmoid. The simplicity of the derivative of the sigmoid provides a nice learning law. The 

reason that only three layers are shown is that three layers were believed to be the most 

required for any arbitrary classification problem. More recently it has been shown by 

Cybenko [56] and others that one hidden layer is sufficient for any arbitrary 

transformation, given enough nodes. Researchers still often use multiple hidden layers 

because they may sometimes provide advantages in quicker learning. 

The reason to use multilayer networks is to allow the formation of complex 

decision regions in the feature space. The key, of course, is a learning algorithm to find 

correct set of weights. The most common algorithm used is called the backward error 
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propagation learning rule, sometimes just "back-propagation". We will discuss it in the 

next section. 

4.2 Back-Propagation Training Algorithm 

Back-propagation is a systematic method for training multilayer artificial neural network. 

It was invented independently by Bryson and Ho [57],Werbos [58], Parker [59], and 

Rumelhart, Hinton and Williams [60]. A closely related approach was proposed by Le 

Cun [61]. The training algorithm is an iterative gradient algorithm designed to minimize 

the mean square error between the actual output of a multilayer feed-forward perceptron 

and the desired output. 

We analyze the delta rule with N nodes on the output layer of a network, the error 

has to be summed over all nodes The idea is to perform a gradient descent on the error 

considered as a function of the weights. All the weights are taken into account for both 

hidden and output nodes. The hidden nodes are in the intermediate layer(s) which we do 

not have direct access to for the purposes of training. The output nodes are the ones which 

tell us the net's response to an input and to which we may show a supervisory or target 

value during training. 

The analysis for the output nodes is the delta rule given in the following equation: 

(4.6) 

where a superscript is introduced to denote which node is being described. Because the 

gradient of the error with respect a weight on the jth node can only be affected by the part 

which contains reference to that node. 
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In order to see clearly, it is useful to split the right hand side of equation (4.6) in 

the following way. The term (tJ — yJ) represents a measure of the error on the jth node. 

The term σ'(a')relates to how quickly (rate of change or slope) the activation can 

change the output (and hence the error). If this is small, then we are on one of the ends of 

the sigmoid and changing the activation won't change the output much. If, however, it is 

large, then we can expect a rapid change for a given change in activation. The factor of 

x/ is related to the amount that the ith input has affected the activation. If it is zero then 

that input cannot be responsible for the error and so the weight change should also be 

zero. If on the other hand, it is large, then the ith input had a large contribution to the 

activation which gave the error and so the weight needs to be changed by a 

correspondingly larger amount. 

To summarize: x; tells us how much the ith input was 'responsible for' the 

activation; σ'(a') tells us how fast the output is changing in response to changes in the 

activation and (t' — y') is the error on the jth node. It is therefore reasonable that the 

product of these gives us something that is a measure of the rate of change (slope) of the 

error with respect to the weight 	.Using these notations, we may combine two of these 

elements as follows: 

(4.7) 

The delta rule for output units may now be written: 

(4.8) 

Consider now, the two layer net, in particular, the kth hidden node. The problem in 

assigning a set of weight changes to this type of node is related to how much influence 
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has this node had on the error. The resulting weight changes will be a result of including 

the right combination of 'responsibility' factors, rates of change and errors in the same 

way that these occurred for the output nodes. This however does not give insight. The 

purpose is just to see on where the resulting formula comes from. For the ith input to the 

hidden node, the value of the input will play a similar role as before so we might write: 

(4.9) 

and the task now is to find what goes into the factor δk . For this, let us consider just a 

single output from the hidden node to an output node. 

Figure 4.3 Diagram of kth hidden and jth output nodes 

The effect this node has on the error depends on two things: first, how much it can 

influence the output of node j and, via this, how the output of node j affects the error. The 

more k can affect j, the greater the effect to be on the error, but this will only be 

significant ifj is having some effect on the error at its output. The contribution that node j 

makes towards the error is, of course, expressed in the 'delta', for that node δ' . The 

influence that k has on j is given by the weight wk' . Therefore we may expect the find the 

product wkJ δJ in the expression for δk . However, the kth node may be giving output to 

several nodes and so the contributions to the error from all of these must be taken into 
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account. Thus, we must sum these products over all j. Finally, the factor σ'(ak  ) will occur 

for exactly the same reasons that it did for the output nodes. This results in the following 

expression for δk : 

(4.10) 

where l k  is the set of nodes which take an input from the hidden node k. This set is called 

the fan-out of k. Using this in equation (4.9) gives us a means for calculating the weight 

changes for the hidden nodes. 

Next we develop a training algorithm using the rules we have developed. This 

basic iteration is as follows: 

Repeat 

for each training pattern 

train on that pattern 

end for loop 

until the error is acceptable low 

Before examining the step 'train on a pattern' a couple of points need comment. First, it is 

implied in the algorithm defined above that there is a fixed presentation sequence of 

training vectors. The alternative is to present vectors randomly. If we were to imagine our 

network in a real learning environment then this second option is more realistic. 

Empirically, however, it is often found that training is faster if the vectors are ordered in 

some way and that order is maintained in presentation. Second, what is an acceptable 

error? One possible definition for Boolean training sets might be to ensure that all output 

nodes had responses in the correct one of the pair of intervals [0, 0.1], [0.9, 1] as defined 
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by the target, since then, if we were to replace the sigmoid with a hard limiting threshold, 

the 'correct' response would be guaranteed. Another might simply prescribe sonic low 

value like 0.001. Whatever approach is used, one has to interpret the significance of the 

criterion. 

The main step of training on a pattern may now be expanded into the following steps. 

(1) Present the pattern at the input layer. 

(2) Let the hidden units evaluate their output using the pattern. 

(3) Let the output units evaluate their output using the result in step (2) from the 

hidden units. 

The steps (1) ~ (3) are collectively known as the forward pass. 

(4) Apply the target pattern to the output layer. 

(5) Calculate the δ's on the output nodes according to equation (4.7). 

(6) Train each output node using gradient descent equation (4.8). 

(7) For each hidden node, calculate its δ according to equation (4.10). 

(8) For each hidden node, use the δ found in step (7) to train according to gradient 

descent equation (4.9). 

Steps (4)—(8) are collectively known as the backward pass 

Step (7) involves propagating the δ's from those output nodes in the hidden unit's 

fan-out back towards this node so that it can process them. This is where the name of the 

algorithm comes from. 
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4.3 The Network Capability and Us Structure 

Multilayer perceptrons are feed-forward with one or more layers of nodes between the 

input and output nodes. These additional layers contain hidden units or nodes that are not 

directly connected to both the input and output nodes. A three-layer perceptron with two 

layers of hidden units is shown in Figure 4.2. Mulitilayer perceptrons overcome many of 

the limitations of single-layer perceptrons, but were generally not used in the past because 

effective training algorithms were not available. This recently changed with the 

development of new training algorithms [61]. Although it cannot be proven that these 

algorithms converge as with single layer perceptrons, they have been shown to be 

successful for many problems of interest [61]. 

The capabilities of multilayer perceptrons come from the nonlinearities used 

within nodes. If nodes were linear elements, then a single-layer net with appropriately 

chosen weights could exactly duplicate those calculations performed by any multilayer 

net. The capabilities of perceptrons with one, two, and three layers that use hard-limiting 

nonliearties are illustrated in Figure. 4.4. The second column in this figure indicates the 

types of decision regions that can be formed with different nets. The next two columns 

present examples of decision regions which be formed for the exclusive OR problem and 

a problem with meshed regions. The rightmost column gives examples of the most 

general  decision regions that can be formed. 

We have known that a single-layer perceptron forms halfplane decision regions. A 

two-layer perceptron forms any, possibly unbounded, convex region in the space spanned 

the inputs. Such regions include convex polygons sometimes called convex hulls, and the 

unbounded convex regions shown in the middle row of Figure 4.4. Here the term convex 
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means that any line joining points on the border of a region goes only through points 

within that region. Convex regions are formed from intersections of the half-plane regions 

formed by each node in the first layer of the multilayer perceptron. Each node in the first 

layer behaves like a single-layer perceptron and a "high" output only for points on one 

side of the hyperplane formed by its weights and offset. If weights to an output node from 

N1  first-layer nodes are 1.0, and the threshold in the output node is Ni  - c where 0<c <I, 

then the output node will be "high" only if the outputs of all first-layer nodes are "high". 

This corresponds to performing a logical AND operation in the output node and results in 

a final decision region that is intersection of all the half-plane regions formed in the first 

layer. intersections of such half planes form convex regions as described above. These 

convex regions have at the most as many sides as there are nodes in the first layer. 

Figure 4.4 Type of decision regions of different layer network (Adapted from [42]) 
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This analysis provides some insight into the problem of selecting the number of  

nodes to use in a two-layer perceptron. The number of nodes must be large enough to 

form a decision region that is as complex as is required by a given problem. It must not be 

so large that the many weights required can not be reliably estimated from the available 

training data. For example, two nodes are sufficient to solve the exclusive OR problem in 

the second row of Figure 4.4. No number of nodes, however, can separate the meshed 

class regions in Figure 4.4 with a two-layer perceptron. 

A three-layer perceptron can form arbitrarily complex decision regions and can 

separate the meshed classes as shown in the bottom of Figure 4.4. It can form regions as 

complex as those formed using mixture distributions and nearest-neighbor classifiers. 

This can be proven by construction. The proof depends on partitioning the desired 

decision region into small hypercubes (squares when there are two inputs). Each 

hypercube requires 2N nodes in the first layer (four nodes when there are two inputs), one 

for each side of the hypercude, and one node in the second layer that takes the logical 

AND of the output from the first layer nodes. The outputs of second-layer nodes will be 

"high" only for inputs within each hypercube. Hypercubes are assigned to the proper 

decision regions by connecting the output of each second-layer node only to the output 

node corresponding to the decision region that nodes hypercube is in and performing a 

logic OR operation in each output node. A logical OR operation will be performed if 

these connection weights from second hidden layer to the output layer are one and 

thresholds in the output nodes are 0.5. This construction procedure can be generalized to 
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use arbitrarily shaped convex regions instead of small hypercubes and is capable of 

generating the disconnected and non-convex regions shown at the bottom of Figure 4.4  

The above analysis demonstrates that no more than three layers are required in 

perceptron-like feed-forward networks because a three-layer net can generate arbitrarily 

complex decision regions. 

4.4 Layers and Nodes Specification 

In this section, we involve the design of the neural network for our specific purpose. This 

network should be able to recognize eight different gate symbols (shown in APPENDIX 

B): AND, OR, XOR, NAND, NOR, XNOR, NOT, and Buffer. Therefore, the output layer 

of the network should have 8 neurons corresponding to those pattern classes. 

From the discussion in the last section, we know that a three-layer network .can 

implement decision surfaces of arbitrary complexity. Therefore we selected a 3-layer 

structure in the system (refer to APPENDIX C). 

The first layer is a Kohonen neural network. Its input buffer layer is identical to 

the size of input gate symbol patterns, which is of 32x32(1024 pixels). The size of the 

Kohonen neuron layer is selected 64 in order to make the classification space large 

enough. This is 8 times of the gate symbol type. 

The third layer is the last ayer. 8 neurons are specified in this layer corresponding 

to the number of pattern classes the network desired to recognize. 

As for the number of neurons in the second layer (hidden layer), it is not easy to 

decide at the time when we began designing the neural network. Some people took the 

average number [10] of neurons in the input and output layers. Other people took the 
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square root [66] of that number. Still other people [33] suggested to make the number of 

neurons equal to about two-thirds of the number in the input layer. However, most of 

them were by experience. In fact, the number of neurons in the hidden layer may change 

the training time as well as the ability of the neural network to generalize. Often there is a 

wide range in the number of neurons in the hidden layer that can be used successfully. 

Therefore, we decided to utilize an optimization methodology for determining the optimal 

number of neurons in the hidden layer. 

Usually, increasing the size of the hidden layer improves the networks accuracy 

on the training set. But decreasing the size of the hidden layer generally improves 

generalization and reduces the processing time. So an optimal size can be attained by a 

balance between the objectives of the accuracy and generation for the particular 

application. 

We did a series of simulations to obtain the optimal size of the hidden layer. The 

network we worked on is a two layer feed-forward network. The input buffer is of 64 

node, which comes from the output of the Kohonen neural network. The output layer is a 

8-node layer corresponding to 8 different gate symbols we want to recognize. 

The hidden layer nodes we selected for the simulation were 10, 15, 20, 25, 30, 3 

40 ;45, 50, 55, 60. 65. The simulation results are shown in Figure 4.5 — Figure 4.16. In the 

simulation, we used 40 patterns in the network training for each 8 different gate symbols, 

they were 320 in all. We also used 4 patterns in the testing for each 8 different gate 

symbols, they were 32 in all. 

In the simulation, we randomly (not sequentially) presented the training patterns 

to the input layer to train the network. The iterative times were 200, 400, 800, 1,600, 
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4,000, 10,000 and 20,000, respectively. Back-propagation algorithm was used to adjusted 

all the weights. Then using these same patterns to test the percentage correct recognition 

rate, shown in each simulation result in Figure 4.5 — 4.16. Finally we input the testing 

patterns which had never appeared in the training to test the generalization capability of 

the network. 



Figure 4.5 Simulation Result for 10 Nodes in the Hidden Layer 

Figure 4.6 Simulation Result for 15 Nodes in the Hidden Layer 
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Figure 4.7 Simulation Result for 20 Nodes in the Hidden Layer 
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Figure 4.8 Simulation Result for 25 Nodes in the Hidden Layer 



Figure 4.9 Simulation Result for 30 Nodes in the Hidden Layer 
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Figure 4.10 Simulation Result for 35 Nodes in the Hidden Layer 



Figure 4.11 Simulation Result for 40 Nodes in the Hidden Layer 
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Figure 4.12 Simulation Result for 45 Nodes in the Hidden Layer 



Figure 4.13 Simulation Result for 50 Nodes in the Hidden Layer 

Figure 4.14 Simulation Result for 55 Nodes in the Hidden Layer 
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Figure 4.15 Simulation Result For 60 Nodes in the Hidden Layer 
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Figure 4.16 Simulation Result for 65 Nodes in the Hidden Layer 
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From these simulations, we can find that when we increase the nodes in the 

hidden layer, both the correction rate of the training set and the testing set increase, see 

Figure 4.5 — 4.11. This shows the importance of neurons as the basic unit to memorize 

what they have learned in the learning. In these figures, we can also find that the more 

times they learn, the better capability they have. 

With the increase of the nodes in the hidden layer, the recognition accuracy and 

the generalization capability increase to the maximum 100% in Figure 4.11. Then., when 

the nodes are further increased, the correct recognition rate for the training set keeps the 

same, while that for testing set goes down. Refer to Figure 4.12 — 4.16. This indicates 

that with the further increase of the hidden nodes, the recognition accuracy does not 

change but the generalization capability decreases. 

Based on the simulation, we tested the network with the hidden node around 40 

and finally found the optimal point is that hidden nodes are equal to 42 in our specific 

system. 

4.5 Summary 

The number of neurons in the input and output layer are determined by the nature of the 

problem. In our neural network recognition system, we utilized a 64—node (output of the 

Kohonen network) as an input and it maps the inputs into 8 categories, thus 8 neurons in 

the output layer. Determining the proper number of the neurons for the hidden layer has 

to be accomplished through simulation. Too few neurons in the hidden layer prevent it 

from correctly mapping inputs to outputs while too many impede generalization and 

increase training and processing time. Too many neurons may allow the network to 
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memorize the patterns presented to it without extracting the pertinent features for 

generalization. Thus, when presented with new patterns, the network is unable to process 

them properly, because it has not discovered the underlying principles of the system. 

From the simulation, 42 hidden nodes are selected. 



CHAPTER 5 

TRAINING THE NETWORK WITH NOISE 

Apply a little noise to the training set will generally produce a network that is robust to 

noise inputs. Although a network trained with no noise may still do well with noise inputs 

in practice, the one trained with an appropriate level of noise will do much better. In this 

chapter, we discuss the training with noise for the improvement of our neural network. 

5.1 Generalization of the Neural Network 

Generalization capability of a neural network is that it makes predictions for cases that 

are not. in the training set. In most cases, the multilayer network is trained with a finite 

number of patterns. This training set is normally representative of a much larger class of 

possible input-output pairs. It is important that the network successfully generalize what it 

has learned to the total population. Consider the situation in pattern space shown in 

Figure 5.1. 

Figure 5.1 Two-Class Classification 
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The training pattern are shown by solid dots and there are two classes A and B. The 

circles in each class represent vectors which were not shown during training; these are 

test patterns. Representatives from each class of test data have been classified correctly, 

even though they were not seen during the training. This is the power of the network 

approach and one of the main reasons for using it. The net is said to have generalized 

from the training data. 

Noise in the actual data is never a good thing, since it limits the accuracy of  

generalization that can be achieved no matter how extensive the training set is. On the 

other hand, injecting artificial noise into the inputs during training is one of several ways 

to improve generalization when you have a small training set. Certain assumptions about 

noise are necessary for theoretical results. Usually, the noise distribution is assumed to 

have zero mean and finite variance. Noise in the inputs limits the accuracy of 

generalization, but in a more complicated way than does noise in the targets. In a region 

of the input space where the function being learned is fairly flat, input noise will have 

little effect. In regions where that function is steep, input noise can degrade generalization 

severely, Furthermore, if the target function isy = f (x) but you observe noisy inputs x + 

d, you cannot obtain an arbitrarily accurate estimate of f (x) given x + d, no matter how 

large a training set you use. 

5.2 Training the NeuralNetwork with Uniform Distributed Noise 

We applied some random noise which is uniformly distributed on the image patterns 

either to test or re-train the neural network. By testing the neural network, we may know 

the performance of a neural network. In the training, by adding some noise, the 
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generalization capability of a neural network will improve to some extent. In other words, 

If we have two cases with similar inputs, the desired outputs will usually be similar. That 

means we can take any training case and generate new training cases by adding small 

amounts of noise to the inputs. As long as the amount of noise is sufficiently small, we 

can assume that the desired output will not change enough to be of any consequence, so 

we can just use the same target value. The more training patterns are expected. This is 

one of the convenient ways to improve training. Obviously, too much noise will 

obviously produce garbage, while too little noise will have little effect. 

For the performance testing, we generated 20 different noise level patterns for 

each 8 gate symbols, 160 in all. The noise levels are 2.5%, 5.0%, 7.5%, 10.0%, 12.5%, 

15.0%, 17.5%, 20.0%, 30.0% and 40.0%, respectively. The noise is uniformly distributed 

over the each pattern. The neural network trained with noise free patterns was tested by 

the above noise patterns. The result is shown in Figure 5.2. 

Then we generated noise pattern set for the training. Each gate symbols were 

superposed with different level uniform distributed noise. After the training by each 

level's noise, the testing sets were used to measure the performance of the network. The 

results are shown in Figure 5.3. We can find that the performance gets better and better 

with the noise level get higher until 10.0% level. Noise of 12.5% level makes the network 

performance become worse, refer to Figure 5.3. This indicates that the network cannot 

adapt itself sufficiently to the larger variations at the higher noise levels with the given 

training patterns. 



Figure 5.2 Uniform Distributed Noise Testing in Noise-Free Weight Network 

Figure 5.3 Training with Uniform Distributed Noise 
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5.3 Training the Neural Network with 8-Neighboring Noise 

Unlike the training with the uniform distributed noise patterns in the previous section, we 

generated another kind of noise pattern which was superposed to the noise-free image 

patterns in the training. This type of noise pattern is quite similar to the distortion 

generated by the scanner when an electronic drawing is scanned. 

We generated those patterns as follows. Each contour pixel in a noise-free shape 

was assigned a probability P of retaining its original coordinate in the image plane a 

probability R =1 — P of being randomly assigned to the coordinates of one of its eight 

neighboring pixels. The degree of noise increased by decreasing P (that is, increasing R). 

We generated 2 sets of noisy data. The first consisted of 20 noisy patterns of each class 

generated by 2.5%, 5.0%, 7.5%, 10.0%, 12.5%, 15.0%, 17.5%, 20.0%, 30.0% and 40.0%, 

giving a total of 160 patterns. This set, called the testing set, which was used to establish 

system performance after training. 

We also generated several noisy data sets for training the system. The First set 

consisted of 10 samples for each class, generated by using R = 0, where I? denotes a value 

of R used to generate training data. Starting with the weight vectors obtained in the noise-

free training, the system was allowed to go through a learning sequence with the new data 

set. Because R = 0 implies no noise, this retraining was an extension of the earlier, noise-

free training. Using the resulting weighing learned in this manner, the network was 

subjected to the test data set yielding the results shown by the curve labeled R = 0 in 

Figure 5.4. The number of correctly classified patterns divided by the total number of 

patterns tested gives the recognition rate, which is a measure commonly used to establish 

network performance. 



77 

Then we start with the weight vectors learned by using the data generated with R 

= 0, the system was retrained with a noisy data set generated with R = 2.5%. The 

recognition performance was then established by running the test samples through the 

system again with the new weight vectors. Note the significant improvement in 

performance. Figure 5.4 shows the results obtained by continuing this retraining and 

retesting procedure for R =0.5%, 7.5%, 10.0% and 12.5%. As expected if the system is 

learning properly, the recognition rate from the set increased as the value of R increased, 

because the system was being trained with noisier data for higher values of R. The one 

exception in Figure 5.5 is the result for 1? = 12.5%. The reason is the small number of 

samples used to train the system. That is, the network was not able to adapt itself 

sufficiently to the larger variations in shape at higher noise levels with the number of 

samples used. 

Figure 5.4 8-Neighbor Noise Testing in Noise-Free Weight network 
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Figure 5.5 Training with 8-Neighbor Noise 



CHAPTER 6 

SUMMARY 

This chapter gives a summary of our major contributions in this research, a review o 

some unsolved issues and a discussion of some possible directions for the future research. 

6.1 Major Contributions 

Neural network technique has been found to be a powerful tool in pattern recognition. I t 

captures associations or discovers regularities with a set of patterns, where the types, 

number of variables or diversity of the data are very great, the relationships between 

variables are vaguely understood, or the relationships are difficult to describe adequately 

w► th conventional approaches. 

In the research and the system (refer to APPENDIX C) design aiming at 

recognizing the digital gate symbols and characters in the electronic drawings, we have 

proposed: (1) A shift-invariant and limited rotation-invariant modified Kohonen neural 

network. (2) An effective approach to optimize the structure of the back-propagation 

neural network. ( ) Candidate searching and pre-processing algorithms for the 

enhancement of the electronic drawings' recognition. 

The Kohonen neural network is a type of unsupervised network. It has been 

successfully applied to speech recognition and used as a pre-processing layer, part of a 

neural network layer for image recognition In our research, we found that when an object 

in an image is shifted horizontally and/or vertically, the Kohonen neural network cannot 

readily classify the original image pattern and its shifted version into the same category. 

Yet, this shift-invariant capability in image pattern recognition is crucial in m y 
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applications. For this purpose, we developed a shift-invariant modified Kohonen network 

with a 2-D correlation. As a result, the dimension of this modified Kohonen neuron layer 

can be reduced dramatically compared with the conventional Kohonen network with the 

same capability. Moreover, the size of its subsequent neural network can be decreased 

significantly as well. An analysis and the system performance reveal that when the shift 

of an image pattern is not large, and the rotation is only nx90°, (n=1 2, and 3) the shift-

invariant and limited rotation-invariant modified Kohonen neural network is superior to 

the conventional Kohonen neural network. This new type of Kohonen neural network has 

been used successfully in our automatic analysis and recognition system. 

The combination of Kohonen neural network and back-propagation feed-forward 

neural network is proved to be a better way to minimize the dimensionality of the overall 

recognition system. The optimized back-propagation neural network developed by us 

outperforms the conventional ones designed by experience. Therefore, the size and the 

computation can be minimized by simulation for any specific application. This optimized 

neural network has been proved to combine the good recognition accuracy and better 

generalization capability. 

In order to further reduce the calculation time spent in neural network, pre-

processing algorithm was developed to remove long circuit lines in the electronic 

drawings. Our experiments indicated that it can achieve very high erasing rate up to 90 

percent of "1 pixels. As a result, the candidate searching can be more accurate and fast. 
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6.2 Major Unsolved Issues and Future Research 

Automatic verification [67-70] for the recognition system is a very important issue. Till 

now this problem has not been solved in our system. 

The reliability of an analysis and recognition system is frequently more important 

than the other performance factors. For an automated recognition and interpretation 

system, the rate of correct recognition is usually more important than the speed of 

calculations. Therefore, checking the correctness of recognition becomes the next 

procedure of the processing. Of cause, human power can be used to do this work and 

computer can also assist people to do this work. But is it possible for computers to do this 

work entirely and independently? This is an ultimate aim we are working for. For the first 

step, we hope to use computers to check the correctness of recognition just like we use 

computers to check the spellings in a word processor software. In the checking, wherever 

there is an error detected, computer should tell human beings about it. Human beings may 

then decide to correct it or keep it. It is hoped that all errors in recognition may be 

eliminated. It is expected that the future research in the automatic analysis system will be 

in this area. 



APPENDIX A 

EARLY RESEARCH SURVEY 

There are several techniques that have been used in pattern recognition for decades. They 

are template, feature extraction, segmentation, contour tracking, structure analysis, 

moment, vectorization, decision tree, and conventional neural networks, etc. In certain 

circumstance, these techniques are efficient and convenient for implementation. Several 

researchers and companies have done some remarkable jobs towards the goal of  

automatic recognizing electronics drawing by a computer recognizer. 

1. Conventional Pattern Recognition Techniques 
Used in Electronics Engineering Drawing Recognition 

1.1 Template Matching, Feature Extraction and Decision Tree 

In 1987, a group of researchers at Toshiba Research and Development Center [90] 

developed an automatic circuit diagram reader with loop-structure-based symbol 

recognition. This system has a high-performance logic circuit diagram reader for VLSI-

CAD data input. The basic concept for this design is that almost all logic circuit symbols 

include, at least, one loop structure. The component labeling is used to find the loops that 

may represent logical gates. The gate recognition is achieved by two processes: symbol 

segmentation and symbol identification. In particular, symbol identification is 

implemented by a hybrid method, which uses heuristics to mediate image processing 

techniques between template matching and feature extraction. The entire symbol 

recognition process is carried out under a decision tree control strategy. After the loops 
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have been extracted, they are preprocessed to a normal size, while a set of templates is 

used to match the loops. The recognized loops are either gate components or gate bodies. 

All of the features of a gate are extracted. The decision-tree control strategy is then used 

to judge the extracted features and recompose the specific gate symbol. An Al-size 

drawing can be read within 30 min. with more than 95% recognition accuracy in this 

system. The misrecognition error rate is less than 1%. 

However, there are some limitations in this system. 1) Only drawings with a 

predetermined drawing rule can be recognized. So, there is a limited flexibility of input 

patterns. 2) The processing algorithm is very complicated. A special hardware is designed 

to implement the processing, because using software is very time consuming. 3) The 

recognition accuracy is relatively low when the input patterns are not drawn by 

predetermined rule. 4) If a segmented symbol pattern does not preserve the correct 

topology or is severely smeared with noise, this will lead to misclassify or reject. 

1.2 Contour Tracking, Feature Extracting and Structure Analysis 

In 1990, a group of researchers at Hitachi Ltd reported an automatic recognition of logic-

circuit diagrams [91]. They used the contour extracting technique to extract features such 

as end points, branch points, cross points, corner points and loops. These extracted 

feature components can be used by the system to analyze and recognize the gates on a 

drawing logically. Theoretically this system can be used for recognizing non-standardized 

electronic engineering drawings. However, this system is still very complex. A hardware 

is also required to implement the complicated algorithm. in the experiments, this system 

can not handle practical pattern recognition problems within a satisfied misclassify and 

rejection rate. It is not useful in practical applications yet. By these researcher's 
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comments, more extensive research must be conducted on image processing and image 

understanding technology, and more effective algorithms must be developed for their 

system. 

1.3 Vectorization and Conventional Neural Networks Pattern Recognition 

In 1991, two researchers in the GTX Corporation used vectorization and fuzzy logic to 

recognize the electronics gates as well as conventional neural networks to recognize 

characters [93]. They built a GTX 5000 CAD Conversion System. There are eight 

Motorola 68020 processors and 80 megabytes of RAM in the pattern recognition module 

for the input pattern processing. The processes include: 1) contour tracing, 2) distance 

transforms, 3) line tracking, 4) polygonal segmentation, and 5) thinning. Contour tracing 

tracks the boundary of an object and generates a chain code for it. Other processes are 

used to extract the features of the pattern and to construct the information into a feature 

vector of the pattern. Conventional feed forward neural network with vectorization 

processing is used to recognize the electronic engineering drawing and characters in it. 

There are many limitations of this system. It needs complicated algorithm to 

vectorize the pattern. In order to shorten the processing time, more hardware is needed to 

process the software program. The vectorization processing is very sensitive to the noise. 

Most working drawings are noisy that may result in incorrect vectorization. In genera 

the algorithm relies on fuzzy logical to accommodate the usually noise data. The user may 

exert some degree of control over the sensitivity of this processing by varying the values 

of a small set of tolerance parameters. If the tolerances are set too fine, symbols are 

missed; if too coarse, misclassifications occur. This system has difficulties in vectorizing 

the characters. If the system cannot vectorize the characters correctly, neither fuzzy 
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logical nor conventional feed forward neural network can be used to recognize the 

character correctly. The reason is that the input of the conventional neural networks is the 

vectorized information of the characters. The system recognizing accurate rates are 90% 

between the samples of '5' and 'S' and 98% between the samples of '8' and 'B.' Other 

problems are the recognition of touching and broken characters as well as the lowercase 

characters. The touching characters are defined as that they must be broken apart before 

they can be individually recognized. Lowercase characters present special problem that is 

great number of alphabetic/number ambiguities (for example, numeral "6" versus 

lowercase "bn) and the great importance of relative positioning of characters. It has been 

recommended by these researchers that the future work should be directed to the 

development of more intelligent context processing algorithms with a prior, top-down 

information. 

2. Image Analysis by the Method of Moments 

In 1988, two researchers at University of Wisconsin presented their work about image 

analysis using the method of moments [92]. The advantage of using moments to analyze 

an image is invariant under image translation, scaling, and rotation. They studied the 

regular moment, the lower and higher order moments and addressed some fundamental 

questions, such as image representation ability, noise sensitivity, and information 

redundancy. They found that the higher order moments such as Legendre, Zernik, and 

pseudo-Zernik moments are better than other types of moments in image analysis and 

representation, but the higher order moments are more vulnerable to noise as compared to 

lower order moments. The research result showed that the moment analysis can be used 
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for other image analysis and image representation. However, it performs poorly in pattern 

recognition and very sensitive to the noise. In some cases, its misclassifying and rejecting 

rate is up to 30%. It can not accomplish the task for electronic engineering drawing 

recognition. 

3. Neocognitron 

In 1990, Dr. Kunihiko Fukushima and other researchers presented a neural network 

model of visual pattern recognition called the neocognitron, which was previously 

proposed by Fukushima [94]. It has the capability of recognizing deformation-invariant 

visual pattern. They constructed a pattern recognition system that works with the 

mechanism of the neocognitron. During the simulation, the system is trained to recognize 

35 hand-written alphanumeric characters. The system has a large power of generalization. 

After this system learnt by presenting only a few typical examples of deformed patterns 

(or features), it has enough power to recognize all the deformed versions of patterns that 

might appear during the process of inputting future. Therefore, this system can recognize 

input pattern robustly, with little effect from deformation, changes in size, or shifts in 

position. This system does not require any preprocessing such as normalization of the 

position, size, or deformation of input patterns. The structure of the network is illustrated 

in Figure 1. In Figure 1, each rectangle represents a two-dimensional array of neurons. 

The lowest stage of the network is the input layer, which consists of a two-dimensional 

array of receptor neurons. Each succeeding stage has a layer of neurons called S neurons 

followed by another layer of neurons called C neurons. In the whole neural network, 

layers of S neurons and C neurons are arranged alternately. S neurons are feature- 
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extracting neurons. The C neurons are inserted in the network to allow position error in 

the features. The layer of C neurons at the highest stage is the recognition layer, 

representing the final result of a pattern recognition by the neocognitron. The notation UsI 

and Ucl is used to denote the layers of S neurons and C neurons of the 1 th stage, 

respectively. Each layer of S neurons or C neurons is divided into subgroups, called 

neuron planes, according to the feature to which they respond. The neurons in each 

neuron plan are arranged in a two-dimensional array. After finishing the training, S 

neuron is activated only when a pattern feature is presented at a certain position in the 

input layer. The features that the S neurons extract are determined by training pattern 

given to the input layer. In the higher stages, features that are more global are extracted, 

for example, a part of a training pattern. Each C neuron receives signal from a group of S 

neurons that extract the same feature, but from slightly different positions. The C neuron 

is activated if at least one of these S neurons is active. Hence, the C neuron can get some 

shift invariance. The neocognitron system is trained by supervised learning. The variable 

input connections of the S neuron are reinforced by the training. Their initial values 

before training are all zero. Training is performed step by step from lower stages to the 

higher stages. All of the stages are trained with the same process. As a result of this 

learning, all the S neurons are in a neuron plane work as templates to extract the same 

feature at different locations. The special feature of this neural network is the ability to 

correctly recognize deformed characters, which depends highly on the choice of the 

training pattern set, and its special supervised training procedure. The advantage of the 

features of this neural network is a very short training time as compared to the back-

propagation, training. There are some drawbacks of this neural network. First, the 
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structure of the neural network is large and complex, because, if the input pattern is 

complex, the neural network needs more neuron plans to extract more features of the 

input pattern. Second, although a skillful choice of training patterns can make the 

neocognitron discriminate between similar patterns of different categories, a process of 

constructing a good training pattern set requires very skillful hard human labor with an 

increase in the number of characters to be recognized and the quality of the training 

pattern set will dominate the pattern recognition capability of the neural network. And 

third, the conventional technique of unsupervised learning for the neocognitron [95,96], 

with which all the training processes progress automatically, shows a somewhat lesser 

ability to recognize deformed pattern. It means that the intelligence of this neocognitron 

system is actually a storage of the human intelligence. The machine can not create 

intelligence information by itself. This is the major drawback of this system. 

4. Template Matching and Conventional Neural network 

In 1989, a group of researchers in AT&T Bell Laboratories demonstrated a recognition of 

10 numbers of different post zip code using a neural network [97]. They constructed a 

neural network as a conventional neural network. However, instead of using conventional 

image processes to find the vectorized input pattern features, a set of input feature maps is 

designed and a set of templates is used to extract the features in different positions of the 

input pattern to form a feature vector. A set of templates is designed at attempting to 

remove the main sources of meaningless variation and extract the meaningful 

information. It is known from biological studies [98] that the cat vision system is 

sensitive to certain features that occur in images, particular the lines and the ends of lines. 
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They designed a set of 49 different feature extractor templates for such kind of features. 

The output of each feature template is stored separately. These outputs are called feature 

maps, since they have information about features and their distinct positions in the image. 

It is possible, indeed very likely, that several different features will occur in the same 

place. 

They also designed a preprocessor for scaling and deskewing to normalize the 

original image, and then skeletonization was used to process this normalized image. The 

neural network they used is a two layers neural network. The first layer contains 40 

neurons, each of which receives all information from the 49 feature maps as a feature 

vector. The second layer, the output of the neural network, has 10 neurons. Each neuron 

receives all information from the output of each neuron in the first layer. Each neuron in 

the second layer represents a different post zip code number. This neural network is 

trained by back-propagation process. After training, the performance of the neural 

network shows that, if 14% of the images are rejected as unclassifiable, 1% of the 

remainders are misclassified. If no images are rejected, approximately 6% are 

misclassified. The misclassifying and rejecting rates of the system are still high for a 

practical application. The features extracting templates are the key point for this system. 

The pattern recognition capability of this system depends on the quality of the set of  

templates. To design a good template set, it needs very experienced human effort to 

accomplish this task. 
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5. Weight Sharing Back-Propagation Neural Network (WSBPNN) 

In 1990, a group of researchers of AT&T Bell Laboratories described a neural network 

for Handwritten Digit Recognition [99]. They designed this neural network with highly 

constrained weight sharing neural network architecture. Unlike the previous work on this 

subject [97], this neural network is directly fed with images, rather than feature vectors. 

Thus this neural network shows the ability to deal with large amounts of low level 

information. This neural network is designed at achieving a good generalization. In 

theory, a good generalization can only be obtain by designing a network architecture that 

contains a certain amount of a prior knowledge about the problem [89]. The basic 

principle of the design is to minimize the number of free parameters that must be 

determined by the learning algorithm, without reducing the computational power of the 

network. They use weight sharing neural network architecture to achieve this goal. They 

designed a neural network that has 3 layers. The first two layers used weight sharing 

principle, and each of them has a subsampling layer behind itself. Just as the 

neocognitron neural network, this design provides some shift invariance characteristics in 

the neural network. The first layer has four feature maps to extract the features of the 

input image. The difference of the first layer between this design and the previous one 

[97] is that the features extracted from the input image are determined by the templates 

designed by the designer's thought in the previous model, and in the new version the 

features extracted from the input image is determined by the trained neural network itself 

and the designer do not need to know what kind of features will be extracted by the neural 

network. The weight sharing principle is not used for output layer. It is a fully connected 

conventional neural network. The neural network is trained by back-propagation. After 
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training, this neural network showed a good generalization property and obtained a better 

result than the previous model. This training database is the same database used in 

previous work. The test result of the new model is that the best percentage of rejections 

on the complete test set was 5.7% for 1% error. The original input image of this system 

has been normalized to a standard size followed by being inputted into the neural 

network. This system has several advantages. It has high variability to recognize an image 

pattern and runs at a reasonable speed on standard hardware (~10 characters/sec on a 

workstation) and high speed (1000 characters/sec) on specialized hardware. 
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