2,525 research outputs found

    Modeling and Analysis of Noise and Interconnects for On-Chip Communication Link Design

    Get PDF
    This thesis considers modeling and analysis of noise and interconnects in onchip communication. Besides transistor count and speed, the capabilities of a modern design are often limited by on-chip communication links. These links typically consist of multiple interconnects that run parallel to each other for long distances between functional or memory blocks. Due to the scaling of technology, the interconnects have considerable electrical parasitics that affect their performance, power dissipation and signal integrity. Furthermore, because of electromagnetic coupling, the interconnects in the link need to be considered as an interacting group instead of as isolated signal paths. There is a need for accurate and computationally effective models in the early stages of the chip design process to assess or optimize issues affecting these interconnects. For this purpose, a set of analytical models is developed for on-chip data links in this thesis. First, a model is proposed for modeling crosstalk and intersymbol interference. The model takes into account the effects of inductance, initial states and bit sequences. Intersymbol interference is shown to affect crosstalk voltage and propagation delay depending on bus throughput and the amount of inductance. Next, a model is proposed for the switching current of a coupled bus. The model is combined with an existing model to evaluate power supply noise. The model is then applied to reduce both functional crosstalk and power supply noise caused by a bus as a trade-off with time. The proposed reduction method is shown to be effective in reducing long-range crosstalk noise. The effects of process variation on encoded signaling are then modeled. In encoded signaling, the input signals to a bus are encoded using additional signaling circuitry. The proposed model includes variation in both the signaling circuitry and in the wires to calculate the total delay variation of a bus. The model is applied to study level-encoded dual-rail and 1-of-4 signaling. In addition to regular voltage-mode and encoded voltage-mode signaling, current-mode signaling is a promising technique for global communication. A model for energy dissipation in RLC current-mode signaling is proposed in the thesis. The energy is derived separately for the driver, wire and receiver termination.Siirretty Doriast

    Doctor of Philosophy

    Get PDF
    dissertationLeast-squares migration has been shown to be able to produce high quality migration images, but its computational cost is considered to be too high for practical imaging. In this dissertation, a multisource least-squares migration algorithm (MLSM) is proposed to increase the computational efficiency by utilizing the blended sources processing technique. The MLSM algorithm is implemented with both the Kirchhoff migration and reverse time migration methods. In the last chapter, a new method is proposed to migrate prism waves separately to illuminate vertical reflectors such as salt flanks. Its advantage over standard RTM method is that it does not require modifying the migration velocity model. There are three main chapters in this dissertation. In Chapter 2, theMLSMalgorithm is implemented with Kirchhoff migration and random time-shift encoding functions. Numerical results with Kirchhoff least-squares migration on the 2D SEG/EAGE salt model show that an accurate image is obtained by migrating a supergather of 320 phase-encoded shots. When the encoding functions are the same for every iteration, the I/O cost of MLSM is reduced by 320 times. Empirical results show that the crosstalk noise introduced by blended sources is more effectively reduced when the encoding functions are changed at every iteration. The analysis of the signal-to-noise ratio (SNR) suggests that an acceptable number of iterations are needed to enhance the SNR to an acceptable level. The benefit is that Kirchhoff MLSM is a few times faster than standard LSM, and produces much more resolved images than standard Kirchhoff migration. In Chapter 3, the MLSM algorithm is implemented with the reverse time migration method and a new parameterization, where the migration image of each shot gather is updated separately and an ensemble of prestack images is produced along with common image gathers. The merits of prestack plane-wave LSRTM are the following: (1) planewave prestack LSRTM can sometimes offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave encoding can be effectively applied to data with a marine streamer geometry; (3) plane-wave prestack LSRTM can provide higher quality images than standard RTM. Numerical tests on the Marmousi2 model and a marine field dataset are performed to illustrate the benefits of plane-wave least-squares reverse time migration. In Chapter 4, I present a new reverse time migration method for imaging salt flanks with prism wave reflections. It consists of four steps: (1) migrating the seismic data with conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model to simulate source-side reflections with the Born approximation; (3) zero-lag correlation of the source-side reflection wavefields and receiver-side wavefields to produce the prism wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An advantage of this method over standard RTM is that there is no need to pick the horizontal reflectors prior to migration of the prism waves. It also separately images the vertical structures at a different step to reduce crosstalk interference. The empirical results with salt model data suggest that prism wave migration can be an effective method for salt flank delineation in the absence of diving waves

    Evolving graphs: dynamical models, inverse problems and propagation

    Get PDF
    Applications such as neuroscience, telecommunication, online social networking, transport and retail trading give rise to connectivity patterns that change over time. In this work, we address the resulting need for network models and computational algorithms that deal with dynamic links. We introduce a new class of evolving range-dependent random graphs that gives a tractable framework for modelling and simulation. We develop a spectral algorithm for calibrating a set of edge ranges from a sequence of network snapshots and give a proof of principle illustration on some neuroscience data. We also show how the model can be used computationally and analytically to investigate the scenario where an evolutionary process, such as an epidemic, takes place on an evolving network. This allows us to study the cumulative effect of two distinct types of dynamics

    Pathway to the PiezoElectronic Transduction Logic Device

    Full text link
    The information age challenges computer technology to process an exponentially increasing computational load on a limited energy budget - a requirement that demands an exponential reduction in energy per operation. In digital logic circuits, the switching energy of present FET devices is intimately connected with the switching voltage, and can no longer be lowered sufficiently, limiting the ability of current technology to address the challenge. Quantum computing offers a leap forward in capability, but a clear advantage requires algorithms presently developed for only a small set of applications. Therefore, a new, general purpose, classical technology based on a different paradigm is needed to meet the ever increasing demand for data processing.Comment: in Nano Letters (2015

    Design and modelling of variability tolerant on-chip communication structures for future high performance system on chip designs

    Get PDF
    The incessant technology scaling has enabled the integration of functionally complex System-on-Chip (SoC) designs with a large number of heterogeneous systems on a single chip. The processing elements on these chips are integrated through on-chip communication structures which provide the infrastructure necessary for the exchange of data and control signals, while meeting the strenuous physical and design constraints. The use of vast amounts of on chip communications will be central to future designs where variability is an inherent characteristic. For this reason, in this thesis we investigate the performance and variability tolerance of typical on-chip communication structures. Understanding of the relationship between variability and communication is paramount for the designers; i.e. to devise new methods and techniques for designing performance and power efficient communication circuits in the forefront of challenges presented by deep sub-micron (DSM) technologies. The initial part of this work investigates the impact of device variability due to Random Dopant Fluctuations (RDF) on the timing characteristics of basic communication elements. The characterization data so obtained can be used to estimate the performance and failure probability of simple links through the methodology proposed in this work. For the Statistical Static Timing Analysis (SSTA) of larger circuits, a method for accurate estimation of the probability density functions of different circuit parameters is proposed. Moreover, its significance on pipelined circuits is highlighted. Power and area are one of the most important design metrics for any integrated circuit (IC) design. This thesis emphasises the consideration of communication reliability while optimizing for power and area. A methodology has been proposed for the simultaneous optimization of performance, area, power and delay variability for a repeater inserted interconnect. Similarly for multi-bit parallel links, bandwidth driven optimizations have also been performed. Power and area efficient semi-serial links, less vulnerable to delay variations than the corresponding fully parallel links are introduced. Furthermore, due to technology scaling, the coupling noise between the link lines has become an important issue. With ever decreasing supply voltages, and the corresponding reduction in noise margins, severe challenges are introduced for performing timing verification in the presence of variability. For this reason an accurate model for crosstalk noise in an interconnection as a function of time and skew is introduced in this work. This model can be used for the identification of skew condition that gives maximum delay noise, and also for efficient design verification

    Investigation of acoustic crosstalk effects in CMUT arrays

    Get PDF
    Capacitive Micromachined Ultrasonic Transducers (CMUTs) have demonstrated significant potential to advance the state of medical ultrasound imaging beyond the capabilities of the currently employed piezoelectric technology. Because they rely on well-established micro-fabrication techniques, they can achieve complex geometries, densely populated arrays, and tight integration with electronics, all of which are required for advanced intravascular ultrasound (IVUS) applications such as high-frequency or forward-looking catheters. Moreover, they also offer higher bandwidth than their piezoelectric counterparts. Before CMUTs can be effectively used, they must be fully characterized and optimized through experimentation and modeling. Unfortunately, immersed transducer arrays are inherently difficult to simulate due to a phenomenon known as acoustic crosstalk, which refers to the fact that every membrane in an array affects the dynamic behavior of every other membrane in an array as their respective pressure fields interact with one another. In essence, it implies that modeling a single CMUT membrane is not sufficient; the entire array must be modeled for complete accuracy. Finite element models (FEMs) are the most accurate technique for simulating CMUT behavior, but they can become extremely large considering that most CMUT arrays contain hundreds of membranes. This thesis focuses on the development and application of a more efficient model for transducer arrays first introduced by Meynier et al. [1], which provides accuracy comparable to FEM, but with greatly decreased computation time. It models the stiffness of each membrane using a finite difference approximation of thin plate equations. This stiffness is incorporated into a force balance which accounts for effects from the electrostatic actuation, pressure forces from the fluid environment, mass and damping from the membrane, etc. For fluid coupling effects, a Boundary Element Matrix (BEM) is employed that is based on the Green's function for a baffled point source in a semi-infinite fluid. The BEM utilizes the nodal mesh created for the finite difference method, and relates the dynamic displacement of each node to the pressure at every node in the array. Use of the thin plate equations and the BEM implies that the entire CMUT array can be reduced to a 2D nodal mesh, allowing for a drastic improvement in computation time compared with FEM. After the model was developed, it was then validated through comparison with FEM. From these tests, it demonstrated a capability to accurately predict collapse voltage, center frequency, bandwidth, and pressure magnitudes to within 5% difference of FEM simulations. Further validation with experimental results revealed a close correlation with predicted impedance/admittance plots, radiation patterns, frequency responses, and noise current spectrums. More specifically, it accurately predicted how acoustic crosstalk would create sharp peaks and notches in the frequency responses, and enhance side lobes and nulls in the angular radiation pattern. Preliminary design studies with the model were also performed. They revealed that membranes with larger lateral dimensions effectively increased the bandwidth of isolated membranes. They also demonstrated potential for various crosstalk reduction techniques in array design such as disrupting array periodicity, optimizing inter-membrane pitch, and adjusting the number of membranes per element. It is expected that the model developed in this thesis will serve as a useful tool for future iterations of CMUT array optimizations.MSCommittee Chair: Dr. F. Levent Degertekin; Committee Member: Dr. Karim Sabra; Committee Member: Dr. Suresh Sitarama

    Locally-Stable Macromodels of Integrated Digital Devices for Multimedia Applications

    Get PDF
    This paper addresses the development of accurate and efficient behavioral models of digital integrated circuits for the assessment of high-speed systems. Device models are based on suitable parametric expressions estimated from port transient responses and are effective at system level, where the quality of functional signals and the impact of supply noise need to be simulated. A potential limitation of some state-of-the-art modeling techniques resides in hidden instabilities manifesting themselves in the use of models, without being evident in the building phase of the same models. This contribution compares three recently-proposed model structures, and selects the local-linear state-space modeling technique as an optimal candidate for the signal integrity assessment of data links. In fact, this technique combines a simple verification of the local stability of models with a limited model size and an easy implementation in commercial simulation tools. An application of the proposed methodology to a real problem involving commercial devices and a data-link of a wireless device demonstrates the validity of this approac

    Integrating Electromagnetic Compatibility Laboratory Exercises into Undergraduate Electromagnetics

    Get PDF
    A state-of-the art high-frequency laboratory is being developed for pursuing laboratory exercises in EMC. These exercises are being integrated into three undergraduate electromagnetics courses. Two of the courses are a required introductory sequence. The laboratory exercises are designed to stimulate students interest, motivate them to learn concepts, and provide them with exposure to practical EMC applications. Laboratory exercises are also an integral part of an EMC elective course. This paper describes the laboratory development and discusses experiments that can be integrated into these three courses for teaching fundamental electromagnetics as well as EMC
    • 

    corecore