143,243 research outputs found

    Object Recognition in 3D Scenes with Occlusions and Clutter by Hough Voting

    Full text link
    Abstract—In this work we propose a novel Hough voting approach for the detection of free-form shapes in a 3D space, to be used for object recognition tasks in 3D scenes with a significant degree of occlusion and clutter. The proposed method relies on matching 3D features to accumulate evidence of the presence of the objects being sought in a 3D Hough space. We validate our proposal by presenting a quantitative experimental comparison with state-of-the-art methods as well as by showing how our method enables 3D object recognition from real-time stereo data. Keywords-Hough voting; 3D object recognition; surface matching; I

    Point Pair Feature based Object Detection for Random Bin Picking

    Full text link
    Point pair features are a popular representation for free form 3D object detection and pose estimation. In this paper, their performance in an industrial random bin picking context is investigated. A new method to generate representative synthetic datasets is proposed. This allows to investigate the influence of a high degree of clutter and the presence of self similar features, which are typical to our application. We provide an overview of solutions proposed in literature and discuss their strengths and weaknesses. A simple heuristic method to drastically reduce the computational complexity is introduced, which results in improved robustness, speed and accuracy compared to the naive approach

    Teaching Compositionality to CNNs

    Full text link
    Convolutional neural networks (CNNs) have shown great success in computer vision, approaching human-level performance when trained for specific tasks via application-specific loss functions. In this paper, we propose a method for augmenting and training CNNs so that their learned features are compositional. It encourages networks to form representations that disentangle objects from their surroundings and from each other, thereby promoting better generalization. Our method is agnostic to the specific details of the underlying CNN to which it is applied and can in principle be used with any CNN. As we show in our experiments, the learned representations lead to feature activations that are more localized and improve performance over non-compositional baselines in object recognition tasks.Comment: Preprint appearing in CVPR 201

    DeformNet: Free-Form Deformation Network for 3D Shape Reconstruction from a Single Image

    Full text link
    3D reconstruction from a single image is a key problem in multiple applications ranging from robotic manipulation to augmented reality. Prior methods have tackled this problem through generative models which predict 3D reconstructions as voxels or point clouds. However, these methods can be computationally expensive and miss fine details. We introduce a new differentiable layer for 3D data deformation and use it in DeformNet to learn a model for 3D reconstruction-through-deformation. DeformNet takes an image input, searches the nearest shape template from a database, and deforms the template to match the query image. We evaluate our approach on the ShapeNet dataset and show that - (a) the Free-Form Deformation layer is a powerful new building block for Deep Learning models that manipulate 3D data (b) DeformNet uses this FFD layer combined with shape retrieval for smooth and detail-preserving 3D reconstruction of qualitatively plausible point clouds with respect to a single query image (c) compared to other state-of-the-art 3D reconstruction methods, DeformNet quantitatively matches or outperforms their benchmarks by significant margins. For more information, visit: https://deformnet-site.github.io/DeformNet-website/ .Comment: 11 pages, 9 figures, NIP

    Compact Model Representation for 3D Reconstruction

    Full text link
    3D reconstruction from 2D images is a central problem in computer vision. Recent works have been focusing on reconstruction directly from a single image. It is well known however that only one image cannot provide enough information for such a reconstruction. A prior knowledge that has been entertained are 3D CAD models due to its online ubiquity. A fundamental question is how to compactly represent millions of CAD models while allowing generalization to new unseen objects with fine-scaled geometry. We introduce an approach to compactly represent a 3D mesh. Our method first selects a 3D model from a graph structure by using a novel free-form deformation FFD 3D-2D registration, and then the selected 3D model is refined to best fit the image silhouette. We perform a comprehensive quantitative and qualitative analysis that demonstrates impressive dense and realistic 3D reconstruction from single images.Comment: 9 pages, 6 figure
    • …
    corecore