95,376 research outputs found

    Polygon-circle and word-representable graphs

    Get PDF
    We describe work on the relationship between the independently-studied polygon-circle graphs and word-representable graphs. A graph G = (V, E) is word-representable if there exists a word w over the alpha-bet V such that letters x and y form a subword of the form xyxy ⋯ or yxyx ⋯ iff xy is an edge in E. Word-representable graphs generalise several well-known and well-studied classes of graphs [S. Kitaev, A Comprehensive Introduction to the Theory of Word-Representable Graphs, Lecture Notes in Computer Science 10396 (2017) 36–67; S. Kitaev, V. Lozin, “Words and Graphs” Springer, 2015]. It is known that any word-representable graph is k-word-representable, that is, can be represented by a word having exactly k copies of each letter for some k dependent on the graph. Recognising whether a graph is word-representable is NP-complete ([S. Kitaev, V. Lozin, “Words and Graphs” Springer, 2015, Theorem 4.2.15]). A polygon-circle graph (also known as a spider graph) is the intersection graph of a set of polygons inscribed in a circle [M. Koebe, On a new class of intersection graphs, Ann. Discrete Math. (1992) 141–143]. That is, two vertices of a graph are adjacent if their respective polygons have a non-empty intersection, and the set of polygons that correspond to vertices in this way are said to represent the graph. Recognising whether an input graph is a polygon-circle graph is NP-complete [M. Pergel, Recognition of polygon-circle graphs and graphs of interval filaments is NP-complete, Graph-Theoretic Concepts in Computer Science: 33rd Int. Workshop, Lecture Notes in Computer Science, 4769 (2007) 238–247]. We show that neither of these two classes is included in the other one by showing that the word-representable Petersen graph and crown graphs are not polygon-circle, while the non-word-representable wheel graph W 5 is polygon-circle. We also provide a more refined result showing that for any k ≄ 3, there are k-word-representable graphs which are neither (k −1)-word-representable nor polygon-circle

    Practical and Efficient Split Decomposition via Graph-Labelled Trees

    Full text link
    Split decomposition of graphs was introduced by Cunningham (under the name join decomposition) as a generalization of the modular decomposition. This paper undertakes an investigation into the algorithmic properties of split decomposition. We do so in the context of graph-labelled trees (GLTs), a new combinatorial object designed to simplify its consideration. GLTs are used to derive an incremental characterization of split decomposition, with a simple combinatorial description, and to explore its properties with respect to Lexicographic Breadth-First Search (LBFS). Applying the incremental characterization to an LBFS ordering results in a split decomposition algorithm that runs in time O(n+m)α(n+m)O(n+m)\alpha(n+m), where α\alpha is the inverse Ackermann function, whose value is smaller than 4 for any practical graph. Compared to Dahlhaus' linear-time split decomposition algorithm [Dahlhaus'00], which does not rely on an incremental construction, our algorithm is just as fast in all but the asymptotic sense and full implementation details are given in this paper. Also, our algorithm extends to circle graph recognition, whereas no such extension is known for Dahlhaus' algorithm. The companion paper [Gioan et al.] uses our algorithm to derive the first sub-quadratic circle graph recognition algorithm

    Extending Partial Representations of Circle Graphs in Near-Linear Time

    Get PDF
    The partial representation extension problem generalizes the recognition problem for geometric intersection graphs. The input consists of a graph G, a subgraph H ⊆ G and a representation H of H. The question is whether G admits a representation G whose restriction to H is H. We study this question for circle graphs, which are intersection graphs of chords of a circle. Their representations are called chord diagrams. We show that for a graph with n vertices and m edges the partial representation extension problem can be solved in O((n+m)α(n+m)) time, where α is the inverse Ackermann function. This improves over an O(n3^{3})-time algorithm by Chaplick, Fulek and KlavĂ­k [2019]. The main technical contributions are a canonical way of orienting chord diagrams and a novel compact representation of the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of independent interest

    Extending Partial Representations of Circle Graphs in Near-Linear Time

    Get PDF
    The partial representation extension problem generalizes the recognition problem for geometric intersection graphs. The input consists of a graph G, a subgraph H⊆GH ⊆ G and a representation Râ€Č\mathcal{R}â€Č of H . The question is whether G admits a representation R\mathcal{R} whose restriction to H is Râ€Č\mathcal{R}â€Č. We study this question for circle graphs, which are intersection graphs of chords of a circle. Their representations are called chord diagrams. We show that for a graph with n vertices and m edges the partial representation extension problem can be solved in O((n+m)α(n+m))O((n + m)α(n + m)) time, thereby improving over an O(n3)O(n^3)-time algorithm by Chaplick et al. (J Graph Theory 91(4), 365–394, 2019). The main technical contributions are a canonical way of orienting chord diagrams and a novel compact representation of the set of all canonically oriented chord diagrams that represent a given circle graph G, which is of independent interest

    Recognising the overlap graphs of subtrees of restricted trees is hard

    Get PDF
    The overlap graphs of subtrees in a tree (SOGs) generalise many other graphs classes with set representation characterisations. The complexity of recognising SOGs is open. The complexities of recognising many subclasses of SOGs are known. Weconsider several subclasses of SOGs by restricting the underlying tree. For a fixed integer k≄3k \geq 3, we consider:\begin{my_itemize} \item The overlap graphs of subtrees in a tree where that tree has kk leaves \item The overlap graphs of subtrees in trees that can be derived from a given input tree by subdivision and have at least 3 leaves \item The overlap and intersection graphs of paths in a tree where that tree has maximum degree kk\end{my_itemize} We show that the recognition problems of these classes are NP-complete. For all other parameters we get circle graphs, well known to be polynomially recognizable
    • 

    corecore