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ABSTRACT: The n-job, m-machine flow shop scheduling problem is one of the 
most general job scheduling problems. This study deals with the criteria of 
makespan minimization for the flow shop scheduling problem. Artificial Immune 
Systems (AIS) are new intelligent problem solving techniques that are being used in 
scheduling problems. AIS can be defined as computational systems inspired by 
theoretical immunology, observed immune functions, principles and mechanisms in 
order to solve problems. In this research, a computational method based on clonal 
selection principle and affinity maturation mechanisms of the immune response is 
used. The operation parameters of meta-heuristics have an important role on the 
quality of the solution. Thus, a generic systematic procedure which bases on a multi-
step experimental design approach for determining the efficient system parameters 
for AIS is presented. Experimental results show that, the artificial immune system 
algorithm is more efficient than both the classical heuristic flow shop scheduling 
algorithms and simulated annealing. 
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ÖZET: n iş m makina akış tipi iş çizelgeleme problemi en genel iş çizelgeleme 
problemlerinden biridir. Bu çalışma akış tipi çizelgeleme problemi için toplam 
tamamlanma zamanı minimizasyonu ile ilgilenmektedir. Yapay Bağışıklık 
Sistemleri (YBS), çizelgeleme problemlerinde son dönemlerde kullanılan yeni bir 
problem çözme tekniğidir. YBS, doğal bağışıklık sisteminin prensiplerini ve 
mekanizmalarını kullanarak problemlere çözüm üreten bir hesaplama sistemidir. Bu 
çalışmada, bağışıklık tepkisinin iki ayrı mekanizması olan klonel seçim prensibi ve 
benzerlik mekanizması üzerine kurulmuş bir metod kullanılmıştır. Meta sezgisel 
yöntemlerde seçilen operatörler, çözüm kalitesi üzerinde önemli bir role sahiptir. Bu 
nedenle, yapay bağışıklık sisteminin etkin parametrelerinin belirlenmesinde çok 
aşamalı bir deney tasarımı prosedürü uygulanmıştır. Deney sonuçları, yapay 
bağışıklık sistemlerinin klasik çizelgeleme ve tavlama benzetimi algoritmalarından 
daha iyi sonuçlar verdiğini göstermiştir. 
 
Anahtar kelimeler: Akış tipi çizelgeleme, yapay bağışıklık sistemleri, klonel seçim. 
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1. Introduction 

Most of the research in the area of flowshop scheduling problem has concentrated 
on the development of a permutation flow shop schedule. It is the problem of 
scheduling n-jobs on m-sequential machines. The machines in a flowshop are 
capable of processing at most one job at a time, and each job can be processed on at 
most one machine at any time. The n-jobs are independent, simultaneously available 
at time zero, and the machine sequences of all jobs are the same. Each job has a 
known and finite processing time on each machine, and the processing times are 
independent of the order in which operations are carried out. 
 
Preemption of individual jobs is not allowed. The objective is usually to find a 
sequence of n-jobs that minimizes makespan. The n-job, m-machine flowshop 
sequencing is a Non-Deterministically Polynomial (NP)-Hard problem. Optimal 
solutions can only be obtained by enumeration techniques. But these methods take a 
large amount of computational effort and time. Thus, heuristic methods are 
developed to solve these problems. 
 
Johnson’s Rule (Johnson, 1954) has been the basis of many flow shop scheduling 
heuristics. Palmer (1965) first proposed a heuristic for the flow shop scheduling 
problem to minimize makespan. The heuristic generates a slope index for jobs and 
sequences them in a descending order of the index. Campbell et al. (1970) proposed 
Campbell, Dudek, Smith (CDS) heuristic which is a generalization of Johnson’s two 
machine algorithm; it generates a set of m-1 artificial two-machine problems from 
an original m-machine problem, then each of the generated problems are solved 
using Johnson’s algorithm. Gupta (1971) used the concept of Palmer’s “slope index” 
for the heuristic that he improved. Dannenbring (1970) proposed a variation of the 
CDS heuristic. Nawaz et al. (1983) proposed that, a job with longer total processing 
time should have higher priority in the sequence. They used this approach as the 
main idea for their heuristic.  They showed that, their heuristic (NEH) outperformed 
the CDS algorithm. Hundal and Rajgopal (1988) made an improvement in the 
Palmer’s method and CDS. Ho and Chang (1991) developed a new improvement 
heuristic for the permutation flow shop problem.  
 
In this paper, a new AIS approach for solving the permutation flow shop scheduling 
problem is proposed. The algorithm based on the mechanisms of the vertebrate 
immune system. The ideas proposed by De Castro and Von Zuben (2000) is taken as 
a basis to construct the algorithm. A multi stage experimental design for parameter 
optimization is presented. The proposed algorithm was tested with best found 
parameters on benchmark problems that were used by Carlier (1978) and the results 
were compared with the results of  the classical heuristic algorithms and the 
Simulated Annealing (SA) algorithm. 
 
In the following section, the two mechanisms of immune system: the clonal 
selection and affinity maturation are presented briefly. The working principles of 
these mechanisms have been an inspiration source for the study. In the third section, 
a literature survey of the applications of AIS especially in scheduling problems are 
presented. In the fourth section, the proposed AIS algorithm is explained in detail, 
moreover the parameter selection method and the experimental results of the 
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proposed algorithm are presented in this section. In the fifth section, a comparison of 
the performance of AIS with some other methods is done by using the benchmark 
problems of Carlier (1978). And in the last section,  the paper is concluded with 
some comments on the findings of the study. 
 
2. The Vertebrate Immune System 
All living beings have an immune system whose complexity varies according to 
species. Vertebrated animals have a complex and effective immune system. The 
immune system performs several functions, however its most remarkable roles are 
the protection of the organism against the attack of pathogens and elimination of mal 
functioning cells. The pathogens are recognized and eliminated by immune cells. 
There are several types of immune cells but the well-knowns are lymphocytes. 
These are white blood cells. There are two types of lymphocytes: B-cells and T-
cells. Both cells have receptor molecules on their surfaces (the B-cell receptor 
molecule also called as antibody). These receptor molecules are able to recognize 
disease causing pathogens. When antigens and receptor molecules have 
complementary shapes they can bind together. The binding ensures the recognition 
of the antigen and the immune response starts. 
 
2.1 Clonal Selection Principle 
After an antigen is recognized by immune cell receptors, the antigen stimulates the 
B-cell to proliferate (divide) and mature into terminal (non-dividing) antibody 
secreting cells (plasma cells) (De Castro and Von Zuben, 2000). The proliferation in 
the immune system is succeed by cell divisions (mitosis). After the proliferation, the 
system has a clone of cells that are copies of each other. The proliferation rate of a 
cell is directly proportional to its recognizing degree of the antigen. Also there is a 
selective mechanism: The offspring cells which better recognize the antigen are 
selected and differentiated into long-lived memory cells. Memory cells circulate 
through the blood, lymph and tissues, and when exposed to a second antigenic 
stimulus they differentiate into large lymphocytes capable of producing high affinity 
antibodies, pre-selected for the specific antigen that had stimulated the primary 
response (De Castro and Von Zuben, 1999). 
 
The immune cell learns by raising the population size and affinity (the degree of the 
cell recognition with the antigen) of the cells. There is another way of learning: the 
effectiveness of the immune response to secondary encounters could be considerably 
enhanced by storing some high affinity antibody producing cells from the first 
infection (memory cells), so as to form a large initial clone for subsequent 
encounters (Ada and Nossal, 1987). By this method, the response becomes more 
faster and efficient. De Castro and Von Zuben (2000) showed the whole clonal 
selection principle as in Figure 1. 
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Figure 1. The Clonal Selection Principle (De Castro and Von Zuben, 2000). 

 
 
2.2 Affinity Maturation 
Affinity maturation is the whole mutation process and the selection of the variant 
offspring that better recognizes the antigen (De Castro and Timmis, 2003). The two 
basic mechanisms of affinity maturation are those: hypermutation and receptor 
editing (De Castro and Von Zuben, 2002). 
 
Random changes (mutations) take place in the variable region genes of antibody 
molecules. That random changes are mutational events and cause structurally 
different cells. Occasionally one such change will lead to an increase for the affinity 
of the antibody. The mutation processes on lymphocytes are named as somatic 
hypermutation. Somatic hypermutation rate is inversely proportional to the cell-
affinity: the higher the affinity a cell receptor has with an antigen the lower the 
mutation rate and vice-versa. With this strategy, the immune system keeps in hand 
the high affinity offspring cells and also ensures large mutations for the low affinity 
ones to get better affinity cells. Due to the random nature of the somatic mutation 
processes, a large proportion of mutating genes become non-functional or develop 
harmful anti-self cells. Those cells are eliminated by a programmed death process. 
But all cells with low affinities and anti-self specifications are not deleted, there is a 
process known as receptor editing: B-cells delete their self reactive receptors and 
develop entirely new receptors (De Castro and  Von Zuben, 2000). This process of 
receptor editing may cause a receptor with a better or worse affinity. Point mutations 
are good for exploring local regions, while editing may rescue immune responses 
stuck on unsatisfactory local optima (De Castro and  Von Zuben, 1999). 
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3. Artificial Immune Systems (AIS) 
The vertebrate immune system is one of the most complex systems of the body. The 
progression of science ensures to understand its working principles more easily in 
recent years. The operative mechanisms of immune system are very efficient from a 
computational standpoint. Similarly to the artificial neural networks which were 
inspired from nervous system, AIS were developed as a novel computational 
intelligence approach. AIS are defined as computational systems inspired by 
theoretical immunology and observed immune functions, principles, and models, 
applied to solve problems (De Castro and Timmis, 2002a). The main application 
domains of AIS are optimization, pattern recognition, computer and network 
security, scheduling, anomaly detection and data mining. Although there is a wide 
range of application areas of AIS, still there is not so many studies related with it. 
But the number of interested people has been increasing in the recent years. Forrest 
et al. (1994) used the r-contiguous bit rule and compared the problem of protecting 
computer systems to that of learning to distinguish between self and nonself, and 
proposed the negative selection algorithm. Dasgupta and Forrest (1996) proposed to 
apply the negative selection algorithm of AIS to detect novelties in time series data. 
Dasgupta and Forrest (1999) proposed an AIS algorithm for tool breakage  
detection. Method is inspired by negative selection algorithm that enables to 
distinguish self and nonself cells. In the study, self is defined to be normal cutting 
operation and the nonself is any deviation beyond allowable variation of the cutting 
force. De Castro and Timmis (2002b)  presented the use of AIS in pattern 
recognition applications. Taranakov and Dasgupta (2000) developed a mathematical 
model of lymphocyte cell interactions between each other. Forrest and Hofmeyr 
(2001) used an AIS approach to protect a network of computers from illegal 
intrusions due to the properties of being a distributed, robust, dynamic, diverse, and 
adaptive system. Nasaroui et al. (2002) used an AIS for web mining. AIS’s ease of  
adaptation to the changing/dynamic environment that characterizes the world wide 
web was a strong advantage for the application. De Castro and Von Zuben (2000) 
applied the clonal selection algorithm to solve multi-modal optimisation, pattern 
recognition tasks and the travelling salesman problem. Timmis and Neal (2000) 
presented an AIS for data analysis. Trojanowski and Wierzchon (2002) used AIS for 
non-stationary function optimization. 
 
The efficient mechanisms of immune system which are the clonal selection, learning 
ability, memory, robustness and flexibility make artificial immune systems useful 
for scheduling problems. Mori et al. (1997) proposed an AIS to control a 
semiconductor production line. The control of the production line was done by a set 
of agents. Each agent interacted with the production line and with other agents. This 
system was a copy of the immune system. Hart et al. (1998) used an AIS approach 
to solve job shop problems. They used problems where each job has associated 
release and due dates. Their goal was finding schedules that minimizes maximum 
tardiness. Each solution (a complete schedule) was an antibody. They build a 
number of libraries. Each library contains a number of genetic strings, each string 
being a part of solutions to a set of  job shop problems. By concatenating strings 
from each library, an antibody (schedule) is constructed. 1000 clones of the best 
individual found were generated. The clones were mutated and the best clone found 
was selected as the solution of the problem. Russ et al. (1999) give an AIS model for 
task allocation in computer systems with the goal of designing a system that is 
enable to adapt changing conditions. They used a set of agents, agents are interacted 
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with the system and themselves. Costa et al. (2002) proposed an immune based 
approach to minimize makespan on parallel processors. They defined an affinity 
function based on makespan values of the schedules. Also they give a function to 
calculate the number of clones that will be proliferated. They compared the 
performance of their algorithm with  heuristics: Longest Processing Time, Multifit, 
Local Search and  Simulated Annealing. 
 
4. Experimentation 
In this section, Simulated Annealing (SA) algorithm and the proposed AIS approach 
will be described. These algorithms are implemented for solving flow shop 
scheduling problems when the objective is makespan minimization. 
 
4.1. Simulated Annealing (SA) Algorithm 
SA is a nature-based stochastic algorithm which produces good suboptimal solution 
(Tian et al.,1999). The SA is an iterative search procedure based on a neighborhood 
structure. Recently, much research has been done on the application of SA to flow 
shop scheduling problem (Osman and Potts,1989; Ogbu and Smith, 1990). The SA 
algorithm can be described as follows (Tian et al.,1999). 
 
Step 1. 
Find an initial solution i Є S; 
Set simulation temperature values T0  > Tι > 0;  Set an iterative counter  k=0; 
Step 2. 
Generate a random solution  j Є N(i);  Find  ∆ƒ = ƒ(j) –ƒ(i). 
Step 3.  
If Metropolis criterion is satisfied, i.e., min {1, exp(-∆ƒ /Tk)} > η Є [0,1)}, then  i=j; 
Step 4. 
If Metropolis equilibrium under Tk  is realised, then go to Step 5; Else go to Step 2. 
Step 5. 
If stop criterion is not satisfied, i.e., Tk > Tι, then reduce the temperature               
Tk+1 = Tk –∆Tk  ∆Tk, > 0 and set k= k+1, go to Step 2; Else output  iopt= i. 
End 
 
4.2. Proposed AIS Approach 
 
4.2.1. Algorithm 
In this study, possible schedules are represented by integer-valued strings of length 
n. The n elements of the strings are the jobs which will be sequenced, so the strings 
are composed of permutations of n (jobs) elements. Those strings are accepted as 
antibodies of the AIS. The algorithm goes to solution by the evolution of these 
antibodies. Evolution based on two basic principles of the vertebrate immune 
system: Clonal Selection and Affinity Maturation.   
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The proposed algorithm is presented below: 
 
Create a population of B  antibodies (B is the size of antibody population); 
      x=0;  
 For each generation do; 
     x=x+1; 
 For each antibody do: 
 Decode the antibody; 
 Determine the makespan (affinity) of antibody; 
 Calculate the selection probability (rate of cloning); 
 Cloning (generate copies of antibodies); 
 
 For each generated clone do; 

 inverse mutation (generate a new string); 
 decode the new string:; 
 calculate the makespan of the new string; 
 if makespan (new string) < makespan (clone) then clone=new string;  
  else do pairwise interchange mutation (generate a new string); 
 decode the new string: 
 calculate the makespan of the new string:   
              if makespan(new string)< makespan(clone) then  clone=new string; 
              else clone=clone; 

antibody=clone; 
 
 if  x =A (frequency of elimination steps) then 
 eliminate worst C  number of antibodies in the population (C is elimination 

ratio of antibodies); 
 create C new random antibodies;  
 change the new created ones with the eliminated ones; 
 x=0:  
 end if: 
 while stopping criteria=false (stopping criteria is the number of generations    

which is user defined) 
 
Cloning selection processes of the algorithm 
Each schedule (antibody) has a makespan value that refers to the affinity value of 
that antibody. Affinity value of each schedule is calculated due to the affinity 
function. Equation 1 shows the affinity function, where z  represents the antibody. 
 
 

)(
1)(

zmakespan
zAffinity =  (1) 

 
From the equation, it can be noticed that the lower the makespan value the higher  
the affinity value. In the algorithm the cloning of antibodies is done directly 
proportional to their affinity function values, which is also the case in the vertebrate 
immune system. 
 
We propose a cloning procedure for the algorithm. The procedure is a special 
version of the roulette wheel method (Goldberg, 1989). Here makespan values of 
schedules are used rather than an objective function value. Opposite to maximizaton 
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problems, the procedure gives more chance to the ones with lower makespan (Cmax) 
for selecting and cloning. Thus, there will be more clones of  antibodies with lower 
Cmax values than high Cmax valued antibodies in the new generated clone population.  
 
The selection probability of each antibody is calculated due to the following 
procedure: 

a) For each antibody in the population calculate the makespan value, 
b) Find the maximum makespan value (Max Cmax) 
c) For each antibody calculate the fitness value due to Equation 2. 

 
 Fitness value= (MaxCmax+1) - (makespan of antibody) (2) 

 
d) For each antibody find the selection probability by using Equation 3.  

 
 

populationtheinantibodiesofvaluesfitnessoftotal
antibodyofvaluefitnessyprobabilitselection =  (3) 

 
In the algorithm a fixed size of antibody  population was used, also we generated the 
set of clones with the same size of antibody population. The number of clones which 
are generated from each antibody, changes due to the selection probability of the 
antibody. It is expected that the antibodies with greater selection probabilities will 
have more clone (copy) in the  clone set. Because of the fixed size of the clone set, 
some of the antibodies with high  Cmax values may have no clones in the clone set, 
while the antibodies with lower Cmax values may have lots of clones. 
 
Affinity maturation processes of the algorithm: 
 
Mutations: In the study, a two phased mutation procedure was used. The generated 
clones undergo an inverse mutation procedure firstly. 
 
Inverse Mutation: Given a sequence s, let i and j be two positions in the sequence s. 
A neighbor of s is obtained by inversing the sequence of jobs between positions i 
and  j. If the makespan value of mutated sequence (after inverse mutation) is smaller 
than that of the original sequence (a generated clone from an antibody) then the 
mutated one is stored in place of the original one. Otherwise, the sequence will be 
mutated again with random pairwise interchange mutation method. 
 
Pairwise Interchange Mutation: Given a sequence s, let i and j be randomly selected 
two positions in the sequence s. A neighbor of s is obtained by interchanging the 
jobs in positions i and j. If the makespan value of mutated sequence (after pairwise 
interchange mutation) is smaller than the original sequence, then store the  mutated 
one in place of the original one. 
 
In the case of  the algorithm could not find a better sequence after the two mutation 
procedure then store the original sequence  (generated clone). In the inverse 
mutation phase, the considered sequence is not allowed to be mutated if 2<− ij . 
This constraint maintains a higher mutation rate for inverse mutation than the 
pairwise interchange mutation because the constraint allows to change the places of 
jobs of more than two. In the early steps of our algorithm, it is a much possibility to 
find a better sequence by employing the inverse mutation because the algorithm still 
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far away from the good solutions and the large mutations may cause to find better 
job sequences. In later steps  the algorithm will have good solutions. The possibility 
of finding better sequences by the use of making large mutations is low, because 
large mutations  may cause to lose good partial job sequences and escape from 
optimal. So, in the later steps it is more efficient to make relatively small mutations. 
In the proposed algorithm this efficiency is secured by using the pairwise 
interchange mutation method when the inverse mutation does not give a better 
solution.  
 
As described above, by the time the algorithm ensures to make relatively small 
mutations contrary to the relatively increase (decrease in makespan values) in 
affinity function values. It was explained in Section 2.2 that, in the vertebrate 
immune system the mutations on receptor molecules are done inversely proportional 
to the affinity degree of that receptor molecule. The approach in the algorithm fits 
well with this mechanism. 
 
Receptor Editing: For some steps of the algorithm, a number of worst antibodies in 
the antibody population are eliminated and randomly created antibodies at the same 
number are replaced with them. This mechanism is also a vertebrate immune system 
mechanism, named receptor editing and described in Section 2.2. This mechanism 
allows to find new schedules, what means of new search regions in the total search 
space. Exploring new search regions may help the algorithm to escape from local 
optimals.  This process is applied in every A (A is a user defined parameter) 
generations in the algorithm. A counter, named x, is used to count the generation 
number and when x=A  algorithm starts the receptor editing procedure. 
 
In summary; all the clones in the set of clones which are the copies of antibodies 
with good affinity degrees undergo a mutation process. This is a two phased 
mutation process: firstly the inverse mutation is applied. In the case of not having a 
better solution, then the pairwise interchange mutation method is applied. Also after 
the second mutation method if there is no improvement then the original schedule 
(copy of an antibody in the copies set) remains with no change. And in some steps 
of the algorithm a model of receptor editing mechanism of the immune system was 
used: a proportion of the worst schedules eliminated and  new ones are generated in  
place of them. 
 
The clone set is accepted as an antibody population set for the next generation after 
these cloning and mutation processes. Thus, the clones which had the mutation 
process is assigned as antibodies for the next generation. In the next generation the 
clones will be copied from these antibodies. In the algorithm this statement was 
given as antibody=clone:  
 
4.2.2. Parameter optimization for AIS  
For obtaining optimal or near-optimal solutions of any combinatorial optimization 
problem in a shorter time, one should use the optimal set of the parameters. In this 
study the parameters of the AIS algorithm were improved by Multi Step 
Experimental Design Approach (MSEDA) (Fiğlalı et al., 2002). The experimental 
design uses an Ortogonal Array (OA) which prescribes series of trials to perform. In 
our algorithm there are three parameters which effect the solution. Two levels of  
each factor are used. The three variable factors are frequency of elimination steps 
(A), size of antibody population (B) and elimination ratio of antibodies (C) 
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respectively.  In Table 1 the two level L8 design for experiments is presented. In this 
study, all possible combinations of factor A,B, and C factor at each of the levels 1 
and 2 are tested as a full factorial experiment. The lower and upper bounds of 
parameter ranges correspond to the factor levels. The ranges of each parameter are 
given in Table 2. 
 

Table 1. L8 OA for Experiments 

Trial no A B C 
1 1 1 1 
2 1 1 2 
3 1 2 1 
4 1 2 2 
5 2 1 1 
6 2 1 2 
7 2 2 1 
8 2 2 2 

 
 

Table 2. The parameter ranges of AIS for Flowshop scheduling Problems 

Parameter Factor Levels 
Frequency of Elimination  Steps (A) 1-100 
Size of Antibody Population (B) 1-50 
Elimination Ratio of Antibodies (C) 1-100 (%) 

 
The used MSEDA (Fığlalı et al., 2002) for determining the optimal parameter set is 
explained as follows. 
 
Step 1:  Quadripartite the whole range for each parameter and, take the end points of  

the first and the third quadriparts as the levels of first step of the 
experimental design.  

Step 2:  Solve the problem 25 times by using L8 orthogonal design-parameter set 
determined in Step 1.   

Step 3:  Select the best parameter set depending on the mean values of makespans 
for 25 solutions from 8 experiments.   

Step 4: For each parameter in the best parameter set apply the Search Range 
Limitation Procedure (SRLP) for determining the new parameter set as 
shown in Figure 2.  

Step 5: Calculate the individual and interaction effects of the parameters on the 
solution. 
a)  If there is no interaction effect, then solve the problem 25 times by using 
L8 orthogonal design with each parameter set determined in Step 4.   
b)  If there is interaction between the parameters, then select the parameter 
due to the interaction.   

Step 6:  Compare the obtained Average of Mean Values (AMEVn) with the former 
step’s AMEVn-1. 

 If AMEVn-1  <  AMEVn  Stop the algorithm. 
 If AMEVn-1   >  AMEVn Go to Step 7. 
Step 7:  Select the best parameter set depending on the mean values of makespans 

for 25 solutions from the experiments.   Go to Step 4. 
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Figure 2. Search Range Limitation Procedure (SRLP) 
 
Notice that, SRLP limits the half of the search range in each step for each 
parameter.The half range which contains the effective level for any parameter is 
limited to a new search.  The effective half range is quadripartited for each 
parameter and the end points of the first and the third quadriparts are taken as the 
levels of the new experiment.  
 
The proposed AIS algorithm was coded in Visual Basic. Algorithms were run on a 
Pentium 4 1.7 GHz  IBM PC. The generation number for the proposed AIS 
algorithm was selected as 150. For the experiments, a set of problems proposed by 
Carlier (1978) were used. The sizes of the n (jobs) x m (machines) type problems as 
follows: 7x7, 13x4, 11x5, 14x4, 12x5, 10x6, 8x8, 8x9. For each of the problems the 
MSEDA was applied to obtain efficient parameter sets.  For each of the problems 8 
trials were implemented due to the L8 OA. Each trials were run 25 times for each 
step, and totally 33 steps (5 steps for 7x7 problem, 5 steps for 13x4 problem, 2 steps 
for 11x5 problem, 4 steps for 14x4 problem, 5 steps for 12x5 problem, 3 steps for 
10x6 problem, 5 steps for 8x8 problem, 4 steps for 8x9 problem)  were implemented 
among the eight problems. In the whole experiment 6600 runs were made among the 
8 problems.   
 
Table 3 shows the implementation results of the MSEDA algorithm for 7x7 
problem. Table 3 shows the mean and minimum values of makespan values for 25 
runs in each of the trials. For each step the minimum mean value and the average of 
mean values of the eight trials (AMEV) are shown in bold style. In each step, the 
trial with minimum mean value is selected and SRLP procedure is applied to its 
parameter set. SRLP limits the half of the search range in each step for each 
parameter. The half range which contains the effective level for any parameter is 
limited to a new search. The effective half range is quadripartited for each parameter 

A    1        50      100 
B    1        25        50 
C    1        50      100 

A    1        25       50 
B    1        13       25 
C    1        25       50 

A   50       75      100 
B   25       38       50 
C   50       75      100 

A  50    63      75 
B  25    32      38 
C  50    63      75 

A  25    38     50 
B  13    19     25 
C  25    38     50 

A   1    13      25 
B   1     7       13 
C   1    13      25 

A  75    88    100 
B  38    44     50 
C  75    88    100 
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and the end points of the first and the third quadriparts are taken as the levels of the 
new experiment. This procedure continues until AMEV of the following step 
becomes higher than the prior step’s AMEV. The parameter set of the trial with the 
lowest mean value in the last decreasing step, is accepted as the efficient parameter 
set. 
 

Table 3. Implementation of the MSEDA algorithm for 7x7 Problem 
    Trial No.   

Step  1 2 3 4 5 6 7 8 AMEV 
mean 6668 6763 6600 6664 6724 6651 6610 6605 6660 

1 min. 6590 6590 6590 6590 6590 6590 6590 6590 6590 
mean 6608 6656 6625 6627 6652 6625 6620 6633 6631 

2 min. 6590 6590 6590 6590 6590 6590 6590 6590 6590 
mean 6629 6629 6614 6604 6632 6646 6614 6603 6621 

3 min. 6590 6590 6590 6590 6590 6590 6590 6590 6590 
mean 6624 6622 6619 6620 6619 6601 6619 6624 6619 

4 min. 6590 6590 6590 6590 6590 6590 6590 6590 6590 
mean 6633 6642 6649 6619 6639 6687 6649 6603 6640 

5 min. 6590 6590 6590 6590 6590 6590 6590 6590 6590 
 
 
The procedure for 7x7 problem becomes as following. In the beginning (first step), 
the parameter A ranges from 1-100; parameter B ranges from 1-50, parameter C 
ranges from 1-100. After the whole ranges for each parameter are quadripartited, the 
end points of the first and third quadriparts are taken as the first and second level of 
the experimental design ( for parameter A the levels are; 25 and 75, for B; 13 and 38 
and for C; 25 and 75). Eight trials are prepared due to L8 OA. The third trial gives 
the minimum mean that corresponds to 1-2-1 (25-38-25) parameter levels according 
to L8 OA. Then SRLP procedure is applied to that parameter set and new parameter 
levels for the following step are obtained. For parameter A, the effective level was 
chosen as 25. The search range is lowered to 1-50, as 25 is the mid point of the 
range. This new range is quadripartited and new levels are determined (which is 13 
and 38). Similarly, for the parameters B and C also the new levels are determined 
for the second step experimental design levels. This process continues until there is 
an increase in the average of mean values of  the eight trials (AMEV) from the 
previous step’s AMEV. The fifth step AMEV is higher than  AMEV of the fourth 
step so process is stopped here. The parameter set of the trial with the lowest mean 
value in the fourth step (this is the sixth trial, as seen in  Table 3) is taken as the 
efficient parameter set for the 7x7 problem. In Table 4, the best parameter set found 
in each step is seen in bold letters. The average of mean values of the eight trials 
decrease until the fifth step, so the best found parameter set in the fourth step is 
accepted as the efficient parameter set. The trial with the minimum mean in the 
fourth step is the sixth trial, with mean makespan value of 6601 and  parameter set 
of  22-34-22. This parameter set is accepted as the efficient parameter set for 7x7 
problem.  
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Table 4.  The Best Parameter Sets of Each Phase of MSEDA for 7x7 Problem 

Steps 
Minimum of  
trial mean 

values 

Average of 
mean values of 

trials 

First and 
second 

levels of A 

First and 
second 

levels of B 

First and 
second 

levels of C 
25 13 25 1 6600 6660 
75 38 75 
13 32 13 2 6608 6631 38 44 38 
7 29 7 3 6603 6621 19 35 19 

16 34 16 4 6601 6619 22 37 22 
21 33 21 5 6603 6640 24 35 24 

 
The parameter interactions are important. If there is a positive interaction between 
parameters the same level of parameters must be chosen for the following step in 
SRLP procedure. In our study we looked for the interactions between each 
parameter for each problem. We could not find a meaningful interaction between 
parameters.  In Table 5, for the 4x13 problem the interaction values of each 
parameter pairs are shown. The F-test value for at least 95 % confidence is 
calculated as 3.940158. As seen in the table there is not any value greater than 
3.940158, so it can be said that there is no interaction between parameters. 
 

Table 5. The interactions between each parameter pairs for 4x13 problem. 
Step A-B A-C B-C 

1 2.84 0.08 3.12 
2 1.73 0.421 0.08 
3 0.16 1.6 3.27 
4 0.005 0.89 0.39 
5 0.62 2.19 0.0006 

 
Also we examined the individual effects of the parameters, and found that the 
parameter of  antibody population size has the greatest effect overall.  
 
Use of this MSEDA approach well-performed for the solutions. Table 6 presents the 
improvement in AMEVs. For 7x7 problem the AMEV in the beginning step was 
6660,  after applying MSEDA the AMEV was decreased to 6619.   
 

Table 6. Improvement with the MSEDA 
Problem Beginning AMEV Lasting AMEV 

7x7 6660 6619 
13x4 7359 7265 
14x4 8149 8088 
12x5 7516 7445 
8x9 8706 8612 
11x5 7101 7038 
10x6 7878 7801 
8x8 8520 8444 
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5. Comparative Results 
The eight problems of Carlier (1978) were solved with classical heuristics (Engin 
and Fığlalı, 2001), SA and the proposed AIS algorithm. The proposed AIS algorithm 
is run with the best parameters, which are found by the parameter optimization 
method (MSEDA). 
 
In Table 7, the best makespan values for each problem were shown in bold style, 
and the second best values were shown in italic style. It can be inferred from the 
table that, AIS algorithm outperformed all other considered methods. The SA gives 
more better solutions than classical heuristic methods. Among the classical 
heuristics the NEH algorithm performs better than the others. From the table it is 
also seen that, the standart deviation between the values of different methods is very 
high. That means, the method used for solving flow shop scheduling problems has 
important effect on solution quality. 
 

Table 7.  Best found makespan values of the test problems 
Problems Methods 

11x5 13x4 12x5 14x4 10x6 8x9 7x7 8x8 
AIS 7038 7166 7312 8003 7720 8505 6590 8366 
SA 7038 7284 7432 8092 7785 8692 6637 8431 
NEH 7038 7376 7399 8003 7838 8773 6590 8564 
CDS 7202 7410 7399 8423 8627 9082 6760 8903 
Dannenbring 7817 7509 7399 8357 8933 9179 6760 9062 
Gupta 7274 7534 7399 8423 8773 9441 7043 9150 
Ho-Chang 7202 7410 7399 8423 8627 9082 6760 8903 
Hundal-Rajgopal 7175 7376 7779 8423 8520 9487 7043 8825 
Johnson 7689 7741 7779 8679 8627 10211 6887 9696 
Palmer 7472 7940 7779 8423 8520 9487 7043 8825 
Standart  deviation 276 224 190 220 442 494 183 386 
 
6. Conclusions 
In this paper, a new AIS approach for solving permutation flow shop scheduling 
problems when the objective is makespan minimization was proposed. The 
algorithm uses simple but effective techniques for calculating cloning process,  
applying mutations and applying a receptor editing procedure. The procedures used 
in cloning and mutation phases of the algorithm has not been considered before any 
other AIS resarchers. A new parameter optimization approach (MSEDA) was used 
to obtain better parameters. The AIS algorithm was tested with the best found 
parameters. The AIS algorithm, SA algorithm and other heuristics were tested on the 
benchmark problems that were given by Carlier (1978) and a comparison was made. 
It was seen that the proposed AIS approach was more efficient than other heuristics. 
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