
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Summer 1998

Automatic analysis of electronic drawings using
neural network
Yi Shi
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Shi, Yi, "Automatic analysis of electronic drawings using neural network" (1998). Dissertations. 957.
https://digitalcommons.njit.edu/dissertations/957

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Fdissertations%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/957?utm_source=digitalcommons.njit.edu%2Fdissertations%2F957&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

AUTOMATIC ANALYSIS OF ELECTRONIC DRAWINGS
USING NEURAL NETWORK

by
Yi Shi

Neural network technique has been found to be a powerful tool in pattern

recognition. It captures associations or discovers regularities with a set of patterns, where

the types, number of variables or diversity of the data are very great, the relationships

between variables are vaguely understood, or the relationships are difficult to describe

adequately with conventional approaches.

In this dissertation, which is related to the research and the system design aiming

at recognizing the digital gate symbols and characters in electronic drawings, we have

proposed: (1) A modified Kohonen neural network with a shift-invariant capability in

pattern recognition; (2) An effective approach to optimization of the structure of the back-

propagation neural network; (3) Candidate searching and pre-processing techniques to

facilitate the automatic analysis of the electronic drawings.

An analysis and the system performance reveal that when the shift of an image

pattern is not large, and the rotation is only by nx90°, (n = 1, 2, and 3), the modified

Kohonen neural network is superior to the conventional Kohonen neural network in terms

of shift-invariant and limited rotation-invariant capabilities. As a result, the

dimensionality of the Kohonen layer can be reduced significantly compared with the

conventional ones for the same performance. Moreover, the size of the subsequent neural

network, say, back-propagation feed-forward neural network, can be decreased

dramatically.

There are no known rules for specifying the number of nodes in the hidden layers

of a feed-forward neural network. Increasing the size of the hidden layer usually improves

the recognition accuracy, while decreasing the size generally improves generalization

capability. We determine the optimal size by simulation to attain a balance between the

accuracy and generalization. This optimized back-propagation neural network

outperforms the conventional ones designed by experience in general.

In order to further reduce the computation complexity and save the calculation

time spent in neural networks, pre-processing techniques have been developed to remove

long circuit lines in the electronic drawings. This made the candidate searching more

effective.

AUTOMATIC ANALYSIS OF ELECTRONIC DRAWINGS
USING NEURAL NETWORK

by
Yi Shi

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

Department of Electrical and Computer Engineering

August 1998

Copyright © 1998 by Yi Shi

ALL RIGHTS RESERVED

APPROVAL PAGE

AUTOMATIC ANALYSIS OF ELECTRONIC DRAWINGS
USING NEURAL NETWORK

Yi Ski

Dr. Yun Q. Shi, Dissertation Advisor 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Douglas D. C. Hung, Committee Member 	 Date
Associate Professor of Computer and Information Science, NJIT

Dr. Constantine N. Manikopoulos, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Wei Su. Committee Member 	 Date
Electronics Engineer of Intelligence and Information Warfare Directorate,
USA Army CECOM, Fort Monmouth, New Jersey

BIOGRAPHICAL SKETCH

Author: 	Yi Shi

Degree 	Doctor of Philosophy

Date: 	 August 1998

Undergraduate and graduate Education:

• Doctor of Philosophy in Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, USA, 1998

• Master of Science in Electrical Engineering,
Beijing University of Aeronautics and Astronautics, Beijing, China, 1988

• Bachelor of Science in Electrical Engineering,
Beijing University of Aeronautics and Astronautics, Beijing, China, 1983

Major: 	Electrical and Computer Engineering

Presentations and Publications:

Yi Shi, Yun Q. Shi, Constantine N. Manikopoulos, and Wei Su
"A Shift-Invariant Modified Kohonen Neural Network"

(Submitted to Electronics Letters of IEEE

X. Xia, Y. Q. Shi, and Y. Shi
"A Thresholding Hierarchical Block Matching Algorithm," Journal of Computer
Science and Information Management, No. 2, 1998

Jiwu Huang, Yun Q. Shi, and Yi Shi
"Embedding Image Watermarks into DC Components" (Submitted)

iv

Yi Shi
"A Design of EPROM Extension Card for APPLE-11 Computer" Radio, No. 9,
1988.

Yi Shi, and Fan Renzhou
"Call and Parameters Transmission between C and Assembly Language",
Measurement & Control Technology, No, 4. 1988, pp. 25-32.

Yi Shi
"A Design of Real-Time Control Operating System", Master Thesis,

Beijing University of Aeronautics and Astronautics, 1988.

Yi Shi
"A Digital Serial Communication Telemetry and Telecontrol System for Nuclear
Test", Bachelor Thesis, Beijing University of Aeronautics and Astronautics, 1983.

v

This work is dedicated to my beloved family

vi

ACKNOWLEDGMENT

I would like to express my deep appreciation to Dr. Yun Q. Shi, who not only

served as my research advisor, providing valuable, countless resources and insight, but

also constantly gave me encouragement and reassurance.

Special thanks are given to Dr. Edwin Hou, Dr. Douglas D. C. Hung, Dr.

Constantine N. Manikopoulos and Dr. Wei Su for their comments and suggestions to this

dissertation and for actively participating in my committee.

I wish to thank Dr. Wei Su for his valuable advice regarding this research.

Without the data and electronic drawings kindly supplied by him, this research would

have not been able to be carried out. I am also grateful to my friend Yiwen Xu for the

early cooperation in this research and his effort to supply the needed material.

Last but not least, heartfelt thanks to Dr. Constantine N. Manikopoulos, the

Robert Van Houten Library and the Engineering Computing Lab at NJIT for their

financial support during my Ph.D. program.

Vii

TABLE OF CONTENTS

Chapter 	 Page

I INTRODUCTION 	

1.1 	Research Objective 	1

1.2 	Pattern Recognition 	6

1.3 	Artificial Neurons and Neural Networks 	10

2 CANDIDATE SEARCHING 	 16

2.1 	Long Line Removal 	17

2.2 Thinning 	18

2.3 	Pyramid (Multi-Resolution) Algorithm 	20

3 A SHIFT-INVARIANT AND LIMITED ROTATION-INVARIANT
MODIFIED KOHONEN NEURAL NETWORK 	 26

3.1 	Introduction 	26

3.2 	Conventional Kohonen Neural Network 	28

3.3 	The Training of Kohonen Neural Network 	 32

3.4 	Similarity Measurement between Images 	35

3.5 	Shift-Invariant Modified Kohonen Network 	 40

3.6 Rotation-Invariant Implementation 	44

3.7 Summary 	 46

4 FEED-FORWARD NEURAL NETWORK WITH BACK-PROPAGATION
LEARNING 	 47

4.1 Introduction 	47

4.2 	Back-Propagation Training Algorithm 	 53

viii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.3 	The Network Capability and Its Structure 	58

4.4 	Layers and Nodes Specification 	61

4.5 Summary 	 70

5 TRAINING THE NETWORK WITH NOISE 	 72

5.1 	Generalization of the Neural Network 	72

5.2 	Training the Network with Uniform Distributed Noise 	73

5.3 	Training the Neural Network with 8-Neighboring Noise 	76

6 SUMMARY 	 79

6.1 	Major Contributions 	79

6.2 	Major Unsolved Issues and Further Research 	81

APPENDIX A EARLY RESEARCH SURVEY 	 82

APPENDIX B EIGHT GATE SYMBOLS 	 92

APPENDIX C NEURAL NETWORK DIAGRAM 	93

REFERENCES 	 94

ix

CHAPTER I

INTRODUCTION

1.1 Research Objective

Traditionally, paper documents are frequently utilized format for transmission and storage

of information. In the last decade, the prevalence of fast computers with large memory

space, and inexpensive scanners has fostered an increasing interest in the process and

analysis of document images. With many paper documents being sent and received via

fax machines and stored digitally in large document databases, the interest has grown to

do more with these images than simply to view and print them. Just like humans extract

information from these images, researches are being carried out and automatic

recognition systems are being built up to read characters on pages, locate lines and

recognize symbols on diagrams.

Document analysis has become more and more important than ever before. Look

around our workplace, we can see stacks of paper. Some may be computer generated, but

if so, inevitably by different computers and software such that even their electronic

formats are incompatible. Some will include both formatted text and tables as well as

handwritten entries. There are different sizes. from 3.5"x2" business cards to 34"x44"

engineering drawings. In many businesses today, imaging systems are being used to store

images of pages to make storage and retrieval more efficient. Future document analysis

systems will recognize types of documents, enable the extraction of their functional parts,

and facilitate translation from one computer-generated format to another. There are many

other examples of the use of and need for document systems. Glance behind the counter

2

in a post office at the piles of letters and packages. In some US post offices, over a

million pieces of mail must be handled each day. Machines to perform sorting and

address recognition have been used, but there is a need to process more mail, more

quickly and more accurately. As a final examine the stacks of a library, where row after

row of paper documents are stored. Loss of material, misfiling, limited numbers of each

copy, and even degradation of materials are common problems, and the problems may be

alleviated by document analysis techniques. All of the above examples serve as

applications ripe for the potential solutions of document image analysis.

Many researches are leading to new applications. For instance, millions of old

books now in libraries will be replaced by computer files of page images that can be

searched for content and accessed by many people at the same time and will never be

misshelved. Business people will carry their file cabinets in their portable computers.

Paper copies of new product literature, receipts, and other notes will be instantly filed and

accessed in computers. Signatures will be analyzed by computers for verification and

security access. Musical scores and other symbolic and diagrammatic documents will be

read and their contents recognized and interpreted.

The ultimate solution would be for computers to deal with paper documents as

they deal with other forms of computer media. That is, paper would be as readable by

computers as magnetic and optical disks are now. if this were the case, then the major

difference between paper documents and magnetic and optical disks would be that, unlike

current computer media, paper documents could be read by both computers and human

beings. This is, on the other hand, the major advantage of paper documents.

3

Nowadays the Department of Defense(DOD) maintains a large inventory of

documentation of electronic systems. The existing documentation is in the form of circuit

drawings and scanned image files, which cannot be directly used as an input to computer-

aided design tools. In order to respecify or remanufacture an electronic part, board, or

system, a considerable amount of time and human effort must be expended to collect and

understand the circuit information from circuit drawings. On the other hand, VHSIC

(Very High Speed Integrated Circuit) Hardware Description Language (VHDL) is an

industry and DoD standard [I] for documentation, design, and simulation of electronic

circuits. Most commercial computer-aided design (CAD) tools provide a fully automated

and integrated manufacturing path from VHDL documentation to integrated circuit (IC)

fabrication. Since VHDL provides manufacturing technology independent documentation

of an IC, it is ideal to document Army systems in terms of VHDL so as to have full life

support. Therefore, the automated generation of VHDL models is an urgent and important

research topic, which is a research in the US Army Research Laboratory, Ft. Monmouth,

NJ. In this research and system design, we address a part of their research: How to locate

digital gate symbols' position and how to recognize various digital gate symbols and

characters in electronic engineering drawings.

The objective of this research is to build a system which is a bridge connecting

yesterday's documentation to today's modern computer and people. The proposed system

will be used not only in the military but also in the civil industry of electrical

manufacturing. We propose to develop a neural network as a recognition unit in the

system. Neural network has been proved to be very capable in recognizing image

patterns. The post offices use it to automatically recognize zip codes on daily basis. It

.4

demonstrates that neural network is successful in the practical usage. Because the gate

symbol patterns are larger than the zip codes, we proposed to design a larger neural

network. Evidently, a large neural network needs more calculation time than a small one.

Therefore, to use neural network efficiently is an important topic. We proposed not to use

neural network to search and recognize gate symbols over the entire drawings, but to use

it only to recognize just a few candidates on the entire drawings. We proposed and used

some pre-processing techniques and developed some algorithms to find out gate symbol

candidates. This makes the overall searching and recognition much more quickly.

In the early stage of this research, we did some survey (refer to the APPENDIX).

In the survey, three techniques in the recognition of various gate symbols were

investigated. Three types of neural network developed for recognition of characters and

digits, and moments method used in image pattern recognition were studied as well. 01

these three existing techniques [2-4], two of them are actually not practical yet. The

practical one can work well only for well-standardized drawings. It involves feature

extraction, template matching, and decision tree. Hence it is very complicated and can

only be implemented in special hardware. It does not work well for noisy and deformed

images. The moments method [5] is not practical. However, in practical setting,

Fukushima's neocognitron [6] and AT&T's neural networks [7,8] can recognize

characters and digits, respectively. Both of the neural networks can be implemented in

software. We therefore propose to develop a NN to handle this part of the project.

Considering that the neocognitron neural network needs complicated human efforts (hard

work!) to define features and design templates in the training process, we decided to

5

combine the Kohonen neural network and the feed-forward back-propagation neural

network as the main recognition unit instead of the neocognitron NN.

This system is divided into three parts. Refer to Figure I I This thesis is

organized in a very sequence in which the image pattern in the electronic drawing flows

through the system.

Unit One
Image

Pre-processing
Unit

Unit Two
Kohonen

Neural Network
Classifier

Unit

Unit Three
Back-Propagation
Neural Network

Recognition
Unit

Figure 1.1 The Diagram of the System

In this chapter, Chapter 1, we briefly introduce this research topic, image pattern

recognition and artificial neural network.

In Chapter 2, Image Pre-Processing Unit, we focus on how to pinpoint the

candidate gate symbols. It is mainly for an effective usage of the neural network. Some

pre-processing methodologies are described in this part.

The third chapter is a Kohonen Neural Network Classifier. It works as a bridge

connecting between the Pre-Processing Unit and the Back-Propagation Neural Network

(BPNN) Recognition Unit. Through this unit, the gate symbols and characters are roughly

classified. The output of this unit is a categorized map. Because the map is of small

dimension, the input layer of the subsequent BPNN can be small. Moreover, the overall

dimension of the BPNN is much smaller than the dimension of the BPNN whose input is

original image signals to be recognized.

6

In the fourth chapter, the BPNN Recognition Unit, we state about how to

recognize various digital gate symbols by using BPNN and how to design and train a

feedfoward neural network.

Chapter 5 is about neural network generalization and training with noise: A

further training. After the further training, the overall capability of the neural network gets

more powerful.

In the last chapter, we summarize all the contributions in our research and system

design. We also raise a problem for the future research: how to verify the gate symbols

which have been recognized? The motivation behind it originates from the fact that the

correctness and the reliability of the recognition are more important than the processing

speed of the proposed system,

1.2 Pattern Recognition

Traditional pattern recognition [9-12] techniques include statistical pattern recognition

algorithms, probability and decision theory, and feature extraction. The latter techniques

are concerned with the decomposition of an input into pattern primitives. These

techniques overlap and are not really separable, As an example of a statistical approach,

assume that a two-class problem is to be solved. That is, a given input pattern must be

classified to belong to either class A or class B. For purposes of this example, assume that

there are only two features that can be measured to determine classification with

distributions as shown in Figure 1.2.

7

Figure 1.2 Two Class Problem

An example is taken here. Let's assume that the problem is to build an assembly

line monitor that determines whether a product is to be shipped or is defective. Let's also

assume that the product is a bottle that we must make sure is full and capped. To

determine whether it is full we set up an optical beam to pass through the bottle at a point

just below the required fill level. Again, for simplicity, assume that the liquid is basically

opaque. If the bottle is full, the amount of light sensed by the photodetector will be less

than that would be sensed if it were empty. The amount of light sensed by the

photodetector will be the first feature, a measured parameter that enables the network to

discriminate between the classes. Low values of this feature are associated with a full

bottle (because the liquid blocks the light) and thus represent good bottles. To determine

whether there is a cap on the bottle, a similar approach will be taken.

So let's take a beam of light and direct it at the top of the bottle. A strong

reflectance off the top (resulting in a relatively large number for the second feature)

would imply that the bottle has a top on it. This amount of light reflected off the top

would be the second feature. In the feature space, good bottles, determined as being full

and having a cap, are found in the upper left portion of the first quadrant of the feature

space, denoted as solid circles. Bad bottles, determined by really being bad in the sense

8

that they are not full and do not have a cap, are found in the lower right portion of the first

quadrant, denoted with circles.

A statistical approach to this problem is to find the K-nearest neighbors to the

unknown input and check their respective class membership. This is clone by first

collecting a lot of bottles that have been observed to be either good or bad. Then, by

placing these bottles through the measurement process, points in the feature apace are

marked as being associated with either good or bad values. When a bottle is input that is

not classified and must be tested to determine goodness, it is also mapped to the feature

space. Measurements are made to determine which of the previous mapped points are

closest to this unknown input. For example, some Minkowski distance could be used to

measure the closeness to a previously classified point.

Minkowski n-distance is defined as the nth root of the sum of the difference of feature,

|xt -yi|, values raised to the nth power. Thus if n =1 this is just the sum of the magnitude of

the differences of the feature values; this is frequently known as taxi distance. If n=2, we

have the square root of the sum of the squares of the differences of the feature values,

Euclidean distance.

For example, the closest k points by a Minkowski metric could be determined. If the

majority of the k-nearest neighbors are from some particular class, then the unknown

input is also assumed to be of that class. To accomplish this, a large amount of labeled

data is required. If we assume that the data are distributed in a Gaussian manner, then the

means and standard deviations are computed for the classes of good and bottles. Then

9

when some unknown input is tested, a likelihood quantity can be calculated that

maximizes the probability that the classification is correct. Of course, assumptions on the

form of the density are questionable. One of the biggest potential advantages of artificial

neural networks is the hope of eliminating the need for specific code development for a

given discrimination task. Let the network make the probability estimates and computer

the distance. We can show that when networks are trained to minimize the mean squared

error, they become functionally equivalent to the common Bayes discriminant functions.

For this example, we've provided some obvious features. In feature extraction, a set of

primitives is extracted from the data and compared to some internal representation of

classes. These primitives, along with information about their relationships that distinguish

the classes of interest, could be used for classification. The primitives could in fact be

statistical measures. For example, the moments of the data could be calculated. For a two

dimensional shape, f(x, , the ninth moment is defined below as mot,„,:

Alternately there exist invariant moments that could have been calculated. The encoding

of position, scale and rotation invariance in the extracted features might be preferable to

making the artificial neural networks learn the invariance from the raw input images. The

advantage of moments is that they can be computed optically, and in fact one may want to

compute moments in both the Fourier and space domains to enhance recognition. Feature

extraction is very important. Good features make good recognition.

Comparison of artificial neural network to other solution techniques is very

instructive. It is easy to construct a simple neural network to solve the two-class problem.

10

The artificial neural network solution to the good or bad bottle problem could then be

compared to the K-nearest neighbor to the density function estimator, the Bayesian

classifier.

1.3 Artificial Neurons and Neural Networks

Artificial neurons and neural nets [13-16] are both aspects of a style of computing (some

people call it neural computing) that attempts to mimic {to a greater or lesser extent) the

activities of animal neural systems, like the human brain. The motivation for doing this

varies from person to person. Some people use neural computing as a way to examine

real neural systems. These people are not really interested in the artificial neural systems

for their own sake; they are using artificial systems because the real animal neural

systems are difficult to use in research. The real systems tend to be very large and

complicated, with millions of interrelated neurons. Real neurons are so small and delicate

that it is difficult to isolate them for study. Individual tasks done by real neural systems

are often distributed in unknown ways throughout the entire system in such a fashion that

it is almost impossible to tell which neurons are participating in the task and which are

not. There are also legal and ethical problems involved in the study of living animal

neural systems that make such research awkward. We cannot, for example, remove bits of

a living human brain in order to see what functions of speech or cognition stop working.

Other people want to get computers to perform actual tasks, doing things for us that we

previously would have had to do ourselves. Without the techniques of neural computing,

we can have the computer do only what we can describe algorithmically, that is, with a

very complete and explicit set of instructions. As we shall see, neural computing allows

11

us to 'train' the computer to do tasks without us really having to understand how the tasks

are being accomplished. There are products on the market today that employ neural

computing. And, of course, there are other people who examine neural computation

because they are interested in it for its own sake. They want to know its characteristics

and limitations; the kinds of problems it can solve and the kinds of problems it can't

solve. Their interest is like the theoretical chemist's interest in the interaction of matter; if

it has a practical application down the road that's great, but the first interest is in the basic

science of the field of study. Neural computing is usually considered to be a part of

artificial intelligence.

Artificial Neurons An artificial neuron is a machine-based object that mimics both the

internal and external behavior of a real animal neuron. It will have a variable number of

inputs and outputs. The artificial neuron will have some process by which it combines all

of the inputs with weights, called the integration step. The value resulting from this

process is fed to a threshold function which will determine if the neuron produces output.

Diagrammatically, we might draw a single neuron as follows:

Figure 1.3 Single Neuron

However, we usually represent a neuron by a single dot. In most cases, a single neuron is

so simple that it can't do very much. However, it is possible to get useful work even out

of one neuron. Let's examine a neural system consisting of one neuron. The neuron will

12

have three inputs, the (x, y, z) coordinates of a point in three-dimensional space, and one

output, +1 or -1. We want the neuron to tell us if the point given as input is above the

plane (x + y + z = 0) or below it by giving an output of +1 if the input point is above the

plane and —1 if the input point is below the plane. In this case, the neuron's processing

need only consist of only two steps. First, in the integration step, the input values are

simply added together. The threshold function is uncomplicated. The resulting value is

checked. If it is positive, then the neuron sets the output value to +1 If the result of the

addition is negative, the neuron sets its output to 	To the practical mind of the

engineers in the crowd, it may seem that this simple one-neuron classifier doesn't really

do anything useful. However, the three-dimensional space that it partitioned can represent

any number of things. We could view the three dimensions as being the operating

characteristics of sonic machine; temperature, pressure, and rotational speed. The plane

represents the boundary between safe and unsafe conditions. The neuron's output could

be connected to an emergency shutdown system. Whenever the combination of

characteristics left the safe area, the neuron's output would change and activate the

shutdown system. Of course, it may be that the boundary between safe and unsafe

conditions may be too complicated to describe with such a simple classifier. In that case,

either the neuron could have more complicated integration and threshold functions or we

could add more neurons.

Neural Nets A neural net is a collection of some number of neurons along with the

connections between them. Also referred to as connectionist architectures, parallel

distributed processing, and neuromorphic systems, an artificial neural network (ANN) is

an information-processing paradigm inspired by the way the densely interconnected,

13

parallel structure of the mammalian brain processes information. Artificial neural

networks are collections of mathematica models that emulate some of the observed

properties of biological nervous systems and draw on the analogies of adaptive biological

learning. The key element of the ANN paradigm is the novel structure the information

processing system. It is composed of a large number of highly interconnected processing

elements that are analogous to neurons and are tied together with weighted connections

that are analogous to synapses. Learning in biological systems involves adjustments to the

synaptic connections that exist between the neurons. This is true of ANNs as well.

Learning typically occurs by example through training, or exposure to a truthed set of

input/output data where the training algorithm iteratively adjusts the connection weights.

These connection weights store the knowledge necessary to solve specific problems.

Although ANNs have been around since the late 1950's, it wasn't until the mid-1980's that

algorithms became sophisticated enough for general applications. Today ANNs are being

applied to an increasing number of real world problems of considerable complexity. They

are good pattern recognition engines and robust classifiers, with the ability to generalize

in making decisions about imprecise input data. They offer ideal solutions to a variety of

classification problems such as speech, character and signal recognition, as well as

functional prediction and system modeling where the physical processes are not

understood or are highly complex. ANNs may also be applied to control problems, where

the input variables are measurements used to drive an output actuator, and the network

learns the control function. The advantage of ANNs lies in their resilience against

distortions in the input data and their capability of learning. They are often good at

solving problems that are too complex for conventional technologies (e.g., problems that

14

do not have an algorithmic solution or for which an algorithmic solution is too complex

to be found) and are often well suited to problems that people are good at solving, but for

which traditional methods are not. There are different types of ANNs. Some of the more

popular include the multilayer perception which is generally trained with the

backpropagation of error algorithm, learning vector quantization, Hopfield, and Kohonen

network. Some ANNs are classified as feedforward while others are recurrent (i.e.,

implement feedback) depending on how data is processed through the network. Another

way of classifying ANN types is by their method of learning (or training), as some ANNs

employ supervised training while others are referred to as unsupervised or self-

organizing. Supervised training is analogous to a student guided by an instructor.

Unsupervised algorithms essentially perform clustering of the data into similar groups

based on the measured attributes or features serving as inputs to the algorithms. This is

analogous to a student who derives the lesson totally on his or her own. ANNs can be

implemented in software or in specialized hardware.

Implementation Each neuron could be represented entirely by specialized hardware

(wires, silicon transistors, or chips) or entirely in software (a collection of data and the

instructions to manipulate it) running on a general-purpose computer, or as some

combination of the two. A hardware implementation is usually very fast but quite

expensive to build, and it is difficult to change the structure of the net once it is built.

Software implementations are usually comparatively slow, but the structure and

characteristics of each neuron and of the net as a whole can be easily changed,

Researchers tend to use software implementations almost exclusively. Engineers trying to

build neural net controlled devices will also often use software implementations while

15

they are designing and testing the nets. When the design is finished and a software

prototype tested, hardware versions can be built. For our purposes, it doesn't really matter

how the neurons are implemented; hardware, software, or a combination. The capabilities

of the system don't really change, just how fast it runs and how difficult it would be to

build.

Comparison Finally, let's compare the ANN and the conventional computer. A

serial computer has a central processor that can address an array of memory locations

where data and instructions are stored. Computations are made by the processor reading

an instruction as well as any data the instruction requires from memory. The instruction is

then executed and the results are saved in a specified memory location as required. In a

serial system, the computational steps are sequential and logical, and the state of a given

variable can be tracked from one operation to another. In comparison, ANNs are not

sequential but parallel. There are no complex central processors, instead there are many

simple ones which generally do nothing more than take the weighted sum of their inputs

from other processors. ANNs do not execute programmed instructions, they respond in

parallel (either simulated or actual) to the pattern of inputs presented to it There are also

no separate memory addresses for storing data. Instead, information is contained in to

overall activation 'state' of the network. 'Knowledge' is thus represented by the network

itself. ANNs can deal with 'unseen' patterns and generalize from the training set. It is

robust in the presence of noise, small changes in an input pattern will not drastically

affect a node's output. ANNs are good at "perceptual" tasks and associative recall. These

are just the tasks that the symbolic approach has difficulties with.

CHAPTER 2

CANDIDATE SEARCHING

The neural network is used in the gate symbol recognition in this system. The calculation

of the neural network involves quite a lot floating point calculations and it takes longer

time. On the other hand, there are only a few gate symbols on a diagram. It is not practical

to use neural network to search the gate symbols all over the diagram. That will waste a

lot of time and make the processing very slow.

In order to save the whole processing time, reduce the calculation time spent in

neural network is crucial. We have two choices. One is to reduce the time spent in each

neural network recognition. The other is to reduce the times using neural network. The

latter one is suitable and easy to implement.

Before using neural network to recognize gate symbols, a pre-processing [17-20]

can be implemented to pinpoint them. This procedure, known as candidate searching, is

to use a few fast algorithms to quickly find out the gate symbol positions. After that,

neural network will be connected to those areas one after another to detect whether they

are gate symbols and what kind of gate symbols they are. In this way, the overall time

spent in the gate symbol recognition is greatly lessened. The candidate searching consists

of 3 parts. They are long line removal, thinning and pyramid algorithms.

16

17

2.1 Long Line Removal

In each digital diagrams, a part of them shown in Figure 2.1, 4 types of elements exist.

They are straight lines, gates symbols, characters and dots (intersections points). Straight

lines are divided into long lines and short lines. We define the long lines are those whose

length is longer than the length or width (whichever is longer) of the gate symbols.

Usually long lines may occupy up to 90% of "1" pixels. However, for the gate symbol

recognition, lines are useless. In order to implement the succeeded algorithm, straight

long lines have to be removed as more as possible. This makes the searching algorithm

more accurate and fast.

Long line removal algorithm:

input: digital diagram image and the length of the gate

output: image without long lines

begin

while pixel is on the image do

detect the horizontal lines

for each detected horizontal line do

if the length of the horizontal line > length of the gate then

make the marks b on each pixels

end if

end do

detect the vertical lines

for each detected vertical line do

18

if the length of the vertical line > length of the gate then

make the marks b on each pixels

end if

end do

end do

while pixel is on the image do

if b then remove the line

end if

end do

end

Figure 2.2 shows the long line removed image.

2.2 Thinning

Thinning [19] is an operation in which binary-valued image regions are reduced to lines

that approximate the center lines of the regions. The purpose of thinning is to reduce the

image components to their essential information so that further analysis and recognition

are facilitated. After thinning, it is easier and faster to process I -pixel-wide lines than the

wider ones.

In this system, the thinning is particularly important because this can make neural

network input window and the neural network size smaller. Otherwise, the time used in

the network training and network recognition would be much longer. If a supercomputer

was used to do the training and recognition, a large size neural network could be designed

to recognize arbitrary pixel-wide gate symbols.

19

The thinning requirements are stated as follows:

(1) Connected image regions must thin to connected line structures.

(2) The thinning results should approximate the medial lines.

(3) Approximate end line locations should be maintained.

The image pattern contour points are assumed to be "1" and the background points

"0". The algorithm consists of successive passes of two basic steps applied to the contour

points of the image, where a contour points is any pixel with value "I", having at least

one 8-neighbor value "0". With reference to the 8-neighbor definition, refer to Figure 2.3,

step 1 flags a contour

p9 p2 p3

p8
p1 p4

p7 p6 p5

Figure 2.3 8-neighbor definition

point p for the deletion if the following conditions are satisfied:

(a) 2 =<N(p 1) =< 6;

(b) S(p1) = 1;

(c) p2 * p4 * p6 = 0;

(d) p4 * p6 * p8 = 0;

where N(p1) = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9; S(p1) is the number of 0-1

transitions in the ordered sequence of p2, p3, p8, p9,p2. In step two, conditions (a) and

(b) remain the same, while conditions (c) and (d) are changed to

20

(c) p2 * p4 * p8 = 0;

(d') p2 * p6 * p8 = 0;

Step I is applied to every border pixel in the binary region under consideration. If

one or more of conditions (a)-(d) are violated, the value of the point in question is not

changed. If all conditions are satisfied, the point is flagged for deletion. However, the

point is not deleted until all border pointed have been processed. This delay prevents

changing the structure of the data during execution of the algorithm. After step I has

applied to all border points, those that have been flagged are deleted. Then, step 2 is

applied to the resulting data in exactly the same manner as step 1. Applying step I and 2

can satisfy the above 3 conditions to get the desired thinning image. These 2 steps are

applied iteratively until no further points to be deleted in the image, at that moment the

thinning process terminates, yielding the thinned image. Figure 2.4 shows the thinned

image.

2.3 Pyramid (Multi-Resolution) Algorithm

Pyramid algorithm is an operation which lower the image resolution. It creates the new

image's pixels by adding the values of 4 connected pixels in the higher resolution image.

The new pixel corresponds to 4 pixels at the finer resolution image. Each time, the image

size is reduced to 1/4 of the higher resolution image. After a specific times of operation,

the gate symbols are shrunk to single pixels. Therefore, the central coordinates and the

position of the candidate gate symbols are found.

Pyramid algorithm:

input: long line removed digital diagram image, the length of the gate output: low

resolution (1/4)" sized of input image marked with. candidate gate position

where n = 1, 2, 3, 4, 5,

begin while n = n 	do

for each i, j do

p[i][j] = p[2*i][2*j]+p[2*i+1][2*j]+p[2*i][2*j+1]+p[2*i+1][2*j+1]

end do

i=i/2;

j=j/2;

end do

for each i, j do

if p[i][j]> 3 xlength of gate then

mark i, j as a candidate position in the low resolution image

end do

end

21

Figure 2.5 illustrates the procedure of this algorithm.

22

Figure 2.1 Part of a Digital Diagram

23

Figure 2.2 Long Line Removed Image

Figure 2.4 The Image After Thinning

25

Figure 2.5 Images of Different Resolution

CHAPTER 3

A SHIFT-INVARIANT AND LIMITED ROTATION-INVARIANT
MODIFIED KOHONEN NEURAL NETWORK

3.1 Introduction

An important feature of neural network is the ability to learn from their environment, and

through learning to improve performance in some sense. In this chapter, we present a

modified Kohonen neural network with shift-invariant and rotation-invariant capability.

Kohonen neural network is a type of unsupervised neural network. It is [21] perhaps the

simplest self-organization system [22], consists of a single layer of neurons (called

Kohonen layer) and an input buffer layer that is fully connected to the neurons in the

Kohonen layer through adjustable weights (see Figure 3.1).

Input buffer layer

Figure 3.1 Structure of Kohonen. Neural Network

Kohonen neural network has been successfully applied to speech recognition [21,23]. It is

also utilized as a pre-processing layer in a more complicated neural network for image

recognition [24]. A well trained Kohonen network, for example, can be used to classify

English letters and other characters [25,26]. In our researches aiming at recognizing the

26

27

digital gate symbols and characters in electronic drawings, it was found, however, that

when an object in an image is shifted horizontally and/or vertically, Kohonen network

cannot classify the original image pattern and its shifted version into the same category. It

is clear that the shift-invariant capability in image pattern recognition is desired in many

applications. For this purpose, a modified shift-invariant Kohonen network with a two-

dimensional correlation is proposed in this chapter. Owing to its shift-invariant capability,

the dimension of the Kohonen neuron layer can be reduced dramatically. Moreover, the

size of its subsequent neural network can be decreased significantly. An analysis of

computational complexity and some experimental work are presented. The experiments

have shown that when the shift in an image pattern is not large, the shift-invariant

modified Kohonen neural network is superior to the original Kohonen neural network.

The rotation-invariant capability is another modification to the original ones for the nx90°

rotations (n=1, 2, and 3).

In order to make the discussion subsequently more concrete, we shall consider

how image information is captured and input to a neural network. Suppose we have a TV

camera (monochrome for simplicity) which is viewing a picture that is to be used in

training. The output from this is a picture where each point is represented by a

continuously variable voltage (analogue quantity) so that shades of gray may be encoded

accurately. For a node in Kohonen input buffer layer or a perceptron, however, we require

a set of Binary values ('0'). The conversion process is done by dividing the picture

into a grid of picture elements or pixels each of which is allowed to take only one of two

values black or white. To find the value for each pixel, the average value of the image in

the pixel area is found and then threshold to determine whether it is white or black. We

(3.1)

28

now make the correspondence white = 1 and black = '0'. This array of Boolean

quantities may now be stored in a special purpose computer memory. Typically the pixel

grid may be 512 by 512 giving over 0.26 million pixels. Thus, the pattern space will have

dimension 0.26 million. This is often reduced to make things more manageable for a

neural network. In this research aiming at recognizing different digital gate symbols, the

pixel grid is set to 32 by 32. The total number of pixels is 1024.

3.2 Conventional Kohonen Neural Network

Before we discuss conventional Kohonen neural network, let us observe the K-means

algorithm [27] as the foundation. Pattern vector of n-dimensions may be considered as

representing point within an n-dimensional Euclidean space. One of the most obvious

means by which we may establish a measure of similarity between or among such pattern

vectors is by means of their proximity to one another. The K-means algorithm is one of

the many clustering techniques that shares this notion of clustering by minimum distance.

Namely, vectors which identify points that are geometrically close together may be taken

in some sense as belonging together. For presenting the operation of the K-means

algorithm, a precise notion of distance metric is needed. The Euclidean norm of a vector,

x = [x1, x2, 	,xn] is defined as follows:

Equation (3.1) provides the length of the vector x. Since we desire the distance or length

between two vectors within the pattern space, we need to apply equation (3.1) to the

vector difference as follows:

(3.2)

29

where x and z are pattern vectors of order n.

Now that a measure of pattern similarity has been established, the task of

establishing a procedure by which patterns are partitioned into cluster domains must be

undertaken. That is, we require a procedure that will establish a set cluster with associated

cluster centers such that the distance between an input vectors and the closet cluster

center serves to classify the vector. The K-means algorithm represents one such method.

K-means makes the assumption that the number of cluster centers that will be

required to adequately represent the sample space is known a priori. This assumption in

itself somewhat limits the utility of the procedure. Other variations on minimum distance

statistical clustering techniques lack this difficulty but may have other problems such as a

sensitivity to the order in which input data are presented to the system.

Let x(P) represent the pth space vector. The complete set of input vector will then

be {x(I), x(2), ..., x(P)}. The vector z represents the cluster center for each of the K clusters.

That is it points to the position in Euclidean space at which the cluster center is located.

Since there are K cluster centers: Finally the notation, Sj = x I x is closest to cluster j}

will be used to represent the set of samples that belong to the jth cluster center. The K-

means algorithm is implemented in the following steps.

Step 1. Initialization choose the number of cluster K. For each of these K clusters choose

an initial cluster center: { z1(l), z2(l), 	zk(/)}, where zj(l) represents the value of the

cluster center at the Ith iteration. The starting values can be arbitrary but are generally

taken to be the value of the first K of the sample vector.

(3.3)

(3.4)

(3.5)

30

Step 2. Sample distribution: Distribute all sample vectors. By this, each sample vector x(P)

is attached to one of the K clusters according to the following criteria:

for all i = 1, 2, ...,K,

Sj(1) represents the population of cluster/ at iteration 1.

Step 3. New cluster centers calculation: Using the new cluster membership sets

established in step 2, recalculate the position of each cluster center such that the sum of

the distances from each member vector to the new cluster center is minimized.

Specifically we wish to minimize where:

where j=1, 2, ..., K. The value of zj(l + 1) which minimizes equation (3.4) is simply the

mean taken over the samples of Sj(l). Therefore the new cluster center is calculated using

equation (3.5) as follows:

where N j is the number of sample vectors attached to Sj during step 2.

Step 4. Convergence checking: The condition for convergence is that no cluster center has

changed its position during step 3. This condition can be expressed mathematically as

follows:

z (/ + 1) = zj (/) 	j =I, 2, ..., K 	 (3.6)

If equation (3.6) is satisfied, then convergence has occurred. Otherwise iteration by going

to step 2.

(3.7)

3

A number of factors may influence the behaviors of the K-means algorithm.

Among these are the number of cluster centers, the choice of initial cluster centers, and

the geometric properties of the input data. Some experiments with the choice of K and the

initialization parameters may be required. Although no formal proof of convergence

exists, the method can be expected to do well where the nature of the data is consistent

with the assumption inherent in using the minimum distance as a similarity measure.

We begin by illustrating the ability of Kohonen network model to identify cluster

centers just as the K-means algorithm did. The Kohonen network architecture consists of

two layers, an input buffer layer and a Kohonen neuron layer (output layer). These two

layers are fully connected. Each input layer neuron has a feed-forward connection to each

output layer neuron. Refer to Figure 3.1. There the Kohonen neuron layer is of two-

dimension. Actually one-dimensional and higher dimensional cases are possible. The

input vectors x are required to normalize (i.e., || x 11=1). Inputs to the Kohonen neuron

layer can be calculated conventionally using equation 3.7:

Applying a winner-take-all paradigm, the winning output layer neuron will simply be the

neuron with the biggest I. The output of the winning neuron will be 1. All other neurons

in the Kohonen layer will output nothing. In effect equation 3.7 is the dot product

between a neuron weight vector and the input vector. Thus this method chooses a

winning neuron such that the angle between the winning neuron weight vector and the

input vector will be smaller than the corresponding dot product for all other neurons. An

equivalent method of choosing the winning neuron simply selects the neuron whose

32

weight vector has a minimum of the Euclidean distance from the input vector (i.e., dj =

In the next section we will focus on the training of Kohonen neural. network.

3.3 The Training of Kohonen Neural Network

Let us consider the training [28-33] of a Kohonen neural network with an input buffer

layer and a Kohonen neuron layer that are fully connected. An input vector is applied to

the buffer layer, and its component vectors are transmitted to each neuron in the Kohonen

layer through randomized connecting weights. The neuron in the Kohon.en layer with the

strongest response is declared the winner and its value is set equal to one. Then the

weights connecting all component vectors from the buffer layer to winning neuron

undergo training in accordance with the process shown in Figure 3.2.

Figure 3.2 The weights update in Kohonen Network

Neurons adjacent to the winner are also allowed to undergo training. The second input

vector is applied to the buffer layer, another neuron in the Kohonen layer is declared the

33

winner, This process continues until all the input data have been applied to the buffer

layer and the distance between the input vectors and the weights are small enough. The

training procedure is as follows:

(I) Initialization: assign small random values to all the weights and a specific value to

the neighborhood size.

(2) Input: present an image array to the input buffer layer.

(3) compute distance to the jth node:

(4) Winner selection: select a node which corresponds to the highest correlation value as

the winner.

(5) Weights update: update the weights of the winner and all the nodes within the

neighborhood of the winner according to the following equation:

(3.8)

where a is decreased over the learning as the size of the neighborhood decreases. Note

that there is also a parameter that must be initialized, that is the neighborhood. The size of

the neighborhood determines the size of the area of the Kohonen layer centerd about the

winner whose weights will be updated for a given input. Initially the size of the

neighborhood should be some significant fraction of the initial neighborhood. The

training schedule includes the reduction of the size of these neighborhoods as well as a

reduction in the learning parameter a. The next step in the learning algorithm is to

provide an input to the network. Note that no classification is provided to this network,

thus it is unsupervised learning. In the supervised learning paradigms, like the backward

error propagation algorithm, the desired output for the network was provided. The next

34

step of the algorithm is to compute the distance of the input from all of the nodes in the

Kohonen layer. If N is the number of inputs to the network, indexed by i, and j is the

index over the output nodes, the two-dimensional Kohonen layer, the distance of some

input from the jth Kohonen node is

(3.9)

This is a measure of the similarity between the input and the weights of a given node on

the Kohonen output layer. The last step in the learning algorithm is to update the weights

for the winning node, that node with the minimum distance. The weights are also updated

for the nodes that lie within the neighborhood of the winning node. Finding the winning

node is common in neural-processing systems and can be accomplished with lateral

connections in the Kohonen layer. Quite often the Kohonen networks are drawn with

connecting arcs drawn between the nodes on the output. Layer. These connections could

accomplish the gaming weight adaptation and the picking of the winner. The weight

update equation is:

Let us think of the input vector, x, as being the desired result for the weight vectors w,

being updated. This update equation pushes each of the vectors being updated toward the

desired input, x, along the vector that represents the vectoral difference. After all the

weights within the neighborhood [34-40] of winning node are updated, another input is

chosen and the process is repeated. For each repetition the learning parameter could be

slightly reduced linearly. After some number of training inputs the neighborhood size

could also be decreased. We commonly used a starting a of about 0.9, which is then

(3. I 1)

35

linearly reduced. For example, if training a 10x10 Kohonen output layer, starting with a

initial neighborhood size of 7x7 might be appropriate, and after a few thousand training

iterations, this neighborhood size might be reduced to 5x5. When the weights of the

network are not changing significantly, and the distance between input patterns and the

corresponding weights are small enough, the network is done with learning.

3.4 Similarity Measurement between Images

The two dimensional correlation function proposed in this research is defined as follows:

where the symbol "o" represents correlation, f (m,n) is an unknown input image pattern

array, and g(m,n) is a reference image pattern or template array. Both of them are of size

P x 0, refer to Figure 3.3. It is assumed that f (m,n) and g(m, n) are equal to 0 u rn P

or m< 0, or n 0 or n < 0, —(P-1)≤ x ≤.P-1 and -(Q-1) ≤ y ≤ Q-1.

Figure 3.3 The image array off (m,n) and g(m,n)

36

From equation (3.11) we calculate the correlation starting with f (m,n) and

g(m, n) . We label the axes in and n, because we are going to sum over the plane, where

the dummy variable m and n will disappear, and we wish to be left with a function of x

and y. g(x + m, y + n) is a replica of g(m,n) but displaced by an amount y to the left and

an amount x upward. We may represent this situation by copying the image g(m, n) on a

piece of transparency and displacing it. If we move the transparency on the top of the

original and then displacing it, we have the value the value g(x + m, y + n) . It is

multiplied by f (m,n) .We can imagine the product as a new function covering the (x, y)-

plane. According to the defined equation, we perform the double summation, that is, to

find the volume under the product function. That needs a lot of work involving

multiplications over the area 0 ≤ m ≤ P — 1 and 0 ≤ n ≤ Q - 1, and followed by summing

the products on the plane. Even so, the result is merely a single value of correlation,

namely for the particular (x, y) describing the displacement. To get another value we have

to displace the function to a new position, multiply throughout, and find the volume under

the production again. To obtain the whole correlation function, we have to repeat over

and over again until all the desired values of x and y, —(P — 1) x P-1 and -(Q — 1) ≤ y

≤ Q-1 , are covered.

The correlation is utilized in image processing to evaluate the match between an

unknown pattern and a reference pattern, where the problem is to find the closest match

between an unknown image and a set of known images. One approach is to compute the

correlation between the unknown image and each of the known images. The closest

match can then be found by selecting the image that yields the correlation with the largest

37

value. Because the resultant correlation are two dimensional functions, this involves

searching for the largest amplitude of each function.

Calculating the correlation defined in (3.11) for all the possible (x, y) is equivalent

to shifting the reference pattern all over the possible locations on the unknown image

pattern and find the similarity measurement. During the process, if and only if the two

image patterns are identical and overlapped, fog yields the largest possible correlation

value 1 . Otherwise, the correlation between any two different patterns cannot reach this

maximum value. In Figure 3.4, there are 3 English letter image patterns, letter "A", letter

"B", and shifted letter "A". The calculation of correlation between them are shown in

Table 3.2, 3.3 and 3.4. The maximum correlation values are shown in Table 3.1.

Table 3.1 Comparison between Euclidean distance and correlation

Measure between
letters

Euclidean
distance

Correlation

"A" and "A" 0.000 1.000
"A" and "B" 0.994 0.783

"A" and shifted "A" 1.500 1.000

Figure 3.4 (a) Letter "A", (b) Shifted letter "A", (c) Letter "B"

38

As a result, we can determine if the input pattern is identical to (Table 3.2) or is a shifted

version (Table 3.4) of the reference pattern. That is, we can achieve the shift-invariant

capability in recognition. Furthermore, iff(m,n) is a shifted version of g(m,n) , the

relative position (x, y) between f and g can be found. However, this is not our direct

interest in this recognition process.

It is also noted that the 2-D correlation proposed in (3.11) is different from that

defined in the typical digital signal and/or image processing texts, say in 001. There, both

f(m,n) and g(m,n) are first extended into 2-D arrays of 2P — 1 by 2Q — I for the sake

of periodicity in both spatial and frequency domains. In our case, there is no such need.

But in terms of recognition ability, these two correlation techniques are the same.

Euclidean distance is another way to measure the distance between two vectors: x

and w.. The definition is as follows:

(3.12)

We will discuss it in detail in the next section.

It is worth noting that when using the Euclidean distance measure, the smaller

value indicates the two images are more similar to each other. With the correlation, it is

just the opposite: The larger the correlation, the more similar the two images are, it is

easy to prove that zero Euclidean distance implies that the correlation equals to I. In fact,

having the Euclidean distance equal to 0 is just a special case of the correlation equals to

I (when there is no shift).

39

Table 3.2 Correlation between letter "A" and itself

y=6 y=5 y=4 y=3 y=2 y=1 y=0 y=-1 y=-2 y=-3 y=-4 y=-5 y=-6
0.00 x=8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

x=7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x=6 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00
x=5 0.00 0.00 0.00 0.06 0.06 0.06 0.00 0.06 0.06 0.06 0.00 0.00 0.00
x=4 0.00 0.00 0,06 0.06 0.06 0.12 0.19 0.12 0.06 0.06 0.06 0.00 0.00
x=3 0.00 0.00 0.12 0.06 0.12 0.12 0.38 0.12 0,12 0.06 0.12 0.00 0.00
x=2 0.00 0.00 0.19 0.19 0.19 0.19 0.38 0.19 0.19 0.19 0.19 0.00 0.00
x=1 0.00 0.00 0.25 0.19 0.12 0.25 0.50 0.25 0.12 0.19 0.25 0.00 0.00
x=0 0.00 0.00 0.31 0.12 0.25 0,25 1.00 0.25 0.25 0.12 0.31 0.00 0.00
x=-1 0.00 0.00 0.25 0.19 0.12 0.25 0.50 0.25 0.12 0.19 0.25 0.00 0.00

x=-2 0.00 0.00 0.19 0.19 0.19 0.19 0,38 0.19 0.19 0.19 0.19 0.00 0.00

x=-3 0.00 0.00 0.12 0.06 0.12 0.12 0.38 0.12 0.12 0.06 0.12 0.00 0.00

x=-4 0.00 0.00 0.06 0.06 0.06 0.12 0.19 0.12 0.06 0.06 0.06 0.00 0.00

x=-5 0,00 0.00 0.00 0.06 0.06 0.06 0.00 0.06 0.06 0.06 0.00 0.00 0.00
x=-6 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00

x=-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

x=-8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3.3 Correlation between letter "A" and letter "B"

y=6 y=5 y=4 y=3 y=2 y=1 y=0 y=-1 y=-2 y=-3 y=-4 y=-5 y=-6
x=8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x=7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x=6 0.00 0,00 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.00 0.00 0.00
x=5 0.00 0.00 0.11 0.06 0.06 0.06 0.17 0.06 0.06 0.06 0.06 0.00 0.00
x=4 0.00 0.00 0.17 0.11 0.17 0.22 0.45 0.17 0.11 0.06 0.11 0.00 0.00
x=3 0.00 0.00 0.22 0.17 0.17 0.17 0.34 0.17 0.17 0.17 0.11 0.00 0.00
x=2 0.00 0.00 0.28 0.17 0.17 0.17 0.45 0.17 0.17 0.17 0.17 0.00 0.00
x=1 0.00 0.00 0.28 0.17 0.22 0,34 0.78 0.22 0.17 0.06 0.22 0.00 0.00
x=0 0,00 0.00 0.28 0.22 0.22 0.28 0.50 _0.28 0.17 0.22 0.17 0.00 0.00
x=-1 0.00 0.00 0.22 0.22 0.22 0.22 0.34 0.22 0.22 0.22 0.11 0.00 0.00
x=-2 0.00 0.00 0.17 0.17 0.28 0.34 0.56 0.22 0.22 0.06 0.11 0.00 0.00
x=-3 0.00 0.00 0.11 0.11 0.11 0.17 0.22 0.17 0.06 0.11 0.06 0.00 0.00
x=-4 0.00 0.00 0.06 0.11 0,11 0.11 0.06 0.11 0.11 0.11 0.00 0.00 0.00
x=-5 0.00 0,00 0.00 0.06 0.11 0.11 0.11 0.06 	 0.11 0.00 0.0() 0.00 0.00

x=-6 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.06 0.00 0.00 0.00 0.00 0.00

x=-7 0.00 0.00 0.00 	 0.00 0.00 0.00 0.00 0.00 0.00 	 0.00 0.00 0.00 0.00

x=-8 0.00 0.00 0,00 0.00 0.00 	 0.00 0.00 0.00 0.00 0.00 0.00 	 0.00 0.00

40

Table 3.4 Correlation between letter "A" and shifted letter "A"

y=6 y=5 y=4 y=3 y=2 y=1 y=0 y=-1 y=-2 y=-3 y=-4 y=-5 y=-6

x=8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
x=7 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00 0.00
x=6 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.00 0.06 0.06 0.06 0.00 0.00
x=5 0.00 0.00 0.00 0.06 0.06 0.06 0.12 0.19 0.12 0.06 0.06 0.06 0.00
x=4 0.00 0.00 0.00 0.12 0.06 0.12 0.12 0.38 0.12 0.12 0.06 0.12 0.00
x=3 0.00 0.00 0.00 0.19 0.19 0.19 0.19 0.38 	1 0.19 0.19 0.19 0.19 0.00
x=2 0.00 0.00 0.00 0.25 0.19 0.12 0.25 0.50 0.25 0.12 0.19 0.25 0.00
x=1 0.00 0.00 0.00 0.31 0.12 0,25 0.25 1.00 0.25 0.25 0.12 0.31 0.00
x=0 0.00 0.00 0.00 0.25 0.19 0.12 0.25 0.50 0.25 0.12 0.19 0.25 0.00
x=-1 0.00 0.00 0.00 0.19 0.19 0.19 0.19 0.38 0.19 0.19 0.19 0.19 0.00

x=-2 0.00 0.00 0.00 0.12 0.06 0.12 0.12 0.38 0.12 0.12 0.06 0.12 0.00

x=-3 0.00 0.00 0.00 0.06 0.06 0.06 0.12 0.19 0.12 0.06 0.06 0.06 0.00

x=-4 0.00 0.00 0.00 0.00 0.06 0.06 0.06 0.00 0.06 0.06 0.06 0.00 0.00

x=-5 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.06 0.00 0.00

0.00

x=-6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

x=-7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00

x=-8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3.5 Shift-Invariant Modified Kohonen Network

In the Kohonen network, the square of the Euclidean distance [27] (referred to as the

Euclidean distance measure in the rest of this thesis) is used to measure the distances

between an input vector x and various weight vectors w in both the learning and

classification processes:

(3.13)

where j is an index for neurons in the Kohonen neuron layer, x, and 	are the ith

components of x and w j respectively. It works effectively when there is no relative shift

between the input image pattern x and weight pattern w j. However, in the case when

some shift does happen, this measure is not suitable. To see this, consider a simple

example shown in Fig. 3.4 There the letter "A", the shifted letter "A" (1 pixel shift both

horizontally and vertically), and the letter "B" are all shown with a dimension of 9x7.

41

These three binary images are normalized such that the sum of square of all the intensity

values equals to 1. Under this circumstances, the Euclidean distance measure between

letter "A" and its shifted letter "A" is as large as 1.500, whereas the distance between

letter "A" and "B" is 0.994. Now refer to Table 1. Note that the Euclidean distance

measure is zero when two patterns are identical. From this example, we see that the

Euclidean distance measure between an object image and its shifted version is larger than

that between two different object images. This is quite different from what the human

vision system (HVS) perceives. In recognition, it is natural for the HVS to consider an

object in an image and its shifted version in another to be identical. Obviously, it is using

the Euclidean distance measure that causes this shift-variant problem. In order to make a

neural network work in a more similar way to the HVS, we propose to use a 2-D

correlation function to replace the Euclidean distance measure in the Kohonen network.

The 2-D correlation function proposed in our work is defined as follows:

(3.14)

where f (m,n) is an unknown input pattern array and g(m,n) is a reference pattern or

template array. Both of them are of P x Q. It is assumed that f (m,n) and g(m,n) are equal

to 0 if m P or m < 0, or n 	Q or n < 0, —(P-1)≤x≤P-1 and -(Q-1)≤y≤Q-1. The

correlation is utilized to evaluate the match between an unknown pattern and a reference

pattern. Calculating the correlation defined in (3.14) for all the possible (x, y) is

equivalent to shifting the reference pattern all over the possible locations on the unknown

pattern and find the similarity measure. During the process, if and only if the two patterns

are identical and overlapped, f o g yields the largest possible correlation value 1.

42

Otherwise, the correlation between any two different patterns cannot reach this maximum

value, as shown in Table 3.1. As a result, we can determine if the input pattern is identical

to or is a shifted version of the reference pattern. That is, we can achieve the shift-

invariant capability in recognition. Furthermore, if f(m,n) is a shifted version of g(m,n),

the relative position (x, y) between f and g can be found. However, this is not of direct

interest in this recognition process.

Network learning: The network we used is of the same structure as a conventional

Kohonen network. The input buffer layer is of P x Q, which is connected to the input

image f (m,n). The neuron layer consists of S nodes, each of which is connected to the

input buffer layer through weights w, (m, n) where j = 0, 1, 2, ..., S — 1 and m, n are

spatial coordinates of pixels in the input image. In the learning, only the original patterns

are required as input to the network. We do not input any shifted patterns to the network

in the learning in order to minimize the number of patterns the neural network needs to

memorize, thus decreasing the size of the neuron layer. The network learning algorithm

consists of the following five steps: initialization, input, correlation, winner selection and

weights update. They are the same as that for the conventional Kohonen network [23]

except that in correlation, the Euclidean distance measure in (3.13) is replaced by the

correlation defined in (3.14) with x and y equal to 0. The learning process continues until

the correlation values between all the input patterns and their respective weight

arrays, f o wj , satisfy a certain accuracy criterion. The criterion value, α, is set to a

number close to 1. That is, α=1-β, where β is a small positive number. In our

experiments, we let 0.0l >=β>=0.001.

43

Network classification: In the letter recognition, a part of which has been shown in Fig.

3.4, the correlation values between the input pattern f (m,n) and the jth weight

array w j (m,n) , j = 1,2,...,S-1, is calculated using (2) with g(m, n) replaced by w1(m,n)

Nodej corresponding to the maximum correlation arg max{f (x, y) 0 w j(x ,y)} is selected

as the winner of the network. The unknown input image pattern is then classified as the

pattern class represented by the jth node.

Experimental results and discussion: In the experiments, all the capital English letters A,

B, C 	Z and numeric characters 0, 1, 	9 form a set of training image patterns. The

results show that in the pattern recognition, the proposed neural network outperforms the

original Kohonen network in terms of shift-invariant classification capability. That is, our

network successfully clusters letter "A" and shifted letter "A", shown in Figure 3.4, as the

same pattern. Other images and their respective shifted versions are also correctly

recognized as the same pattern class.

Figure 3.5 Maximum shifting with sx and sy equal to 3

By comparing (3.13) with (3.14), we observe that more computation is required

for the correlation than for the Euclidean distance measure, especially when the shift

quantities x and y are large. However, in practice, it is not necessary to compute the

44

correlation all over the theoretical range of —(P-1) ≤x ≤P-1 and -(Q-1) ≤y ≤Q-1 as defined

in (3.14). Instead, the computation in (3.14) is only required to be conducted within a

range of 	 and —sy 	≤y ≤sy, where sx ,sy are the expected maximum horizontal

and vertical shifts of the object in an image, as shown in Fig. 3.5. Usually sx ands,. are

much smaller than P and Q, respectively. As a result, the time spent in correlation

calculation does not increase drastically. To avoid largest and s y , it is recommended that

some pre-processing techniques be used to make sure that the unknown shifted image

patterns are located within a reasonable range. These techniques have been developed in

our research on digital gate symbol recognition and will be discussed in other

publications.

Because the proposed network is shift-invariant, the shifted image patterns are no

longer- different pattern categories. Consequently, the number of neurons are decreased

remarkably. if we assume that one extra node in the Kohonen neuron layer is needed for

each horizontal and vertical shifted pattern, and N is the number of categories the network

is expected to classify, then the total reduction in neurons by using our proposed network

is: N • [(2sx, +1) . (2sy +1) —1].

3.6 Rotation-Invariant Implementation

The proposed Kohonen network is capable of recognizing an image pattern rotated by

90°xi, 1=0, 1, 2, 3. See Figure 3.6.

45

Figure 3.6 Rotation-invariant recognition of letter "A" with 0°, 90°, 180°, 270°

To achieve this type of rotation-invariance, we simply rotate wj (m, n) array by the same

degree in the recognition procedure. This capability is useful in recognizing the digital

gate symbols and characters in electronic drawings. In the electronic drawings, the gate

symbols and characters may be in different orientation, which is 90°, 180°,or 270°rotation

from the original form. The training of this shift-invariant Kohonen neural network is

same as that of the shift-invariant network. We do not input any rotated patterns but the

patterns with 0° to the network in the training in order to minimize the number of patterns

the neural network needs to memorize, thus decreasing the size of the neuron layer. In the

classification, the weight arrays are rotated instead of rotating the input pattern. Then,

calculate the correlation between the input and the weight arrays. Finally pick up the

largest correlation value which satisfies accuracy criterion. This value corresponds to the

46

found input pattern. As a result, the rotation-invariant capability is achieved while no

additional neurons in the Kohonen neuron layer are increased. The total neuron reduction

compares with the conventional Kohonen neural network with the same capability is 4

times N [(2 + 1)
	

+1) —1] .

3.7 Summary

The Euclidean distance measure is widely used in the Kohonen. neural network which

cannot classify an image pattern and its shifted version into the same category. En this

chapter, a modified Kohonen neuron network using a 2-D correlation, its training and

classification procedures are presented. Both the theoretical analysis and the experimental

results demonstrate its shift-invariant capability in image pattern recognition. As a result,

the modified Kohonen network and any subsequent network can be significantly

simplified. It is also shown that the modified Kohonen network even possesses some

limited (i.e., for 90°, 180°, 270° only) rotation-invariant recognition ability. This

advancement is achieved at the expense of more computation. However, when the

translation is not very large (which can be assured by using some pre-processing

techniques), this increase in computation is minor.

CHAPTER 4

FEEDFORWARD NEURAL NETWORK WITH
BACK-PROPAGATION LEARNING

4.1 Introduction

Since 1957, when psychologist Frank Rosenblatt proposed the "Perceptron" [41-47], a

pattern recognition device with learning capabilities, the hierarchical neural network has

been the most widely studied form of network structure. A hierarchical neural network is

one that links multiple neurons together hierarchically. The special characteristic of this

type of network is its simple dynamics. That is, when a signal is input into the input layer,

it is propagated to the next layer by the interconnections between the neurons. Simple

processing is performed on this signal by the neurons of the receiving layer prior to its

being propagated on to the next layer. This process is repeated until the signal reaches the

output layer completing the processing process for that signal.

The manner in which the various neurons in the hidden layers process the input

signal will determine the kind of output signal it is transformed. Then hierarchical

network dynamics are determined by the weight and threshold parameters of each of their

units. If input signals can be transformed to the proper output signals by adjusting these

parameters, then hierarchical networks can be used effectively to perform information

processing.

Since it is difficult to accurately determine multiple parameter values, a learning

method is employed. This involves creating a network that randomly determines

parameter values. This network is then used to carry out input-to-output transformations

for actual problems. The correct final parameters are obtained by properly modifying the

47

48

parameters in accordance with the errors that the network makes in the process. Quite a

few such learning methods have been proposed. Probably the most representative of these

is the error back-propagation learning method [48-52] proposed by D. E. Rumelhart et al.

in 1986. This learning method has played a major role in the recent neural network

development.

In our system, we used back-propagation algorithm for the feed-forward neural

network. In the next several sections, we will introduce perceptrons, multilayer neural

network, its designing, and the back-propagation algorithm. We mainly focus on the

structure of this network: How many layer will it be, and how many nodes should be on

each layer? Because there is no specific answer to these problems, we selected to use

simulation method to get a better answer. The simulation results will be shown.

4.1.1 Artificial Neuron: Perceptron

Figure 4.1 Percceptron

Perceptron (see Figure 4.1) is a basic element of the feed-forward neural network. It is

originated by Rosenblatt in 1957, which caused significant excitement among researches

of pattern recognition theory. The reason for the great interest in perceptron was

(4.1)

49

development of mathematical proofs showing that perceptrons, when trained with linear

separable [53] training sets, would converge to a solution in a finite number of iterative

steps. In its basic form, the perceptron learns a linear decision function that categorize

linearly separable training sets.

Figure 4.1 shows schematically the proceptron model for two pattern classes. The

response of this basic device is based on a weighted sum of its inputs, that is,

which is a linear decision function with respect to the components of the pattern vectors.

The coefficients wi, i =1, 	n, n + 1, called weights, modify the inputs before they are

summed and fed into the threshold element. In this sense, weights are analogous to

synapses in the human neural system. The function that maps the output of the summing

junction into the final output of the device sometimes is called the activation function.

When d(x) > 0, the threshold element causes the output of the perceptron to be +I,

indicating that the pattern x was recognized as belonging to class w 1 . The reverse is true

when d(x) < 0. When d(x) = 0, x lies on the decision surface separating the two pattern

classes, giving an indeterminate condition. The decision boundary implemented by the

perceptron is obtained by setting equation 4.lequal to zero:

(4.2)

(4.3)

which is the equation of a hyperplane in n dimensional pattern space. Geometrically, the

first n coefficients establish the orientation of the hyperplane. Whereas the last

(4.5)

50

coefficient, wn+ 1 =0, the hyperplane goes through the origin of the pattern space.

Similarly, if wj = 0, the hyperplane is parallel to the x1 axis,

The output of the threshold element in Figure 4.1 depends on the sign of' d(x).

Instead of testing the entire function to determine whether it is positive or negative, we

could test the summation part of equation (4.1) against the term wn+1, in which case, the

output of the system would be

1=1

(4.4)

Another formulation commonly found in practice is to augment the pattern vectors

by appending an additional (n +1)st element, which is always equal to 1, regardless of

class membership. That is, an augmented pattern vector y is created from a pattern vector

x by letting yi = xi, 	i = 1, n, and appending the additional element yn+1 =1. Equation

(4.1) then becomes

where y=(y 1, y2,• • • •yn, 1)7 is now an augmented pattern vector, and w = (w1, w2,• • • •, wn,

wn+1)T is called the weight vector. This expression is usually more convenient in terms of

notation.

In the elementary perceptron, there are no hidden neurons. Consequently, it cannot

classify input patterns that are not linearly separable. However, non-linearly separable

[54] patterns are of common occurrence. For example, it arises in the XOR problem,

which may be viewed as a special case of a more general problem. In the XOR problem,

51

we need consider only the four corners of the unit square that correspond to the input of

patterns (0,0), (0,1), (1,1), and (1,0). The first and the third input patterns are in class 0, as

shown by 0 XOR 0 = 0, and 1 XOR 1 = 0. The input patterns (0,0) and (1,1) arc at the

opposite corners of the unit square, and they produce the identical output 0. On the other

hand, the input patterns (0,1) and (1,0) are also at opposite corners of the square, but they

are in class 1, as shown by 0 XOR 1 = 1 and 1 XOR 0 = 1.

We know that the use of a single neuron with two inputs results in a straight line

for decision boundary in the input space. For all points on one side of this line, the neuron

outputs 1, while for all points on the other side of the line, it outputs 0. The position and

orientation of the line in the input space are determined by the weights of the neuron

connected to the input nodes, and the threshold applied to the neuron. it is clear that we

cannot construct a straight line for a decision boundary so that (0,0) and (1,1) lie in one

decision region. Namely, an elementary perceptron cannot solve the XOR problem.

4.1.2 Multilayer Perceptrons

The perceptron learning rule [55] of Frank Rosenblatt were designed to train single-layer

proceptrons. As we have discussed in the last section, these single-layer perceptrons

suffer from the disadvantage that they are only able to solve linearly separable

classification problems. For that reason, multilayer artificial networks are used for

interesting problems that require greater discrimination. The key to these multilayer

networks is the learning algorithms that allow the training of the weights on the hidden

layers, the layers of neurons that are not directly connected to the inputs or the outputs.

52

Figure 4.2 Three-layer Perceptron

Figure 4.2 is a three-layer perceptron structure. The nonlinearity normally used is the

sigmoid. The simplicity of the derivative of the sigmoid provides a nice learning law. The

reason that only three layers are shown is that three layers were believed to be the most

required for any arbitrary classification problem. More recently it has been shown by

Cybenko [56] and others that one hidden layer is sufficient for any arbitrary

transformation, given enough nodes. Researchers still often use multiple hidden layers

because they may sometimes provide advantages in quicker learning.

The reason to use multilayer networks is to allow the formation of complex

decision regions in the feature space. The key, of course, is a learning algorithm to find

correct set of weights. The most common algorithm used is called the backward error

53

propagation learning rule, sometimes just "back-propagation". We will discuss it in the

next section.

4.2 Back-Propagation Training Algorithm

Back-propagation is a systematic method for training multilayer artificial neural network.

It was invented independently by Bryson and Ho [57],Werbos [58], Parker [59], and

Rumelhart, Hinton and Williams [60]. A closely related approach was proposed by Le

Cun [61]. The training algorithm is an iterative gradient algorithm designed to minimize

the mean square error between the actual output of a multilayer feed-forward perceptron

and the desired output.

We analyze the delta rule with N nodes on the output layer of a network, the error

has to be summed over all nodes The idea is to perform a gradient descent on the error

considered as a function of the weights. All the weights are taken into account for both

hidden and output nodes. The hidden nodes are in the intermediate layer(s) which we do

not have direct access to for the purposes of training. The output nodes are the ones which

tell us the net's response to an input and to which we may show a supervisory or target

value during training.

The analysis for the output nodes is the delta rule given in the following equation:

(4.6)

where a superscript is introduced to denote which node is being described. Because the

gradient of the error with respect a weight on the jth node can only be affected by the part

which contains reference to that node.

54

In order to see clearly, it is useful to split the right hand side of equation (4.6) in

the following way. The term (tJ — yJ) represents a measure of the error on the jth node.

The term σ'(a')relates to how quickly (rate of change or slope) the activation can

change the output (and hence the error). If this is small, then we are on one of the ends of

the sigmoid and changing the activation won't change the output much. If, however, it is

large, then we can expect a rapid change for a given change in activation. The factor of

x/ is related to the amount that the ith input has affected the activation. If it is zero then

that input cannot be responsible for the error and so the weight change should also be

zero. If on the other hand, it is large, then the ith input had a large contribution to the

activation which gave the error and so the weight needs to be changed by a

correspondingly larger amount.

To summarize: x; tells us how much the ith input was 'responsible for' the

activation; σ'(a') tells us how fast the output is changing in response to changes in the

activation and (t' — y') is the error on the jth node. It is therefore reasonable that the

product of these gives us something that is a measure of the rate of change (slope) of the

error with respect to the weight 	.Using these notations, we may combine two of these

elements as follows:

(4.7)

The delta rule for output units may now be written:

(4.8)

Consider now, the two layer net, in particular, the kth hidden node. The problem in

assigning a set of weight changes to this type of node is related to how much influence

55

has this node had on the error. The resulting weight changes will be a result of including

the right combination of 'responsibility' factors, rates of change and errors in the same

way that these occurred for the output nodes. This however does not give insight. The

purpose is just to see on where the resulting formula comes from. For the ith input to the

hidden node, the value of the input will play a similar role as before so we might write:

(4.9)

and the task now is to find what goes into the factor δk . For this, let us consider just a

single output from the hidden node to an output node.

Figure 4.3 Diagram of kth hidden and jth output nodes

The effect this node has on the error depends on two things: first, how much it can

influence the output of node j and, via this, how the output of node j affects the error. The

more k can affect j, the greater the effect to be on the error, but this will only be

significant ifj is having some effect on the error at its output. The contribution that node j

makes towards the error is, of course, expressed in the 'delta', for that node δ' . The

influence that k has on j is given by the weight wk' . Therefore we may expect the find the

product wkJ δJ in the expression for δk . However, the kth node may be giving output to

several nodes and so the contributions to the error from all of these must be taken into

56

account. Thus, we must sum these products over all j. Finally, the factor σ'(ak) will occur

for exactly the same reasons that it did for the output nodes. This results in the following

expression for δk :

(4.10)

where l k is the set of nodes which take an input from the hidden node k. This set is called

the fan-out of k. Using this in equation (4.9) gives us a means for calculating the weight

changes for the hidden nodes.

Next we develop a training algorithm using the rules we have developed. This

basic iteration is as follows:

Repeat

for each training pattern

train on that pattern

end for loop

until the error is acceptable low

Before examining the step 'train on a pattern' a couple of points need comment. First, it is

implied in the algorithm defined above that there is a fixed presentation sequence of

training vectors. The alternative is to present vectors randomly. If we were to imagine our

network in a real learning environment then this second option is more realistic.

Empirically, however, it is often found that training is faster if the vectors are ordered in

some way and that order is maintained in presentation. Second, what is an acceptable

error? One possible definition for Boolean training sets might be to ensure that all output

nodes had responses in the correct one of the pair of intervals [0, 0.1], [0.9, 1] as defined

57

by the target, since then, if we were to replace the sigmoid with a hard limiting threshold,

the 'correct' response would be guaranteed. Another might simply prescribe sonic low

value like 0.001. Whatever approach is used, one has to interpret the significance of the

criterion.

The main step of training on a pattern may now be expanded into the following steps.

(1) Present the pattern at the input layer.

(2) Let the hidden units evaluate their output using the pattern.

(3) Let the output units evaluate their output using the result in step (2) from the

hidden units.

The steps (1) ~ (3) are collectively known as the forward pass.

(4) Apply the target pattern to the output layer.

(5) Calculate the δ's on the output nodes according to equation (4.7).

(6) Train each output node using gradient descent equation (4.8).

(7) For each hidden node, calculate its δ according to equation (4.10).

(8) For each hidden node, use the δ found in step (7) to train according to gradient

descent equation (4.9).

Steps (4)—(8) are collectively known as the backward pass

Step (7) involves propagating the δ's from those output nodes in the hidden unit's

fan-out back towards this node so that it can process them. This is where the name of the

algorithm comes from.

58

4.3 The Network Capability and Us Structure

Multilayer perceptrons are feed-forward with one or more layers of nodes between the

input and output nodes. These additional layers contain hidden units or nodes that are not

directly connected to both the input and output nodes. A three-layer perceptron with two

layers of hidden units is shown in Figure 4.2. Mulitilayer perceptrons overcome many of

the limitations of single-layer perceptrons, but were generally not used in the past because

effective training algorithms were not available. This recently changed with the

development of new training algorithms [61]. Although it cannot be proven that these

algorithms converge as with single layer perceptrons, they have been shown to be

successful for many problems of interest [61].

The capabilities of multilayer perceptrons come from the nonlinearities used

within nodes. If nodes were linear elements, then a single-layer net with appropriately

chosen weights could exactly duplicate those calculations performed by any multilayer

net. The capabilities of perceptrons with one, two, and three layers that use hard-limiting

nonliearties are illustrated in Figure. 4.4. The second column in this figure indicates the

types of decision regions that can be formed with different nets. The next two columns

present examples of decision regions which be formed for the exclusive OR problem and

a problem with meshed regions. The rightmost column gives examples of the most

general decision regions that can be formed.

We have known that a single-layer perceptron forms halfplane decision regions. A

two-layer perceptron forms any, possibly unbounded, convex region in the space spanned

the inputs. Such regions include convex polygons sometimes called convex hulls, and the

unbounded convex regions shown in the middle row of Figure 4.4. Here the term convex

59

means that any line joining points on the border of a region goes only through points

within that region. Convex regions are formed from intersections of the half-plane regions

formed by each node in the first layer of the multilayer perceptron. Each node in the first

layer behaves like a single-layer perceptron and a "high" output only for points on one

side of the hyperplane formed by its weights and offset. If weights to an output node from

N1 first-layer nodes are 1.0, and the threshold in the output node is Ni - c where 0<c <I,

then the output node will be "high" only if the outputs of all first-layer nodes are "high".

This corresponds to performing a logical AND operation in the output node and results in

a final decision region that is intersection of all the half-plane regions formed in the first

layer. intersections of such half planes form convex regions as described above. These

convex regions have at the most as many sides as there are nodes in the first layer.

Figure 4.4 Type of decision regions of different layer network (Adapted from [42])

60

This analysis provides some insight into the problem of selecting the number of

nodes to use in a two-layer perceptron. The number of nodes must be large enough to

form a decision region that is as complex as is required by a given problem. It must not be

so large that the many weights required can not be reliably estimated from the available

training data. For example, two nodes are sufficient to solve the exclusive OR problem in

the second row of Figure 4.4. No number of nodes, however, can separate the meshed

class regions in Figure 4.4 with a two-layer perceptron.

A three-layer perceptron can form arbitrarily complex decision regions and can

separate the meshed classes as shown in the bottom of Figure 4.4. It can form regions as

complex as those formed using mixture distributions and nearest-neighbor classifiers.

This can be proven by construction. The proof depends on partitioning the desired

decision region into small hypercubes (squares when there are two inputs). Each

hypercube requires 2N nodes in the first layer (four nodes when there are two inputs), one

for each side of the hypercude, and one node in the second layer that takes the logical

AND of the output from the first layer nodes. The outputs of second-layer nodes will be

"high" only for inputs within each hypercube. Hypercubes are assigned to the proper

decision regions by connecting the output of each second-layer node only to the output

node corresponding to the decision region that nodes hypercube is in and performing a

logic OR operation in each output node. A logical OR operation will be performed if

these connection weights from second hidden layer to the output layer are one and

thresholds in the output nodes are 0.5. This construction procedure can be generalized to

61

use arbitrarily shaped convex regions instead of small hypercubes and is capable of

generating the disconnected and non-convex regions shown at the bottom of Figure 4.4

The above analysis demonstrates that no more than three layers are required in

perceptron-like feed-forward networks because a three-layer net can generate arbitrarily

complex decision regions.

4.4 Layers and Nodes Specification

In this section, we involve the design of the neural network for our specific purpose. This

network should be able to recognize eight different gate symbols (shown in APPENDIX

B): AND, OR, XOR, NAND, NOR, XNOR, NOT, and Buffer. Therefore, the output layer

of the network should have 8 neurons corresponding to those pattern classes.

From the discussion in the last section, we know that a three-layer network .can

implement decision surfaces of arbitrary complexity. Therefore we selected a 3-layer

structure in the system (refer to APPENDIX C).

The first layer is a Kohonen neural network. Its input buffer layer is identical to

the size of input gate symbol patterns, which is of 32x32(1024 pixels). The size of the

Kohonen neuron layer is selected 64 in order to make the classification space large

enough. This is 8 times of the gate symbol type.

The third layer is the last ayer. 8 neurons are specified in this layer corresponding

to the number of pattern classes the network desired to recognize.

As for the number of neurons in the second layer (hidden layer), it is not easy to

decide at the time when we began designing the neural network. Some people took the

average number [10] of neurons in the input and output layers. Other people took the

62

square root [66] of that number. Still other people [33] suggested to make the number of

neurons equal to about two-thirds of the number in the input layer. However, most of

them were by experience. In fact, the number of neurons in the hidden layer may change

the training time as well as the ability of the neural network to generalize. Often there is a

wide range in the number of neurons in the hidden layer that can be used successfully.

Therefore, we decided to utilize an optimization methodology for determining the optimal

number of neurons in the hidden layer.

Usually, increasing the size of the hidden layer improves the networks accuracy

on the training set. But decreasing the size of the hidden layer generally improves

generalization and reduces the processing time. So an optimal size can be attained by a

balance between the objectives of the accuracy and generation for the particular

application.

We did a series of simulations to obtain the optimal size of the hidden layer. The

network we worked on is a two layer feed-forward network. The input buffer is of 64

node, which comes from the output of the Kohonen neural network. The output layer is a

8-node layer corresponding to 8 different gate symbols we want to recognize.

The hidden layer nodes we selected for the simulation were 10, 15, 20, 25, 30, 3

40 ;45, 50, 55, 60. 65. The simulation results are shown in Figure 4.5 — Figure 4.16. In the

simulation, we used 40 patterns in the network training for each 8 different gate symbols,

they were 320 in all. We also used 4 patterns in the testing for each 8 different gate

symbols, they were 32 in all.

In the simulation, we randomly (not sequentially) presented the training patterns

to the input layer to train the network. The iterative times were 200, 400, 800, 1,600,

63

4,000, 10,000 and 20,000, respectively. Back-propagation algorithm was used to adjusted

all the weights. Then using these same patterns to test the percentage correct recognition

rate, shown in each simulation result in Figure 4.5 — 4.16. Finally we input the testing

patterns which had never appeared in the training to test the generalization capability of

the network.

Figure 4.5 Simulation Result for 10 Nodes in the Hidden Layer

Figure 4.6 Simulation Result for 15 Nodes in the Hidden Layer

64

Figure 4.7 Simulation Result for 20 Nodes in the Hidden Layer

65

Figure 4.8 Simulation Result for 25 Nodes in the Hidden Layer

Figure 4.9 Simulation Result for 30 Nodes in the Hidden Layer

66

Figure 4.10 Simulation Result for 35 Nodes in the Hidden Layer

Figure 4.11 Simulation Result for 40 Nodes in the Hidden Layer

67

Figure 4.12 Simulation Result for 45 Nodes in the Hidden Layer

Figure 4.13 Simulation Result for 50 Nodes in the Hidden Layer

Figure 4.14 Simulation Result for 55 Nodes in the Hidden Layer

68

Figure 4.15 Simulation Result For 60 Nodes in the Hidden Layer

69

Figure 4.16 Simulation Result for 65 Nodes in the Hidden Layer

70

From these simulations, we can find that when we increase the nodes in the

hidden layer, both the correction rate of the training set and the testing set increase, see

Figure 4.5 — 4.11. This shows the importance of neurons as the basic unit to memorize

what they have learned in the learning. In these figures, we can also find that the more

times they learn, the better capability they have.

With the increase of the nodes in the hidden layer, the recognition accuracy and

the generalization capability increase to the maximum 100% in Figure 4.11. Then., when

the nodes are further increased, the correct recognition rate for the training set keeps the

same, while that for testing set goes down. Refer to Figure 4.12 — 4.16. This indicates

that with the further increase of the hidden nodes, the recognition accuracy does not

change but the generalization capability decreases.

Based on the simulation, we tested the network with the hidden node around 40

and finally found the optimal point is that hidden nodes are equal to 42 in our specific

system.

4.5 Summary

The number of neurons in the input and output layer are determined by the nature of the

problem. In our neural network recognition system, we utilized a 64—node (output of the

Kohonen network) as an input and it maps the inputs into 8 categories, thus 8 neurons in

the output layer. Determining the proper number of the neurons for the hidden layer has

to be accomplished through simulation. Too few neurons in the hidden layer prevent it

from correctly mapping inputs to outputs while too many impede generalization and

increase training and processing time. Too many neurons may allow the network to

71

memorize the patterns presented to it without extracting the pertinent features for

generalization. Thus, when presented with new patterns, the network is unable to process

them properly, because it has not discovered the underlying principles of the system.

From the simulation, 42 hidden nodes are selected.

CHAPTER 5

TRAINING THE NETWORK WITH NOISE

Apply a little noise to the training set will generally produce a network that is robust to

noise inputs. Although a network trained with no noise may still do well with noise inputs

in practice, the one trained with an appropriate level of noise will do much better. In this

chapter, we discuss the training with noise for the improvement of our neural network.

5.1 Generalization of the Neural Network

Generalization capability of a neural network is that it makes predictions for cases that

are not. in the training set. In most cases, the multilayer network is trained with a finite

number of patterns. This training set is normally representative of a much larger class of

possible input-output pairs. It is important that the network successfully generalize what it

has learned to the total population. Consider the situation in pattern space shown in

Figure 5.1.

Figure 5.1 Two-Class Classification

72

73

The training pattern are shown by solid dots and there are two classes A and B. The

circles in each class represent vectors which were not shown during training; these are

test patterns. Representatives from each class of test data have been classified correctly,

even though they were not seen during the training. This is the power of the network

approach and one of the main reasons for using it. The net is said to have generalized

from the training data.

Noise in the actual data is never a good thing, since it limits the accuracy of

generalization that can be achieved no matter how extensive the training set is. On the

other hand, injecting artificial noise into the inputs during training is one of several ways

to improve generalization when you have a small training set. Certain assumptions about

noise are necessary for theoretical results. Usually, the noise distribution is assumed to

have zero mean and finite variance. Noise in the inputs limits the accuracy of

generalization, but in a more complicated way than does noise in the targets. In a region

of the input space where the function being learned is fairly flat, input noise will have

little effect. In regions where that function is steep, input noise can degrade generalization

severely, Furthermore, if the target function isy = f (x) but you observe noisy inputs x +

d, you cannot obtain an arbitrarily accurate estimate of f (x) given x + d, no matter how

large a training set you use.

5.2 Training the NeuralNetwork with Uniform Distributed Noise

We applied some random noise which is uniformly distributed on the image patterns

either to test or re-train the neural network. By testing the neural network, we may know

the performance of a neural network. In the training, by adding some noise, the

74

generalization capability of a neural network will improve to some extent. In other words,

If we have two cases with similar inputs, the desired outputs will usually be similar. That

means we can take any training case and generate new training cases by adding small

amounts of noise to the inputs. As long as the amount of noise is sufficiently small, we

can assume that the desired output will not change enough to be of any consequence, so

we can just use the same target value. The more training patterns are expected. This is

one of the convenient ways to improve training. Obviously, too much noise will

obviously produce garbage, while too little noise will have little effect.

For the performance testing, we generated 20 different noise level patterns for

each 8 gate symbols, 160 in all. The noise levels are 2.5%, 5.0%, 7.5%, 10.0%, 12.5%,

15.0%, 17.5%, 20.0%, 30.0% and 40.0%, respectively. The noise is uniformly distributed

over the each pattern. The neural network trained with noise free patterns was tested by

the above noise patterns. The result is shown in Figure 5.2.

Then we generated noise pattern set for the training. Each gate symbols were

superposed with different level uniform distributed noise. After the training by each

level's noise, the testing sets were used to measure the performance of the network. The

results are shown in Figure 5.3. We can find that the performance gets better and better

with the noise level get higher until 10.0% level. Noise of 12.5% level makes the network

performance become worse, refer to Figure 5.3. This indicates that the network cannot

adapt itself sufficiently to the larger variations at the higher noise levels with the given

training patterns.

Figure 5.2 Uniform Distributed Noise Testing in Noise-Free Weight Network

Figure 5.3 Training with Uniform Distributed Noise

75

76

5.3 Training the Neural Network with 8-Neighboring Noise

Unlike the training with the uniform distributed noise patterns in the previous section, we

generated another kind of noise pattern which was superposed to the noise-free image

patterns in the training. This type of noise pattern is quite similar to the distortion

generated by the scanner when an electronic drawing is scanned.

We generated those patterns as follows. Each contour pixel in a noise-free shape

was assigned a probability P of retaining its original coordinate in the image plane a

probability R =1 — P of being randomly assigned to the coordinates of one of its eight

neighboring pixels. The degree of noise increased by decreasing P (that is, increasing R).

We generated 2 sets of noisy data. The first consisted of 20 noisy patterns of each class

generated by 2.5%, 5.0%, 7.5%, 10.0%, 12.5%, 15.0%, 17.5%, 20.0%, 30.0% and 40.0%,

giving a total of 160 patterns. This set, called the testing set, which was used to establish

system performance after training.

We also generated several noisy data sets for training the system. The First set

consisted of 10 samples for each class, generated by using R = 0, where I? denotes a value

of R used to generate training data. Starting with the weight vectors obtained in the noise-

free training, the system was allowed to go through a learning sequence with the new data

set. Because R = 0 implies no noise, this retraining was an extension of the earlier, noise-

free training. Using the resulting weighing learned in this manner, the network was

subjected to the test data set yielding the results shown by the curve labeled R = 0 in

Figure 5.4. The number of correctly classified patterns divided by the total number of

patterns tested gives the recognition rate, which is a measure commonly used to establish

network performance.

77

Then we start with the weight vectors learned by using the data generated with R

= 0, the system was retrained with a noisy data set generated with R = 2.5%. The

recognition performance was then established by running the test samples through the

system again with the new weight vectors. Note the significant improvement in

performance. Figure 5.4 shows the results obtained by continuing this retraining and

retesting procedure for R =0.5%, 7.5%, 10.0% and 12.5%. As expected if the system is

learning properly, the recognition rate from the set increased as the value of R increased,

because the system was being trained with noisier data for higher values of R. The one

exception in Figure 5.5 is the result for 1? = 12.5%. The reason is the small number of

samples used to train the system. That is, the network was not able to adapt itself

sufficiently to the larger variations in shape at higher noise levels with the number of

samples used.

Figure 5.4 8-Neighbor Noise Testing in Noise-Free Weight network

78

Figure 5.5 Training with 8-Neighbor Noise

CHAPTER 6

SUMMARY

This chapter gives a summary of our major contributions in this research, a review o

some unsolved issues and a discussion of some possible directions for the future research.

6.1 Major Contributions

Neural network technique has been found to be a powerful tool in pattern recognition. I t

captures associations or discovers regularities with a set of patterns, where the types,

number of variables or diversity of the data are very great, the relationships between

variables are vaguely understood, or the relationships are difficult to describe adequately

w► th conventional approaches.

In the research and the system (refer to APPENDIX C) design aiming at

recognizing the digital gate symbols and characters in the electronic drawings, we have

proposed: (1) A shift-invariant and limited rotation-invariant modified Kohonen neural

network. (2) An effective approach to optimize the structure of the back-propagation

neural network. () Candidate searching and pre-processing algorithms for the

enhancement of the electronic drawings' recognition.

The Kohonen neural network is a type of unsupervised network. It has been

successfully applied to speech recognition and used as a pre-processing layer, part of a

neural network layer for image recognition In our research, we found that when an object

in an image is shifted horizontally and/or vertically, the Kohonen neural network cannot

readily classify the original image pattern and its shifted version into the same category.

Yet, this shift-invariant capability in image pattern recognition is crucial in m y

79

80

applications. For this purpose, we developed a shift-invariant modified Kohonen network

with a 2-D correlation. As a result, the dimension of this modified Kohonen neuron layer

can be reduced dramatically compared with the conventional Kohonen network with the

same capability. Moreover, the size of its subsequent neural network can be decreased

significantly as well. An analysis and the system performance reveal that when the shift

of an image pattern is not large, and the rotation is only nx90°, (n=1 2, and 3) the shift-

invariant and limited rotation-invariant modified Kohonen neural network is superior to

the conventional Kohonen neural network. This new type of Kohonen neural network has

been used successfully in our automatic analysis and recognition system.

The combination of Kohonen neural network and back-propagation feed-forward

neural network is proved to be a better way to minimize the dimensionality of the overall

recognition system. The optimized back-propagation neural network developed by us

outperforms the conventional ones designed by experience. Therefore, the size and the

computation can be minimized by simulation for any specific application. This optimized

neural network has been proved to combine the good recognition accuracy and better

generalization capability.

In order to further reduce the calculation time spent in neural network, pre-

processing algorithm was developed to remove long circuit lines in the electronic

drawings. Our experiments indicated that it can achieve very high erasing rate up to 90

percent of "1 pixels. As a result, the candidate searching can be more accurate and fast.

8!

6.2 Major Unsolved Issues and Future Research

Automatic verification [67-70] for the recognition system is a very important issue. Till

now this problem has not been solved in our system.

The reliability of an analysis and recognition system is frequently more important

than the other performance factors. For an automated recognition and interpretation

system, the rate of correct recognition is usually more important than the speed of

calculations. Therefore, checking the correctness of recognition becomes the next

procedure of the processing. Of cause, human power can be used to do this work and

computer can also assist people to do this work. But is it possible for computers to do this

work entirely and independently? This is an ultimate aim we are working for. For the first

step, we hope to use computers to check the correctness of recognition just like we use

computers to check the spellings in a word processor software. In the checking, wherever

there is an error detected, computer should tell human beings about it. Human beings may

then decide to correct it or keep it. It is hoped that all errors in recognition may be

eliminated. It is expected that the future research in the automatic analysis system will be

in this area.

APPENDIX A

EARLY RESEARCH SURVEY

There are several techniques that have been used in pattern recognition for decades. They

are template, feature extraction, segmentation, contour tracking, structure analysis,

moment, vectorization, decision tree, and conventional neural networks, etc. In certain

circumstance, these techniques are efficient and convenient for implementation. Several

researchers and companies have done some remarkable jobs towards the goal of

automatic recognizing electronics drawing by a computer recognizer.

1. Conventional Pattern Recognition Techniques
Used in Electronics Engineering Drawing Recognition

1.1 Template Matching, Feature Extraction and Decision Tree

In 1987, a group of researchers at Toshiba Research and Development Center [90]

developed an automatic circuit diagram reader with loop-structure-based symbol

recognition. This system has a high-performance logic circuit diagram reader for VLSI-

CAD data input. The basic concept for this design is that almost all logic circuit symbols

include, at least, one loop structure. The component labeling is used to find the loops that

may represent logical gates. The gate recognition is achieved by two processes: symbol

segmentation and symbol identification. In particular, symbol identification is

implemented by a hybrid method, which uses heuristics to mediate image processing

techniques between template matching and feature extraction. The entire symbol

recognition process is carried out under a decision tree control strategy. After the loops

82

83

have been extracted, they are preprocessed to a normal size, while a set of templates is

used to match the loops. The recognized loops are either gate components or gate bodies.

All of the features of a gate are extracted. The decision-tree control strategy is then used

to judge the extracted features and recompose the specific gate symbol. An Al-size

drawing can be read within 30 min. with more than 95% recognition accuracy in this

system. The misrecognition error rate is less than 1%.

However, there are some limitations in this system. 1) Only drawings with a

predetermined drawing rule can be recognized. So, there is a limited flexibility of input

patterns. 2) The processing algorithm is very complicated. A special hardware is designed

to implement the processing, because using software is very time consuming. 3) The

recognition accuracy is relatively low when the input patterns are not drawn by

predetermined rule. 4) If a segmented symbol pattern does not preserve the correct

topology or is severely smeared with noise, this will lead to misclassify or reject.

1.2 Contour Tracking, Feature Extracting and Structure Analysis

In 1990, a group of researchers at Hitachi Ltd reported an automatic recognition of logic-

circuit diagrams [91]. They used the contour extracting technique to extract features such

as end points, branch points, cross points, corner points and loops. These extracted

feature components can be used by the system to analyze and recognize the gates on a

drawing logically. Theoretically this system can be used for recognizing non-standardized

electronic engineering drawings. However, this system is still very complex. A hardware

is also required to implement the complicated algorithm. in the experiments, this system

can not handle practical pattern recognition problems within a satisfied misclassify and

rejection rate. It is not useful in practical applications yet. By these researcher's

84

comments, more extensive research must be conducted on image processing and image

understanding technology, and more effective algorithms must be developed for their

system.

1.3 Vectorization and Conventional Neural Networks Pattern Recognition

In 1991, two researchers in the GTX Corporation used vectorization and fuzzy logic to

recognize the electronics gates as well as conventional neural networks to recognize

characters [93]. They built a GTX 5000 CAD Conversion System. There are eight

Motorola 68020 processors and 80 megabytes of RAM in the pattern recognition module

for the input pattern processing. The processes include: 1) contour tracing, 2) distance

transforms, 3) line tracking, 4) polygonal segmentation, and 5) thinning. Contour tracing

tracks the boundary of an object and generates a chain code for it. Other processes are

used to extract the features of the pattern and to construct the information into a feature

vector of the pattern. Conventional feed forward neural network with vectorization

processing is used to recognize the electronic engineering drawing and characters in it.

There are many limitations of this system. It needs complicated algorithm to

vectorize the pattern. In order to shorten the processing time, more hardware is needed to

process the software program. The vectorization processing is very sensitive to the noise.

Most working drawings are noisy that may result in incorrect vectorization. In genera

the algorithm relies on fuzzy logical to accommodate the usually noise data. The user may

exert some degree of control over the sensitivity of this processing by varying the values

of a small set of tolerance parameters. If the tolerances are set too fine, symbols are

missed; if too coarse, misclassifications occur. This system has difficulties in vectorizing

the characters. If the system cannot vectorize the characters correctly, neither fuzzy

85

logical nor conventional feed forward neural network can be used to recognize the

character correctly. The reason is that the input of the conventional neural networks is the

vectorized information of the characters. The system recognizing accurate rates are 90%

between the samples of '5' and 'S' and 98% between the samples of '8' and 'B.' Other

problems are the recognition of touching and broken characters as well as the lowercase

characters. The touching characters are defined as that they must be broken apart before

they can be individually recognized. Lowercase characters present special problem that is

great number of alphabetic/number ambiguities (for example, numeral "6" versus

lowercase "bn) and the great importance of relative positioning of characters. It has been

recommended by these researchers that the future work should be directed to the

development of more intelligent context processing algorithms with a prior, top-down

information.

2. Image Analysis by the Method of Moments

In 1988, two researchers at University of Wisconsin presented their work about image

analysis using the method of moments [92]. The advantage of using moments to analyze

an image is invariant under image translation, scaling, and rotation. They studied the

regular moment, the lower and higher order moments and addressed some fundamental

questions, such as image representation ability, noise sensitivity, and information

redundancy. They found that the higher order moments such as Legendre, Zernik, and

pseudo-Zernik moments are better than other types of moments in image analysis and

representation, but the higher order moments are more vulnerable to noise as compared to

lower order moments. The research result showed that the moment analysis can be used

86

for other image analysis and image representation. However, it performs poorly in pattern

recognition and very sensitive to the noise. In some cases, its misclassifying and rejecting

rate is up to 30%. It can not accomplish the task for electronic engineering drawing

recognition.

3. Neocognitron

In 1990, Dr. Kunihiko Fukushima and other researchers presented a neural network

model of visual pattern recognition called the neocognitron, which was previously

proposed by Fukushima [94]. It has the capability of recognizing deformation-invariant

visual pattern. They constructed a pattern recognition system that works with the

mechanism of the neocognitron. During the simulation, the system is trained to recognize

35 hand-written alphanumeric characters. The system has a large power of generalization.

After this system learnt by presenting only a few typical examples of deformed patterns

(or features), it has enough power to recognize all the deformed versions of patterns that

might appear during the process of inputting future. Therefore, this system can recognize

input pattern robustly, with little effect from deformation, changes in size, or shifts in

position. This system does not require any preprocessing such as normalization of the

position, size, or deformation of input patterns. The structure of the network is illustrated

in Figure 1. In Figure 1, each rectangle represents a two-dimensional array of neurons.

The lowest stage of the network is the input layer, which consists of a two-dimensional

array of receptor neurons. Each succeeding stage has a layer of neurons called S neurons

followed by another layer of neurons called C neurons. In the whole neural network,

layers of S neurons and C neurons are arranged alternately. S neurons are feature-

87

extracting neurons. The C neurons are inserted in the network to allow position error in

the features. The layer of C neurons at the highest stage is the recognition layer,

representing the final result of a pattern recognition by the neocognitron. The notation UsI

and Ucl is used to denote the layers of S neurons and C neurons of the 1 th stage,

respectively. Each layer of S neurons or C neurons is divided into subgroups, called

neuron planes, according to the feature to which they respond. The neurons in each

neuron plan are arranged in a two-dimensional array. After finishing the training, S

neuron is activated only when a pattern feature is presented at a certain position in the

input layer. The features that the S neurons extract are determined by training pattern

given to the input layer. In the higher stages, features that are more global are extracted,

for example, a part of a training pattern. Each C neuron receives signal from a group of S

neurons that extract the same feature, but from slightly different positions. The C neuron

is activated if at least one of these S neurons is active. Hence, the C neuron can get some

shift invariance. The neocognitron system is trained by supervised learning. The variable

input connections of the S neuron are reinforced by the training. Their initial values

before training are all zero. Training is performed step by step from lower stages to the

higher stages. All of the stages are trained with the same process. As a result of this

learning, all the S neurons are in a neuron plane work as templates to extract the same

feature at different locations. The special feature of this neural network is the ability to

correctly recognize deformed characters, which depends highly on the choice of the

training pattern set, and its special supervised training procedure. The advantage of the

features of this neural network is a very short training time as compared to the back-

propagation, training. There are some drawbacks of this neural network. First, the

88

structure of the neural network is large and complex, because, if the input pattern is

complex, the neural network needs more neuron plans to extract more features of the

input pattern. Second, although a skillful choice of training patterns can make the

neocognitron discriminate between similar patterns of different categories, a process of

constructing a good training pattern set requires very skillful hard human labor with an

increase in the number of characters to be recognized and the quality of the training

pattern set will dominate the pattern recognition capability of the neural network. And

third, the conventional technique of unsupervised learning for the neocognitron [95,96],

with which all the training processes progress automatically, shows a somewhat lesser

ability to recognize deformed pattern. It means that the intelligence of this neocognitron

system is actually a storage of the human intelligence. The machine can not create

intelligence information by itself. This is the major drawback of this system.

4. Template Matching and Conventional Neural network

In 1989, a group of researchers in AT&T Bell Laboratories demonstrated a recognition of

10 numbers of different post zip code using a neural network [97]. They constructed a

neural network as a conventional neural network. However, instead of using conventional

image processes to find the vectorized input pattern features, a set of input feature maps is

designed and a set of templates is used to extract the features in different positions of the

input pattern to form a feature vector. A set of templates is designed at attempting to

remove the main sources of meaningless variation and extract the meaningful

information. It is known from biological studies [98] that the cat vision system is

sensitive to certain features that occur in images, particular the lines and the ends of lines.

89

They designed a set of 49 different feature extractor templates for such kind of features.

The output of each feature template is stored separately. These outputs are called feature

maps, since they have information about features and their distinct positions in the image.

It is possible, indeed very likely, that several different features will occur in the same

place.

They also designed a preprocessor for scaling and deskewing to normalize the

original image, and then skeletonization was used to process this normalized image. The

neural network they used is a two layers neural network. The first layer contains 40

neurons, each of which receives all information from the 49 feature maps as a feature

vector. The second layer, the output of the neural network, has 10 neurons. Each neuron

receives all information from the output of each neuron in the first layer. Each neuron in

the second layer represents a different post zip code number. This neural network is

trained by back-propagation process. After training, the performance of the neural

network shows that, if 14% of the images are rejected as unclassifiable, 1% of the

remainders are misclassified. If no images are rejected, approximately 6% are

misclassified. The misclassifying and rejecting rates of the system are still high for a

practical application. The features extracting templates are the key point for this system.

The pattern recognition capability of this system depends on the quality of the set of

templates. To design a good template set, it needs very experienced human effort to

accomplish this task.

90

5. Weight Sharing Back-Propagation Neural Network (WSBPNN)

In 1990, a group of researchers of AT&T Bell Laboratories described a neural network

for Handwritten Digit Recognition [99]. They designed this neural network with highly

constrained weight sharing neural network architecture. Unlike the previous work on this

subject [97], this neural network is directly fed with images, rather than feature vectors.

Thus this neural network shows the ability to deal with large amounts of low level

information. This neural network is designed at achieving a good generalization. In

theory, a good generalization can only be obtain by designing a network architecture that

contains a certain amount of a prior knowledge about the problem [89]. The basic

principle of the design is to minimize the number of free parameters that must be

determined by the learning algorithm, without reducing the computational power of the

network. They use weight sharing neural network architecture to achieve this goal. They

designed a neural network that has 3 layers. The first two layers used weight sharing

principle, and each of them has a subsampling layer behind itself. Just as the

neocognitron neural network, this design provides some shift invariance characteristics in

the neural network. The first layer has four feature maps to extract the features of the

input image. The difference of the first layer between this design and the previous one

[97] is that the features extracted from the input image are determined by the templates

designed by the designer's thought in the previous model, and in the new version the

features extracted from the input image is determined by the trained neural network itself

and the designer do not need to know what kind of features will be extracted by the neural

network. The weight sharing principle is not used for output layer. It is a fully connected

conventional neural network. The neural network is trained by back-propagation. After

91

training, this neural network showed a good generalization property and obtained a better

result than the previous model. This training database is the same database used in

previous work. The test result of the new model is that the best percentage of rejections

on the complete test set was 5.7% for 1% error. The original input image of this system

has been normalized to a standard size followed by being inputted into the neural

network. This system has several advantages. It has high variability to recognize an image

pattern and runs at a reasonable speed on standard hardware (~10 characters/sec on a

workstation) and high speed (1000 characters/sec) on specialized hardware.

APPENDIX B

EIGHT GATE SYMBOLS (SCANNED IMAGES)

APPENDIX C

NEURAL NETWORK DIAGRAM

Neural Network Recognition System (Kohonen + BP), Fully Connected Weights

93

REFERENCES

1. Wei Su and Gerald T. Michael, "A Simple and Quick Approach to Processing
Drawing Images," Proceeding of 1995, International Conference on Signal
Processing Application & Technology, Boston, MA., Aug. 1995.

2. Akio Okazaki et al., "An Automatic Circuit Diagram Reader with Loop-Structure-
based Symbol Recognition," IEEE, Transaction on Pattern Analysis anti Machine
Intelligence, Vol. 10, pp. 331-341, May 1988.

3. Masakazu Ejiri, et al., "Automatic Recognition of Engineering Drawings and Maps,"
Image Analysis Applications, Rangachar, Kasturi and Mohan M. Trivedi, Ecls., pp.
73-126, M. Dekker, NY., 1990.

4. Alan J. Filipski and Robert Flandrena. "Automated Conversion of Engineering
Drawing to CAD form," Proceeding of the IEEE, Vol. 80, pp. 1195-1209, July 1992.

5. Cho-Huak Teh, Roland T. Chin, "On Image Analysis by the Methods of Moments,"
IEEE Transaction on Pattern Analysis and, Machine Intelligence, Vol. 10. No. 4, July

1988.

6. Kunihiko Fukushima and Nobuaki Wake, "Handwritten Alphanumeric Character
Recognition by the Neocognitron," IEEE, Transactions on Neural Network, Vol. 2,

pp. 119-130, May 1991.

7. Y. Le Cun, et al., "Handwritten Digital Recognition with a Back-Propagation

Network," Advances in Neural Network, Information Processing, Vol. 2, pp. 396-404,
D. S. Touretzky, Ed., Morgan Kaufmann, San Mateo, CA., 1990.

8. Y. Le Cun, et al., "Back-Propagation Applied to Handwritten Zipcode Recognition,"
Neural Computation, 1(4), pp. 541-551, 1989.

9. Robert Schalkoff, Pattern Recognition: Statistical, Structural and Neural

Approaches, John Wiley & Sons, Inc., NY., 1992.

10. Rafael Gonzalez, Richard Woods, Digital Image Processing, Addison-Wesley, NY.,

1993.

11. K. S. Fu, "Recent Developments in Pattern Recognition", IEEE Transactions on

Computers; Vol. C-29, No. 10, pp. 845-857, Oct. 1980.

12. S. T. Bow, Pattern Recognition, Marcel Dekker, NY., 1984.

94

95

13. John Hertz, Andrers Krogh, Richard G. Palmer, Introduction to the Theory of Neural
Computation, Addison-Wesley Publishing Company, CA., 1991.

14. J. M. Zurada„ Introduction to Artificial Neural Systems, PWS Publishing Company,
Boston, MA., 1992.

15. M. W. Roth, "Survey of Neural Network Technology for Automatic Target
Recognition", IEEE Transactions on Neural Networks, Vol. 1, No. I, p. 43, Mar.
1990.

16. R. D. Ripley, Pattern Recognition and Neural Networks', Cambridge University Press,
Cambridge, UK., 1996.

17. R. M. Haralick, L. G. Shapiro, Computer and Robot Vision, Addison-Wesley,
Reading, MA., 1992.

18. J. S. WesZka, "A Survey of Threshold Selection Techniques", Computer Vision,
Graphics, and Image Processing, Vol. 7, No. 2, pp. 259-265, Apr. 1978.

19. Louisa Lam, Seong-Whan Lee, Ching Y. Suen, "Thinning Methodologies: A
Comprehensive Survey", IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol. 14, No. 9, pp. 869-885, Sept. 1992.

20. Sebastiano Impedovo (Ed), Fundamentals in Handwriting Recognition, Springer
Verlag, Germany, 1994.

21. Teuvo Kohonen, "The Self-Organizing Map", Proc. IEEE, Vol. 78 No. 9, pp. 1464-
1480, Sept. 1990.

22. Lefteri Tsoukalas, Fuzzy and Neural Approaches in Engineering, John Wiley & Son,
NY., 1997.

23. Steven K. Rogers, Matthew Kabrisky, An Introduction to Biological and Artificial
Neural Networks, for Pattern Recognition, SPIE Optical Engineering Press,
Bellingham, WA., 1991.

24. Steve Lawrence, C. Lee Giles and Ah Chung Tsoi, "What Size Neural Network Gives
Optimal, Generalization?", Technical Report UMIACS-TR-96-22 and CS-FR-3617,
Institute for Advanced, Computer Studies, University of Maryland, College Park,
MD. 20742, June 1996.

25. Vallum B. Rao and Hayagriva V. Rao, C++ Neural Networks and Fuzzy Logic, MIS

Press, NY., 1993.

96

26. Abhijit S. Pandya and Robert B. Macy, Pattern Recognition with Neural Networks in
C++, CRC Press and IEEE Press, FL., 1996.

27. Simon Haykin, Neural Networks: A Comprehensive Foundation, Macmillan
Publishing Company, CA., 1994.

28. L. Devroye, A Probabilistic Theory of Pattern Recognition, Springer, NY., 1996.

29. Martin T. Hagan, Howard B. Demuth, Mark Beale, Neural Network Design, PWS
Publishing Company, MA., 1996.

30. B. Kosko, Neural Networks and Fussy System, Prentice-Hall, NJ., 1992.

31. T. Kohonen Neural Networks Research Center at: http://nucleus.hut.fi/nnrc/.

32. S. Amari, "Mathematical Foundations of Neurocomputing", Proceedings of IEEE 78,
pp. 1443-1463, 1990.

33. P. D. Wasserman, Advanced Methods in Neural Computing, Van Nostrand Reinhold,
NY., 1993.

34. Alan F. Murray (Ed), Application of Neural Networks, Kluwer Academic Publishers,
Boston, MA., 1995.

35. Bart Kosko (Ed), Neural Networks' for Signal Processing, Prentice Hall Inc., NJ.,
1992.

36. Howard Demuth, Mark Beale, Neural Network Toolbox for Use with MATLAB,
Version 3, The MATH WORKS Inc., MA., 1998.

37. N. M. Nasrabadi, Y. Feng, "Vector Quantization of Image Based upon Kohonen Self
Organizing Feature Maps", Proceeding IEEE Int. Conf. Neural Networks, pp.1101-
1108, 1988.

38. Ben Yuh.as, Nirwan Ansari (Ed), Neural Networks' in Telecommunications, Kluwer
Academic Publishers, Boston, MA., 1994.

39. C. N. Manikopoulos, "Finite State Vector Quantization with Neural Network
Classification of States", IEE Proceedings-F, Vol. 140, No.3, pp. 153-160, June
1993.

40. R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, Reading, MA., 1990.

97

41. Bernard Widrow, and Michael A. Lehr, "30 Years of Adaptive Neural Networks:
Perceptron, Madaline, and Backpropagation", Proceedings of IEEE, Vol. 78, No. 9,
pp. 1415-1442, Sept. 1990.

42. Richard P. Lippmann, "An Introduction to Computing with Neural Nets", IEEE ASSP
Magazine, pp. 4-22, Apr. 1987.

43. Yoh-I-Ian Pao Adaptive Pattern Recognition and Neural Network, Addison-Wesley
Publishing Company, Inc., NY., 1989.

44. Clifford Lau, Neural Networks Theoretical Foundations and Analysis, IEEE Press,
1992.

45. James D. McCafferty, Human and Machine Vision Computing Perceptual
Organization, Ellis Horwood Limited, NY., 1990.

46. R. Rosenblatt, Principles of Neurodynamics, Spartan Books, NY., 1959.

47. M. Minsky, S. Papert, Perceptrons: An Introduction to Computational Geometry,
MIT Press, MA., 1969.

48. D. E. Rumelhart, J. L. McClelland, "Learning Internal Representations by Error
Propagation," Parallel Distributed, Processing: Explorations in the Microstructures
of Cognition, Vol, 1: Foundation, 2nd ed., MIT Press, Cambridge, MA., 1986.

49. D. E. Rumelhart, J. L. McClelland, Parallel Distributed, Processing: Explorations in
the Microstructures of Cognition, MIT Press, MA., 1986.

50. P. J. Werbos, The Roots of Backpropagation, John Wiley & Sons, NY., 1994.

51. Donald Tveter, "Backpropagation Review" at http://www.mcs.com/~drt/bprefs.html.

52. T. Masters, Practical Neural Network Recipes in C++, Academic Press, San Diego,
CA., 1993.

53. R. 0. Duda, P. E. Hart, Pattern Classification and Scene Analysis, John Wiley &.
Sons, NY.. 1973.

54. B. Widrow, M. E. Hoff, "Adaptive Switching Circuits", IRE WESCON Convention
Record, Part 4, pp. 96-104, 1960.

55. F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms, Sparton, Washington D. C,, 1962.

98

56. G. Cybenko, "Approximation by Superpositions of a Sigmoidal Function", Research
Note, Computer Science Department, Tufts University, Boston, MA., Oct. 1988.

57. A. E. Bryson, and Y. C. Ho, Applied Optimal Control, Blaisdell, NY., 1969.

58. P. Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences". Ph.D. Thesis, Harvard University, 1974.

59. D. B. Parker, "Learning Logic", Technical Report TR-47, Center for Computational
Research in Economics and Management Science, Massachusetts Institute of
Technology, Cambridge, MA., 1985.

60. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Representations by
Back-Propagating Errors. Nature, No. 323, pp. 533-536, Reprinted in Anderson and
Rosenfeld, 1988.

61. Le Cun, "Backpropgation Applied to Handwriitten Zip Code Recognition", Neural
Computation No. 1, pp. 541-551, 1989.

62. C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
Oxford, 1995.

63.I. Hornik, "Some New Results on Neural Network Approximation", Neural
Networks, No. 6, pp. 1069-1072, 1993.

64. D. S. Touretzky, D. A. Pomerleau, "What's Hidden in the Hidden Layer?", Byte, No.
14, pp. 227-233, 1989.

65. Z. Luo, "On the Convergence of the LMS Algorithm with Adaptive Learning Rate for
Linear Feedforward Networks", Neural Computation, No. 3, pp. 226-245, 1991.

66. MIT Neural Network FAQ at:
ftp://rtfm.mit.edu/pub/usenet-by-group/news.answers/ai-faq/neural-nets/

67. Rejean Plamondon, "A Model-Based Dynamic Signiture Verification System",
Sebastiano Impedovo (Ed), Fundamentals in Handwriting Recognition, pp. 417-434,
Springer Verlag, Germany, 1994.

68. Giuseppe Pirlo, "Algorithms for Signature Verification", Sebastiano Impedovo (Ed),
Fundamentals in Handwriting Recognition, pp. 435-454, Springer Verlag, Germany,
1994.

69. Fathallah Nouboud, "Handwritten Signature Verification: A Global Approach",

Sebastiano Impedovo (Ed), Fundamentals in Handwriting Recognition, pp. 455-459,
Springer Verlag, Germany, 1994.

99

70. Plamondon R., Lorette G., "Automatic Signature Verification and Writer
Identification. State of Art", Pattern Recognition, Vol. 22, No. 2, pp. 107-131, 1989.

89. Denker, J., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L., & Hopfield,
J., "Large Automatic Learning, Rule Extraction and Generalization", Complex
Systems, Vol. 1, pp. 877-922, Complex Systems Publications Inc., Champaign, IL.,
1987.

90, Akio Okazaki, Takashi Kondo, Kazuhiro Mori, Shou Tsunekawa, and Eiji
Kawamoto, "An Automatic Circuit Diagram Reader with Loop-Structure-Based
Symbol Recognition,'' IEEE Transaction on Pattern Analysis and Machine
Intelligence, Vol. 10, pp. 331-341, May 1988,

91. Masakazu Ejiri, Shigeru Kakumoto, Takafumi Miyatake, Shigeru Shimada, and
Kazuaki Lwamura, "Automatic Recognition of Engineering Drawings and Maps,"
Image Analysis Applications, Rangachar Kasturi and Mohan M. Trivedi, Eds., pp. 73-
126, M. Dekker, New York, NY., 1990.

92. Cho-Huak The, and Roland T. Chin, "On Image Analysis by the Methods of
Moments," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
10, pp. 496-513, July 1988.

93. Alan J. Filipski, and Robert Flandrena, "Automated Conversion of Engineering
Drawing to CAD Form," Proceedings of the IEEE, Vol. 80, pp. 1195-1209, July
1992.

94. Kunihiko Fukushima and Nobuaki Wake, "Handwritten Alphanumeric Character
Recognition by the Neocognitron," IEEE Transactions on Neural Network, Vol, 2,
pp. 119-130, May 1991.

95. K. Fukushima, "Neocognitron: A Self-Organizing Neural Network Model for a
Mechanism of Pattern Recognition Unaffected by Shift in Position," Biol. Cybern.,
Vol. 36, pp.193-202, 1980.

96. K. Fukushima and S. Miyake, "Neocognitron: A New Algorithm for Pattern
Recognition Tolerant of Deformations and Shifts in Position." Pattern Recognition.,
Vol. 15, pp. 455-469, 1982.

97. Denker, J. S., Gardner, W. R., Graf, H.P., Henderson, D., Howard, R. E., Hubbard,
W., Jackel, L. D., Baird, H. S., and Guyon, I., "Neural Network Recognizer for Hand-
Written Zip Code Digits", Neural Information Processing Systems, Touretzky, D.,
Ed., Vol. 1, pp. 323-331, Morgan Kaufmann, San Mateo, CA., 1988.

100

98. D. H. Hubei and T. N. Wiesel, "Receptive Fields, Binocular Interaction and
Functional Architecture in the Cat's Visual Cortex," Journal of Physiology, Vol. 160,
pp. 106-154, 1962.

99. Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R.E., Howard, W. Hubbard, and L.
D. Jackel, "Handwritten Digit Recognition with a Back-Propagation Network," in
Advances in Neural Information Processing, D. S. Touretzky, Ed., Vol. 2, pp. 396-
404, Morgan Kaufmann, San Mateo, CA., 1990.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Summer 1998

	Automatic analysis of electronic drawings using neural network
	Yi Shi
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Candidate Searching
	Chapter 3: A Shift-Invariant and Limited Rotation-Invariant Modified Kohonen Neural Network
	Chapter 4: Feedforward Neural Network With Back-Propagation Learning
	Chapter 5: Training the Network with Noise
	Chapter 6: Summary
	Appendix A: Early Research Survey
	Appendix B: Eight Gate Symbols (Scanned Images)
	Appendix C: Neural Network Diagram
	References

