4,393 research outputs found

    Akış tipi çizelgeleme problemlerinin yapay bağışıklık sistemleri ile çözümünde yeni bir yaklaşım

    Get PDF
    The n-job, m-machine flow shop scheduling problem is one of the most general job scheduling problems. This study deals with the criteria of makespan minimization for the flow shop scheduling problem. Artificial Immune Systems (AIS) are new intelligent problem solving techniques that are being used in scheduling problems. AIS can be defined as computational systems inspired by theoretical immunology, observed immune functions, principles and mechanisms in order to solve problems. In this research, a computational method based on clonal selection principle and affinity maturation mechanisms of the immune response is used. The operation parameters of meta-heuristics have an important role on the quality of the solution. Thus, a generic systematic procedure which bases on a multi-step experimental design approach for determining the efficient system parameters for AIS is presented. Experimental results show that, the artificial immune system algorithm is more efficient than both the classical heuristic flow shop scheduling algorithms and simulated annealing.n iş m makina akış tipi iş çizelgeleme problemi en genel iş çizelgeleme problemlerinden biridir. Bu çalışma akış tipi çizelgeleme problemi için toplam tamamlanma zamanı minimizasyonu ile ilgilenmektedir. Yapay Bağışıklık Sistemleri (YBS), çizelgeleme problemlerinde son dönemlerde kullanılan yeni bir problem çözme tekniğidir. YBS, doğal bağışıklık sisteminin prensiplerini ve mekanizmalarını kullanarak problemlere çözüm üreten bir hesaplama sistemidir. Bu çalışmada, bağışıklık tepkisinin iki ayrı mekanizması olan klonel seçim prensibi ve benzerlik mekanizması üzerine kurulmuş bir metod kullanılmıştır. Meta sezgisel yöntemlerde seçilen operatörler, çözüm kalitesi üzerinde önemli bir role sahiptir. Bu nedenle, yapay bağışıklık sisteminin etkin parametrelerinin belirlenmesinde çok aşamalı bir deney tasarımı prosedürü uygulanmıştır. Deney sonuçları, yapay bağışıklık sistemlerinin klasik çizelgeleme ve tavlama benzetimi algoritmalarından daha iyi sonuçlar verdiğini göstermiştir

    A New Approach to Solve Flowshop Scheduling Problems By Artificial Immune Systems

    Get PDF
    n iş m makina akış tipi iş çizelgeleme problemi en genel iş çizelgeleme problemlerinden biridir. Bu çalışma akış tipi çizelgeleme problemi için toplam tamamlanma zamanı minimizasyonu ile ilgilenmektedir. Yapay Bağışıklık Sistemleri (YBS), çizelgeleme problemlerinde son dönemlerde kullanılan yeni bir problem çözme tekniğidir. YBS, doğal bağışıklık sisteminin prensiplerini ve mekanizmalarını kullanarak problemlere çözüm üreten bir hesaplama sistemidir. Bu çalışmada, bağışıklık tepkisinin iki ayrı mekanizması olan klonel seçim prensibi ve benzerlik mekanizması üzerine kurulmuş bir metod kullanılmıştır. Meta sezgisel yöntemlerde seçilen operatörler, çözüm kalitesi üzerinde önemli bir role sahiptir. Bu nedenle, yapay bağışıklık sisteminin etkin parametrelerinin belirlenmesinde çok aşamalı bir deney tasarımı prosedürü uygulanmıştır. Deney sonuçları, yapay bağışıklık sistemlerinin klasik çizelgeleme ve tavlama benzetimi algoritmalarından daha iyi sonuçlar verdiğini göstermiştir.The n-job, m-machine flow shop scheduling problem is one of the most general job scheduling problems. This study deals with the criteria of makespan minimization for the flow shop scheduling problem. Artificial Immune Systems (AIS) are new intelligent problem solving techniques that are being used in scheduling problems. AIS can be defined as computational systems inspired by theoretical immunology, observed immune functions, principles and mechanisms in order to solve problems. In this research, a computational method based on clonal selection principle and affinity maturation mechanisms of the immune response is used. The operation parameters of meta-heuristics have an important role on the quality of the solution. Thus, a generic systematic procedure which bases on a multi-step experimental design approach for determining the efficient system parameters for AIS is presented. Experimental results show that, the artificial immune system algorithm is more efficient than both the classical heuristic flow shop scheduling algorithms and simulated annealing

    A New Approach to Solve Flowshop Scheduling Problems By Artificial Immune Systems

    Get PDF
    n iş m makina akış tipi iş çizelgeleme problemi en genel iş çizelgeleme problemlerinden biridir. Bu çalışma akış tipi çizelgeleme problemi için toplam tamamlanma zamanı minimizasyonu ile ilgilenmektedir. Yapay Bağışıklık Sistemleri (YBS), çizelgeleme problemlerinde son dönemlerde kullanılan yeni bir problem çözme tekniğidir. YBS, doğal bağışıklık sisteminin prensiplerini ve mekanizmalarını kullanarak problemlere çözüm üreten bir hesaplama sistemidir. Bu çalışmada, bağışıklık tepkisinin iki ayrı mekanizması olan klonel seçim prensibi ve benzerlik mekanizması üzerine kurulmuş bir metod kullanılmıştır. Meta sezgisel yöntemlerde seçilen operatörler, çözüm kalitesi üzerinde önemli bir role sahiptir. Bu nedenle, yapay bağışıklık sisteminin etkin parametrelerinin belirlenmesinde çok aşamalı bir deney tasarımı prosedürü uygulanmıştır. Deney sonuçları, yapay bağışıklık sistemlerinin klasik çizelgeleme ve tavlama benzetimi algoritmalarından daha iyi sonuçlar verdiğini göstermiştir.The n-job, m-machine flow shop scheduling problem is one of the most general job scheduling problems. This study deals with the criteria of makespan minimization for the flow shop scheduling problem. Artificial Immune Systems (AIS) are new intelligent problem solving techniques that are being used in scheduling problems. AIS can be defined as computational systems inspired by theoretical immunology, observed immune functions, principles and mechanisms in order to solve problems. In this research, a computational method based on clonal selection principle and affinity maturation mechanisms of the immune response is used. The operation parameters of meta-heuristics have an important role on the quality of the solution. Thus, a generic systematic procedure which bases on a multi-step experimental design approach for determining the efficient system parameters for AIS is presented. Experimental results show that, the artificial immune system algorithm is more efficient than both the classical heuristic flow shop scheduling algorithms and simulated annealing

    Adapting Artificial Immune Algorithms For University Timetabling

    Get PDF
    Penjadualan kelas dan peperiksaan di universiti adalah masalah pengoptimuman berkekangan tinggi. University class and examination timetabling are highly constrained optimization problems

    Optimizing the performance of an integrated process planning and scheduling problem: an AIS-FLC based approach

    Get PDF
    The present market scenario demands an integration of process planning and scheduling to stay competitive with others. In the present work, an integrated process planning and scheduling model encapsulating the salient features of outsourcing strategy has been proposed. The paper emphasizes on the role of outsourcing strategy in optimizing the performance of enterprises in rapidly changing environment. In the present work authors have proposed an artificial immune system based AIS-FLC algorithm embedded with the fuzzy logic controller to solve the complex problem prevailing under such scenario, while simultaneously optimizing the performance. The authors have shown the efficacy of the proposed algorithm by comparing the results with other random search methods

    An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions

    Get PDF
    Today\u27s predominantly-employed signature-based intrusion detection systems are reactive in nature and storage-limited. Their operation depends upon catching an instance of an intrusion or virus after a potentially successful attack, performing post-mortem analysis on that instance and encoding it into a signature that is stored in its anomaly database. The time required to perform these tasks provides a window of vulnerability to DoD computer systems. Further, because of the current maximum size of an Internet Protocol-based message, the database would have to be able to maintain 25665535 possible signature combinations. In order to tighten this response cycle within storage constraints, this thesis presents an Artificial Immune System-inspired Multiobjective Evolutionary Algorithm intended to measure the vector of trade-off solutions among detectors with regard to two independent objectives: best classification fitness and optimal hypervolume size. Modeled in the spirit of the human biological immune system and intended to augment DoD network defense systems, our algorithm generates network traffic detectors that are dispersed throughout the network. These detectors promiscuously monitor network traffic for exact and variant abnormal system events, based on only the detector\u27s own data structure and the ID domain truth set, and respond heuristically. The application domain employed for testing was the MIT-DARPA 1999 intrusion detection data set, composed of 7.2 million packets of notional Air Force Base network traffic. Results show our proof-of-concept algorithm correctly classifies at best 86.48% of the normal and 99.9% of the abnormal events, attributed to a detector affinity threshold typically between 39-44%. Further, four of the 16 intrusion sequences were classified with a 0% false positive rate

    KInNeSS: A Modular Framework for Computational Neuroscience

    Full text link
    Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.Center for Excellence for Learning Education, Science, and Technology (SBE-0354378); Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    An artificial immune system algorithm for solving the uncapacitated single allocation p-Hub median problem

    Get PDF
    The present paper deals with a variant of hub location problems (HLP): the uncapacitated single allocation p-Hub median problem (USApHMP). This problem consists to jointly locate hub facilities and to allocate demand nodes to these selected facilities. The objective function is to minimize the routing of demands between any origin and destination pair of nodes. This problem is known to be NP-hard. Based on the artificial immune systems (AIS) framework, this paper develops a new approach to efficiently solve the USApHMP. The proposed approach is in the form of a clonal selection algorithm (CSA) that uses appropriate encoding schemes of solutions and maintains their feasibility. Comprehensive experiments and comparison of the proposed approach with other existing heuristics are conducted on benchmark from civil aeronautics board, Australian post, PlanetLab and Urand data sets. The results obtained allow to demonstrate the validity and the effectiveness of our approach. In terms of solution quality, the results obtained outperform the best-known solutions in the literature
    corecore