1,695 research outputs found

    Airports, Droneports, and the New Urban Airspace

    Get PDF

    Local Government Policy and Planning for Unmanned Aerial Systems

    Get PDF
    This research identifies key state and local government stakeholders in California for drone policy creation and implementation, and describes their perceptions and understanding of drone policy. The investigation assessed stakeholders’ positions, interests, and influence on issues, with the goal of providing potential policy input to achieve successful drone integration in urban environments and within the national airspace of the United States. The research examined regulatory priorities through the use of a two-tiered Stakeholder Analysis Process. The first tier consisted of a detailed survey sent out to over 450 local agencies and jurisdictions in California. The second tier consisted of an in-person focus group to discuss survey results as well as to gain deeper insights into local policymakers’ current concerns. Results from the two tiers of analysis, as well as recommendations, are provided here

    Developing 3D Virtual Safety Risk Terrain for UAS Operations in Complex Urban Environments

    Full text link
    Unmanned Aerial Systems (UAS), an integral part of the Advanced Air Mobility (AAM) vision, are capable of performing a wide spectrum of tasks in urban environments. The societal integration of UAS is a pivotal challenge, as these systems must operate harmoniously within the constraints imposed by regulations and societal concerns. In complex urban environments, UAS safety has been a perennial obstacle to their large-scale deployment. To mitigate UAS safety risk and facilitate risk-aware UAS operations planning, we propose a novel concept called \textit{3D virtual risk terrain}. This concept converts public risk constraints in an urban environment into 3D exclusion zones that UAS operations should avoid to adequately reduce risk to Entities of Value (EoV). To implement the 3D virtual risk terrain, we develop a conditional probability framework that comprehensively integrates most existing basic models for UAS ground risk. To demonstrate the concept, we build risk terrains on a Chicago downtown model and observe their characteristics under different conditions. We believe that the 3D virtual risk terrain has the potential to become a new routine tool for risk-aware UAS operations planning, urban airspace management, and policy development. The same idea can also be extended to other forms of societal impacts, such as noise, privacy, and perceived risk.Comment: 33 pages, 19 figure

    Technology challenges of stealth unmanned combat aerial vehicles

    Get PDF
    The ever-changing battlefield environment, as well as the emergence of global command and control architectures currently used by armed forces around the globe, requires the use of robust and adaptive technologies integrated into a reliable platform. Unmanned Combat Aerial Vehicles (UCAVs) aim to integrate such advanced technologies while also increasing the tactical capabilities of combat aircraft. This paper provides a summary of the technical and operational design challenges specific to UCAVs, focusing on high-performance, and stealth designs. After a brief historical overview, the main technology demonstrator programmes currently under development are presented. The key technologies affecting UCAV design are identified and discussed. Finally, this paper briefly presents the main issues related to airworthiness, navigation, and ethical concerns behind UAV/UCAV operations

    On_Demand Aviation: Governance Challenges of Urban Air Mobility ( UAM )

    Get PDF
    The first generation that has never known a world without smartphones and social media may be close to making the world forget about traditional cars. Investment is pouring into urban air mobility (“UAM”)—the local, on-demand movement of people and goods by air using a range of piloted and semi- and fully autonomous electric aircraft that take off and land vertically. In fact, the innovation of aerial ridesharing at scale—a technology that is still very much associated with the 1960s cartoon series “The Jetsons”—may be at market as soon as 2025, according to some estimates. UAM—which is also referred to as on-demand mobility (“ODM”)—will revolutionize urban transportation and personal mobility, and impact matters from airspace management to aviation safety and property rights in unknown ways. For example, UAM will compete, supplement, and/or exist alongside traditional air and ground traffic operations, while in other cases, traditional transportation nodes such as airports might be intertwined and become a functional element of UAM systems themselves. To say that airports and the communities surrounding airports need to understand and anticipate the effects and opportunities of the UAM market is an understatement. This Article addresses the emerging UAM market, including the relevant technologies from a legal and regulatory perspective. In conceptualizing a new world in which UAM is real, this Article will explore the various stages of legal, regulatory, and technological development of UAM. It also addresses practical questions such as how UAM and traditional transportation aviation operations might coexist in shared airspace and if and how communities will respond to environmental concerns such as UAM-generated noise. In all, this Article serves as a primer, presenting the substance and scope of UAM governance as presently configured, and where gaps exist (and many do), explores potential regulatory and socio-technological solutions to the challenges posed by advances in autonomous-, self-, and optionally-piloted aircraft systems

    Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 2.0 (“roadmap”) is an update to version 1.0 of this document published in December 2018. It identifies existing standards and standards in development, assesses gaps, and makes recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 78 issue areas, identified a total of 71 open gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 47 gaps/recommendations have been identified as high priority, 21 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 53 cases, additional R&D is needed. As with the earlier version of this document, the hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will continue to be promoted in the coming year. It is also envisioned that a mechanism may be established to assess progress on its implementation

    Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0

    Get PDF
    This Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0 (“roadmap”) represents the culmination of the UASSC’s work to identify existing standards and standards in development, assess gaps, and make recommendations for priority areas where there is a perceived need for additional standardization and/or pre-standardization R&D. The roadmap has examined 64 issue areas, identified a total of 60 gaps and corresponding recommendations across the topical areas of airworthiness; flight operations (both general concerns and application-specific ones including critical infrastructure inspections, commercial services, and public safety operations); and personnel training, qualifications, and certification. Of that total, 40 gaps/recommendations have been identified as high priority, 17 as medium priority, and 3 as low priority. A “gap” means no published standard or specification exists that covers the particular issue in question. In 36 cases, additional R&D is needed. The hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards for UAS. To that end, it is envisioned that the roadmap will be widely promoted and discussed over the course of the coming year, to assess progress on its implementation and to identify emerging issues that require further elaboration
    • …
    corecore