5,881 research outputs found

    SHE based Non Interactive Privacy Preserving Biometric Authentication Protocols

    Get PDF
    Being unique and immutable for each person, biometric signals are widely used in access control systems. While biometric recognition appeases concerns about password's theft or loss, at the same time it raises concerns about individual privacy. Central servers store several enrolled biometrics, hence security against theft must be provided during biometric transmission and against those who have access to the database. If a server's database is compromised, other systems using the same biometric templates could also be compromised as well. One solution is to encrypt the stored templates. Nonetheless, when using traditional cryptosystem, data must be decrypted before executing the protocol, leaving the database vulnerable. To overcame this problem and protect both the server and the client, biometrics should be processed while encrypted. This is possible by using secure two-party computation protocols, mainly based on Garbled Circuits (GC) and additive Homomorphic Encryption (HE). Both GC and HE based solutions are efficient yet interactive, meaning that the client takes part in the computation. Instead in this paper we propose a non-interactive protocol for privacy preserving biometric authentication based on a Somewhat Homomorphic Encryption (SHE) scheme, modified to handle integer values, and also suggest a blinding method to protect the system from spoofing attacks. Although our solution is not as efficient as the ones based on GC or HE, the protocol needs no interaction, moving the computation entirely on the server side and leaving only inputs encryption and outputs decryption to the client

    PIN generation using EEG : a stability study

    Get PDF
    In a previous study, it has been shown that brain activity, i.e. electroencephalogram (EEG) signals, can be used to generate personal identification number (PIN). The method was based on brain–computer interface (BCI) technology using a P300-based BCI approach and showed that a single-channel EEG was sufficient to generate PIN without any error for three subjects. The advantage of this method is obviously its better fraud resistance compared to conventional methods of PIN generation such as entering the numbers using a keypad. Here, we investigate the stability of these EEG signals when used with a neural network classifier, i.e. to investigate the changes in the performance of the method over time. Our results, based on recording conducted over a period of three months, indicate that a single channel is no longer sufficient and a multiple electrode configuration is necessary to maintain acceptable performances. Alternatively, a recording session to retrain the neural network classifier can be conducted on shorter intervals, though practically this might not be viable

    Transparent authentication: Utilising heart rate for user authentication

    Get PDF
    There has been exponential growth in the use of wearable technologies in the last decade with smart watches having a large share of the market. Smart watches were primarily used for health and fitness purposes but recent years have seen a rise in their deployment in other areas. Recent smart watches are fitted with sensors with enhanced functionality and capabilities. For example, some function as standalone device with the ability to create activity logs and transmit data to a secondary device. The capability has contributed to their increased usage in recent years with researchers focusing on their potential. This paper explores the ability to extract physiological data from smart watch technology to achieve user authentication. The approach is suitable not only because of the capacity for data capture but also easy connectivity with other devices - principally the Smartphone. For the purpose of this study, heart rate data is captured and extracted from 30 subjects continually over an hour. While security is the ultimate goal, usability should also be key consideration. Most bioelectrical signals like heart rate are non-stationary time-dependent signals therefore Discrete Wavelet Transform (DWT) is employed. DWT decomposes the bioelectrical signal into n level sub-bands of detail coefficients and approximation coefficients. Biorthogonal Wavelet (bior 4.4) is applied to extract features from the four levels of detail coefficents. Ten statistical features are extracted from each level of the coffecient sub-band. Classification of each sub-band levels are done using a Feedforward neural Network (FF-NN). The 1 st , 2 nd , 3 rd and 4 th levels had an Equal Error Rate (EER) of 17.20%, 18.17%, 20.93% and 21.83% respectively. To improve the EER, fusion of the four level sub-band is applied at the feature level. The proposed fusion showed an improved result over the initial result with an EER of 11.25% As a one-off authentication decision, an 11% EER is not ideal, its use on a continuous basis makes this more than feasible in practice

    Security and Efficiency Analysis of the Hamming Distance Computation Protocol Based on Oblivious Transfer

    Get PDF
    open access articleBringer et al. proposed two cryptographic protocols for the computation of Hamming distance. Their first scheme uses Oblivious Transfer and provides security in the semi-honest model. The other scheme uses Committed Oblivious Transfer and is claimed to provide full security in the malicious case. The proposed protocols have direct implications to biometric authentication schemes between a prover and a verifier where the verifier has biometric data of the users in plain form. In this paper, we show that their protocol is not actually fully secure against malicious adversaries. More precisely, our attack breaks the soundness property of their protocol where a malicious user can compute a Hamming distance which is different from the actual value. For biometric authentication systems, this attack allows a malicious adversary to pass the authentication without knowledge of the honest user's input with at most O(n)O(n) complexity instead of O(2n)O(2^n), where nn is the input length. We propose an enhanced version of their protocol where this attack is eliminated. The security of our modified protocol is proven using the simulation-based paradigm. Furthermore, as for efficiency concerns, the modified protocol utilizes Verifiable Oblivious Transfer which does not require the commitments to outputs which improves its efficiency significantly

    Frictionless Authentication Systems: Emerging Trends, Research Challenges and Opportunities

    Get PDF
    Authentication and authorization are critical security layers to protect a wide range of online systems, services and content. However, the increased prevalence of wearable and mobile devices, the expectations of a frictionless experience and the diverse user environments will challenge the way users are authenticated. Consumers demand secure and privacy-aware access from any device, whenever and wherever they are, without any obstacles. This paper reviews emerging trends and challenges with frictionless authentication systems and identifies opportunities for further research related to the enrollment of users, the usability of authentication schemes, as well as security and privacy trade-offs of mobile and wearable continuous authentication systems.Comment: published at the 11th International Conference on Emerging Security Information, Systems and Technologies (SECURWARE 2017
    • 

    corecore