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ABSTRACT

Least-squares migration has been shown to be able to produce high quality migration

images, but its computational cost is considered to be too high for practical imaging. In

this dissertation, a multisource least-squares migration algorithm (MLSM) is proposed to

increase the computational efficiency by utilizing the blended sources processing technique.

The MLSM algorithm is implemented with both the Kirchhoff migration and reverse time

migration methods. In the last chapter, a new method is proposed to migrate prism waves

separately to illuminate vertical reflectors such as salt flanks. Its advantage over standard

RTM method is that it does not require modifying the migration velocity model.

There are three main chapters in this dissertation.

In Chapter 2, the MLSM algorithm is implemented with Kirchhoff migration and random

time-shift encoding functions. Numerical results with Kirchhoff least-squares migration on

the 2D SEG/EAGE salt model show that an accurate image is obtained by migrating a

supergather of 320 phase-encoded shots. When the encoding functions are the same for

every iteration, the I/O cost of MLSM is reduced by 320 times. Empirical results show

that the crosstalk noise introduced by blended sources is more effectively reduced when the

encoding functions are changed at every iteration. The analysis of the signal-to-noise ratio

(SNR) suggests that an acceptable number of iterations are needed to enhance the SNR to

an acceptable level. The benefit is that Kirchhoff MLSM is a few times faster than standard

LSM, and produces much more resolved images than standard Kirchhoff migration.

In Chapter 3, the MLSM algorithm is implemented with the reverse time migration

method and a new parameterization, where the migration image of each shot gather is

updated separately and an ensemble of prestack images is produced along with common

image gathers. The merits of prestack plane-wave LSRTM are the following: (1) plane-

wave prestack LSRTM can sometimes offer stable convergence even when the migration

velocity has bulk errors of up to 5%; (2) to significantly reduce computation cost, linear

phase-shift encoding is applied to hundreds of shot gathers to produce dozens of plane waves.

Unlike phase-shift encoding with random time shifts applied to each shot gather, plane-wave

encoding can be effectively applied to data with a marine streamer geometry; (3) plane-wave



prestack LSRTM can provide higher quality images than standard RTM. Numerical tests

on the Marmousi2 model and a marine field dataset are performed to illustrate the benefits

of plane-wave least-squares reverse time migration.

In Chapter 4, I present a new reverse time migration method for imaging salt flanks

with prism wave reflections. It consists of four steps: (1) migrating the seismic data with

conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model

to simulate source-side reflections with the Born approximation; (3) zero-lag correlation

of the source-side reflection wavefields and receiver-side wavefields to produce the prism

wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An

advantage of this method over standard RTM is that there is no need to pick the horizontal

reflectors prior to migration of the prism waves. It also separately images the vertical

structures at a different step to reduce crosstalk interference. The empirical results with

salt model data suggest that prism wave migration can be an effective method for salt flank

delineation in the absence of diving waves.
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CHAPTER 1

INTRODUCTION AND OVERVIEW

Least-squares migration (Nemeth et al., 1999) has been shown to have the following

advantages: (1) it can reduce migration artifacts from a limited recording aperture and/or

coarse source and receiver sampling; (2) it can balance the amplitudes of the reflectors;

and (3) it can improve the resolution of the migration images. However, least-squares

migration is usually considered to be too expensive for practical use. In this dissertation, I

propose a new algorithm to combine the blended sources processing technique with least-

squares migration to increase its computational efficiency. The proposed algorithm is first

implemented with the Kirchhoff migration method in Chapter 2, and then with the reverse

time migration method in Chapter 3. To adapt this method for data recorded with a

marinestreamer geometry, plane-wave encoding can be used instead of random time-shift

encoding. In the following chapters, the multisource least-squares migration algorithm is

tested with synthetic and real data examples to illustrate its advantages.

When the horizontal reflectors are embedded in the migration velocity, reverse time

migration can migrate prism waves correctly to illuminate the vertical reflectors such as

salt flanks. In Chapter 4, I propose a new method to migrate prism waves separately and

reduce the interference between primary reflections and prism waves. It also avoids the step

of modifying the migration velocity or delineating the reference reflector boundaries.

1.1 Chapter 2: Least-squares Migration of
Multisource Data with a

Deblurring Filter

In this chapter, I propose to use a summation of phase encoded shot gathers as input

data to reduce the computational burden of least-squares migration. The blended data

is similar to that used in the blended sources method (Romero et al., 2000), but my

proposed scheme of multisource least-squares migration (MLSM) aims to improve the image

quality while reducing crosstalk noise. During the inversion, a deblurring filter is used as a



2

preconditioner (Hu and Schuster, 2000; Guitton, 2004; Aoki and Schuster, 2009) to speed

up the convergence.

With blended sources processing, many conventionally acquired shot gathers are phase-

encoded and blended together to form supergathers to reduce the computational cost

and I/O burden of migration. However, blended sources processing introduces crosstalk

noise, which needs to be removed from the final migration images. Simultaneous sources

acquisition shares some common ground with blended sources, as it reduces the acquisition

cost, but also introduces crosstalk noise. In this chapter, a multisource least-squares

migration algorithm is proposed to combine the strengths of least squares migration and

blended sources processing to produce high quality images with low computational cost. The

least-squares migration improves the image quality by suppressing migration artifacts, bal-

ancing reflector amplitudes and enhancing image resolution, and blended sources processing

increases the computational efficiency. During the iterations of least-squares migration, the

crosstalk noise introduced by blended sources is effectively reduced. The MLSM algorithm

can be implemented with any migration method and the gain in efficiency depends on the

migration method. My goal is to test the effectiveness of the MLSM algorithm with a

Kirchhoff migration method.

1.2 Chapter 3: Plane-wave Least-squares
Reverse Time Migration

The original implementation of least-squares migration was with Kirchhoff migration

(Nemeth et al., 1999; Duquet et al., 2000), but was later developed for phase shift migration

algorithms (Kaplan et al., 2010; Huang and Schuster, 2012). When least-squares migration

is implemented with the reverse time migration method (Tang and Biondi, 2009; Dai and

Schuster, 2010; Dai et al., 2010; Wong et al., 2011; Dai et al., 2012), it can reduce not

only the acquisition footprint but also the artifacts in the RTM image, while enhancing the

image resolution. In addition, Romero et al. (2000); Krebs et al. (2009); Tang and Biondi

(2009); Schuster et al. (2011); Dai et al. (2011, 2012) employed a phase-encoding multisource

approach to increase the computational efficiency by more than an order-of-magnitude

compared to conventional LSRTM.

One significant problem with random encoding LSRTM is that it requires all the encoded

shot gathers to share the same receivers (fixed spread geometry). Therefore, it is not

applicable to marine streamer data which are recorded by a towed receiver array (Routh

et al., 2011; Huang and Schuster, 2012). To remedy this problem, I devise a plane-wave

LSRTM method that can be applied to both land and marine datasets (An alternative
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remedy is to use frequency selection encoding, as proposed by Huang and Schuster (2012)).

Another drawback of the multisource least-squares reverse time migration algorithm is

that its convergence is sensitive to the accuracy of the velocity model. When the velocity

model contains large bulk errors, the migration images from different shots are inconsistent

with each other, so the stacking process become less effective in reducing crosstalk noise

and the resolution of the final image is spoiled. In addition, when many shots are blended

together, it is difficult to separate them to produce common image gathers as quality control

tools.

This problem is now remedied by incorporating a regularization term into the LSRTM

method that penalizes misfits between the images in the plane-wave domain. In this way

the defocusing due to velocity errors is reduced. The formulation is similar to differential

semblance optimization (Symes and Carazzone, 1991) which inverts for the velocity model,

but in this chapter only the reflectivity image is produced. In contrast to a stacked image,

the prestack image ensemble accommodates more unknowns to allow for better fitting of the

observed data, and so the convergence of least-squares migration is improved (see Appendix

A).

In summary, I present a plane-wave prestack least-squares migration method where the

migration image of each shot is updated separately and an ensemble of prestack images is

produced with common image gathers. The advantage over conventional LSRTM where

all the shot gathers are explained by a single migration image is that it is relatively less

sensitive to bulk errors in the migration velocity. The plane-wave encoding technique

can significantly reduce the computational and input/output (I/O) cost. In contrast to

conventional multisource least-squares migration with phase-encoded supergathers, it can

be applied to marine data.

1.3 Chapter 4: Reverse Time Migration of
Prism Waves for Salt Flank Delineation

Vertical structures such as salt flanks are usually not illuminated by primary reflections

and so cannot be well imaged by conventional migration methods (Hale et al., 1992). If on

the other hand strong diving waves are present, they can be reflected from the salt flank,

recorded on the surface, and migrated by a two-way migration method, such as Kirchhoff

migration (Ratcliff et al., 1991, 1992) or reverse time migration (RTM) (Baysal et al., 1983;

McMechan, 1983; Whitmore, 1983). Even a one-way migration method can be modified

(Hale et al., 1992) to incorporate diving waves for salt flank imaging.

If the diving wave is not extant due to the absence of a strong velocity gradient or a
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limited recording aperture, prism waves can be migrated to illuminate vertical reflectors.

With reverse time migration, prism waves can be migrated by embedding the subhorizontal

reflection boundaries in the velocity model (Jones et al., 2007). However, incorporating the

sharp boundaries into the velocity model is not trivial, and the complex migration velocity

will excite complex wavefields that lead to artifacts in the RTM images (Liu et al., 2011).

Another problem is that prism waves are doubly scattered waves, which are usually weaker

than primaries, so that the contribution from the prism waves might be weak. In this

chapter, I propose a new RTM method for migrating the prism waves separately from the

other reflectors by utilizing the migration image from conventional RTM. The advantages of

this approach over conventional RTM are as follows: (1) It does not require modifying the

migration velocity as conventional RTM does; (2) It separately images different structures at

different steps and reduces the artifacts from crosstalk of different phases. The disadvantage

of the proposed method is that its computational cost is twice that of conventional RTM.

1.4 Technical Contributions in this Dissertation

Chapter 2 presents the novel technique of multisource least-squares migration to ef-

ficiently produce high quality reflectivity images. This algorithm is implemented with

the Kirchhoff migration method and tested with 320 synthetic shot gathers associated

with the 2D SEG/EAGE salt model. An accurate image is obtained by migrating a

supergather composite of all these 320 shot gathers after 60 iterations. Compared to the

conventional Kirchhoff migration image, the I/O cost of MLSM with static encoding is

reduced by 320 times. The MLSM image is much more resolved than conventional Kirchhoff

migration image, because the migration artifacts are suppressed, the reflector amplitudes are

balanced, the image resolution is enhanced and the crosstalk noise is reduced. Two types of

encoding strategies are proposed: static encoding and dynamic encoding. Their performance

in crosstalk-noise reduction is studied with the measurements of signal-to-noise ratio of

migration images. For the 2D SEG/EAGE salt model example, The MLSM algorithm with

static encoding enjoys lower I/O cost compared to the MLSM with dynamic encoding, but

the empirical results show that the MLSM with dynamic encoding, on the other hand, is

more effective in reducing crosstalk noise introduced by blended sources.

In Chapter 3, the multisource least-squares migration algorithm is implemented with the

reverse time migration method and the blended sources processing technique can increase

the computational efficiency significantly. The random encoding strategy is not applicable

for marine-streamer data, so a plane-wave encoding method is adopted. When an ensemble
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of prestack images is incorporated into the inversion, prestack plane-wave least-squares

reverse time migration shows the following advantages: (1) stable convergence even with

velocity errors up to 5% in my example and (2) the common image gathers are available for

quality control and migration velocity analysis. I conclude that the least-squares reverse

time migration in the plane-wave domain can be an efficient method improving the quality

of RTM images and producing common image gathers for MVA.

In Chapter 4, I proposed a new method for migrating prism waves by RTM. There are

two steps to the method: (1) Conventional RTM is applied to the data to estimate the

geometry of the horizontal reflectors near the salt flank; (2) Prism wave RTM is applied

to the data again, except the prism imaging condition is used rather than the conventional

one. A high quality image is obtained by summation of two partial migration images: one

from conventional RTM and the other from the migration of the prism waves. The empirical

results suggest that the proposed method can migrate the prism waves correctly to delineate

salt flanks and improve the image quality.



CHAPTER 2

LEAST-SQUARES MIGRATION OF

MULTISOURCE DATA WITH A

DEBLURRING FILTER

Least-squares migration (LSM) has been shown to be able to produce high quality migra-

tion images, but its computational cost is considered to be too high for practical imaging.

In this chapter, a multisource least-squares migration algorithm (MLSM) is proposed to

increase the computational efficiency by utilizing the blended sources processing technique.

To expedite convergence, a multisource deblurring filter is used as a preconditioner to

reduce the data residual. This MLSM algorithm is applicable with Kirchhoff migration,

wave-equation migration or reverse time migration, and the gain in computational efficiency

depends on the choice of migration method. Numerical results with Kirchhoff least-squares

migration on the 2D SEG/EAGE salt model show that an accurate image is obtained by

migrating a supergather of 320 phase-encoded shots. When the encoding functions are the

same for every iteration, the I/O cost of MLSM is reduced by 320 times. Empirical results

show that the crosstalk noise introduced by blended sources is more effectively reduced

when the encoding functions are changed at every iteration. The analysis of signal-to-noise

ratio (SNR) suggests that not too many iterations are needed to enhance the SNR to an

acceptable level. Therefore, when implemented with wave-equation migration or reverse

time migration methods, the MLSM algorithm can be more efficient than the conventional

migration method.

2.1 Introduction

Conventional migration (Claerbout, 1971) computes the reflectivity image by applying

the adjoint operator to the data. Migration can also be interpreted as the first iteration of

iterative inversion, where the Hessian of the misfit functional is approximated as a diagonal

matrix. This approximation is violated when the data are incomplete (Nemeth et al., 1999)
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and the migration image will be obscured by migration artifacts.

It has been shown that least-squares migration (LSM) (Nemeth et al., 1999; Duquet

et al., 2000) can improve the resolution of the migration image and suppress migration

artifacts. However, one of the drawbacks of least-squares migration is its high computational

cost. In this chapter, I propose to use a summation of phase encoded shot gathers as

input data to reduce the computational burden of least-squares migration. The blended

data are similar to that used in the blended sources method (Romero et al., 2000), but my

proposed scheme of multisource least-squares migration (MLSM) aims to improve the image

quality while reducing crosstalk noise. During the inversion, a deblurring filter is used as a

preconditioner (Hu and Schuster, 2000; Guitton, 2004; Aoki and Schuster, 2009) to speed

up the convergence.

2.1.1 Blended Sources Processing

In blended sources processing, many conventionally acquired shot gathers are phase-

encoded and blended together to form supergathers to reduce the computational cost and

I/O burden of migration. Romero et al. (2000) first explored this idea with the wave-

equation migration of synthetic data associated with the Marmousi model. They produced

acceptable images with less cost than the conventional method. The limitation of their

approach was that the blended sources images were always no better in quality than the

corresponding conventional images, because the blended sources introduced unacceptable

crosstalk noise into the final migration section. Krebs et al. (2009) presented their full

waveform inversion result with blended sources encoded by random encoding functions.

Their computational efficiency was increased by a factor of 50 compared to standard full

waveform inversion and their method has been mostly tested for a fixed-spread acquisition

geometry. The extension of blended sources processing to marine acquisition is a topic of

current research.

2.1.2 Crosstalk Noise Reduction

As mentioned earlier, blended sources processing introduces crosstalk noise, which needs

to be removed from the final migration images. Simultaneous sources acquisition shares

some common ground with blended sources, as it reduces the acquisition cost, but introduces

crosstalk noise also. The simplest approach for reducing crosstalk noise in multisource data

is to use standard migration and stacking procedures. Lynn et al. (1987) showed that

coherent noise in multisource data (with several shot gathers per supergather) can effectively

be suppressed by weighted stacking. Hampson et al. (2008) reported their synthetic and
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field data examples and showed that for 2D cases and two shot gathers per supergather,

simple stacking was effective enough, but for their 3D example, they found that the shot

separation technique was necessary, due to the strong reflections from the shallow water

bottom. Fromyr et al. (2008) achieved similar image quality with two-source shooting

as compared to conventional acquisition in their wide azimuth experiment. With careful

survey design, a suitable marine environment and a small number of multiple sources, simple

stacking alone might be sufficient for quality imaging. To assist in this design process,

Schuster et al. (2011) provide rigorous formulas for predicting the level of crosstalk noise as

a function of the encoding parameters.

2.1.3 Scope of This Chapter

In this chapter, a multisource least-squares migration algorithm is proposed to com-

bine the strengths of least squares migration and blended sources processing to produce

high quality images with low computational cost. The least-squares migration improves

the image quality by suppressing migration artifacts, balancing reflector amplitudes and

enhancing image resolution, and blended sources processing increases the computational

efficiency. During the iterations of least-squares migration, the crosstalk noise introduced

by blended sources is effectively reduced. The MLSM algorithm can be implemented with

any migration method and the gain in efficiency depends on the migration method. My

goal is to test the effectiveness of the MLSM algorithm with a Kirchhoff migration method.

2.2 Theory

For a fixed-spread acquisition, the phase-encoded multisource data (i.e. supergathers)

can be represented as

d =
S∑

i=1

Pidi, (2.1)

where S is the number of multiple shots and matrix Pi represents the phase-encoding

functions (in this study, the encoding functions involve random source time delay). All the

Pi are chosen to be unitary so that PT
i Pi is equal to the identity matrix.

In equation 2.1, I define d as a supergather, which is the summation of shot gathers,

each with shot excitation time shifted by a random time shift with a standard deviation

greater than the source period. It is shown in Schuster et al. (2011) that the combination

of random polarity changes, random time shifts and random shot locations is more effective
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at reducing crosstalk noise than the use of any of the three encoding functions alone. I

assume that the i-th CSG di and the reflectivity model m are related by

di = Lim, (2.2)

where Li is the linear forward modeling operator associated with the i-th shot. This operator

can represent either a Kirchhoff or a wave-equation modeling method (Mulder and Plessix,

2004). Plugging equation 2.2 into 2.1, I get

d =
S∑

i=1

PiLim = Lm, (2.3)

where the supergather modeling operator is defined as

L =
S∑

i=1

PiLi. (2.4)

2.2.1 Multisource Migration

From equation 2.4, the supergather migration operator is defined as the adjoint of the

supergather modeling operator,

LT =
S∑

i=1

LT
i PT

i , (2.5)

so that the supergather migration image is

mmig = LTd = LT
S∑

i=1

PiLim

=
S∑

j=1

LT
j PT

j

S∑
i=1

PiLim

=
S∑

i=1

S∑
j=1

LT
j PT

j PiLim

=

standard migration image︷ ︸︸ ︷
S∑

i=1

LT
i Lim +

crosstalk︷ ︸︸ ︷∑
j 6=i

S∑
i=1

LT
j PT

j PiLim, (2.6)

consisting of two terms: the first term is the standard migration image and the second term

is the crosstalk noise introduced by multisource blending of shot gathers. The magnitude of

the crosstalk term for a variety of different phase encoding functions is derived in Schuster

et al. (2011).
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2.2.2 Multisource Least-squares Migration (MLSM)

In order to suppress crosstalk noise to an acceptable level when the number of multiple

sources S is large, I solve equation 2.3 in the least-squares sense (Dai and Schuster, 2009;

Dai et al., 2009). That is, define the objective function as

f(m) =
1
2
||d− Lm||2 +

1
2
λ||m−mapr||2, (2.7)

so that, an optimal m is sought to minimize the objective function in equation 2.7. In

equation 2.7, Tikhonov regularization (Tikhonov and Arsenin, 1977) is used and λ is the

regularization parameter, determined by a trial and error method. Smoothness constraints

in the form of second-order derivatives of the model function can expedite convergence

(Kühl and Sacchi, 2003) and partly overcome the problems associated with errors in the

velocity model.

With the assumption that nothing is known about m, mapr is set to be equal to zero.

The model m that minimizes equation 2.7 can be found by a gradient type optimization

method

m(k+1) = m(k) − αF(LT (Lm(k) − d) + λm(k)), (2.8)

where LT (Lm(k)−d)+λm(k) is the gradient, F is a preconditioning matrix and α is the step

length. As both the forward modeling and migration operators are linear and adjoint to each

other, the analytical step length formula can be used. Alternatively, in order to improve

the robustness of the MLSM algorithm, a quadratic line search method is carried out with

the current model and two trial models. In this study, I use the conjugate gradient (CG)

method, which generally converges faster than the steepest decent method. Moreover, static

encoding is used where the encoding functions are the same for every iteration to reduce

the I/O cost. Boonyasiriwat and Schuster (2010) show that dynamic encoding (encoding

functions are changed at every iteration) is more effective in 3D multisource full waveform

inversion and so dynamic encoding results are presented as well. To ensure the convergence

of MLSM, the migration velocity should be close to the true velocity model.

2.2.3 Numerical Implementation

The numerical scheme in equation 2.8 is applicable to any migration method and its

associated forward modeling (demigration) operator. Each type of migration method, e.g.

Kirchhoff migration, one-way wave-equation migration or reverse time migration, can be

implemented in the mode of least-squares migration (Nemeth et al., 1999; Duquet et al.,

2000; Kaplan et al., 2010; Dai and Schuster, 2010; Dai et al., 2010). When combined with
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blended sources processing, each specific implementation will bear different advantages.

The computational cost of the one-way wave-equation migration or reverse time migration

method is reduced by S times when S sources are blended together. In addition, the I/O cost

is reduced by S times with static encoding method. On the other hand, the computational

cost of Kirchhoff migration is relatively low, but it cannot be further reduced with blended

sources processing because the Kirchhoff migration operation of LT
i PT

i in equation 2.5

must be applied separately to the supergather for i = 1, 2, ..., S. However, the I/O cost is

reduced by inputting only a supergather so this will reduce the overall run time of Kirchhoff

least-squares migration.

In this chapter, the multisource least-squares migration algorithm is implemented with

Kirchhoff migration and tested on synthetic blended sources data. To expedite convergence,

a deblurring filter (see Appendix A) is used as a preconditioner (Hu and Schuster, 2000;

Guitton, 2004; Aoki and Schuster, 2009) that can reduce the migration artifacts related to

Kirchhoff migration (frowns and smiles) and compensate for the energy loss from geometric

spreading; and therefore, speed up the convergence. Numerical simulations are conducted

to validate these statements.

2.2.4 Signal-to-noise Ratio Analysis

It is desirable to estimate the relationship between the signal-to-noise ratio (SNR,

defined in Appendix B) enhancement and the number of shot gathers (S) for iterative

least-squares migration of supergathers. While it affords no simple analytical expression for

the dependence of SNR on the number of iterations of least-squares migration, I focus on

how the SNR is reduced by iterative stacking (multiple migrations of all shots) of Romero

et al. (2000), where all the shots in a survey are phase-encoded and blended together to

form a supergather before migration (Figure 2.1). Here, I assume the data are noise free

and the noise is defined to be the crosstalk noise only. In other words, in equation 2.6 the

‘standard migration image’ term is assumed to be noise free whereas the ‘crosstalk’ term is

responsible for all the noise. For convenience, the terms in equation 2.6 are regrouped here

as follows,

mmig =
S∑

i=1

mmig,i =
S∑

i=1

(

signal︷ ︸︸ ︷
LT

i Lim+

noise︷ ︸︸ ︷∑
j 6=i

LT
j PT

j PiLim). (2.9)

In equation 2.9, I further assume the signal term and S−1 noise terms in the parentheses

are of comparable energy, and that those S − 1 noise terms are incoherent. Consequently

the SNR is roughly 1/
√

S − 1 for mmig,i, the image associated with i-th sources . After
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Figure 2.1. Blending and migration of a supergather: (a) time-shifted shot gathers, (b)
blended supergather created by blending S time-shifted shot gathers, (c) migration images
after migrating the supergather for each shot position with SNR approximately 1√

S−1
, (d)

final image after summing S migration images. The final SNR is
√

S√
S−1

.
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summation over all the S sources, the SNR of mmig is
√

S/
√

S − 1, assuming the signal

term from all the S sources are coherent.

This SNR analysis is summarized in Figure 2.1. Here, S shots in Figure 2.1(a) are

encoded and stacked together to form a supergather, which is noise free, in Figure 2.1(b).

The supergather is then migrated S times—once for each of the S source locations—to

produce S images as shown in Figure 2.1(c). Every image contains one signal image from

a correctly decoded and migrated shot and S − 1 noisy images from the rest S − 1 shots

being migrated with wrong source locations and wrong time shifts. As analyzed before,

every image in Figure 2.1(c) has a SNR approximately 1/
√

S − 1. After stacking all the S

images together in Figure 2.1(d), the SNR becomes
√

S/
√

S − 1.

Here the key assumptions are:

(1) The correctly decoded and migrated shots from all the S images give coherent

signal, which will constructively stack after stacking. In addition, geometrical spreading

effects can be ignored;

(2) The incorrectly decoded and migrated shots generate random noise with the same

strength due to random encoding, which will destructively stack after stacking;

(3) The crosstalk noise from each migration at each iteration is uncorrelated.

SNR ≈
√

SI/
√

S − 1. (2.10)

In the case that there are N supergathers in the survey, the SNR is proportional to

SNR ≈
√

NSI/
√

S − 1

≈
√

NI, when S ≫ 1 (2.11)

where N is the number of supergathers and I is the number of iterations. The total number

of shots is N ×S. When S is equal to 1 for the conventional sources situation, there will be

no crosstalk noise. Since I assume there is no noise in the original shot gathers, the SNR of

the migration image is infinity, and when S is much greater than 1, the SNR is independent

of S. Equations 2.10 and 2.11 will be validated with numerical examples for S ≫ 1. In the

case of iterative least-squares migration, the crosstalk noise in the gradient or conjugate

direction from each iteration is correlated with each other for static encoding; moreover,

after being scaled with the step length, the variance of the crosstalk noise would be different

for every iteration, where early iterations receive large weight. Therefore, I expect the SNR

enhancement to be less than the prediction from equation 2.11, where crosstalk noise is

assumed to be of comparable energy.
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When S is small, e.g. S = 2, the SNR of a conventional Kirchhoff migration image is

often large enough, because N is large in this case. Several studies (Beasley, 2008; Hampson

et al., 2008; Berkhout, 2008; Fromyr et al., 2008) have shown that conventional stacking and

migration of simultaneously acquired supergathers can effectively suppress the interference

of reflections from different sources, i.e., crosstalk. However, if S is large, the crosstalk

noise is intolerable due to the decrease of the number of supergathers (N). In the next

section, multisource least-squares migration is applied to synthetic multishot supergathers

to suppress the crosstalk and improve the SNR.

2.3 Numerical Results

The multisource least-squares migration algorithm wth Kirchhoff modeling and adjoint

operators is tested on synthetic data generated by a Born modeling method for the 2D

SEG/EAGE salt model. Figure 2.2 shows the reflectivity model calculated from the velocity

model using vertical rays and constant density assumptions; the true velocity model is

used for migration. The ocean bottom reflector is muted in order to better illustrate the

deep structure, and 320 sources and 320 receivers are deployed on the surface with the

same sampling interval of 18.3 m. The modeling parameters are listed in Table 2.1 (see

Appendix A for the meaning of deblurring filter parameters), where the deblurring filter is

only applied at the first two iterations4 to provide a good initial model for the inversion.

The regularization parameter is chosen based on a trial and error method and is reduced

by half after each iteration. Regularization is important for attenuating crosstalk noise and

high-frequency noise associated with the deblurring filter.

2.3.1 Conventional Sources Least-squares
Migration and Deblurring

Figure 2.3a shows the 2D prestack Kirchhoff migration image (color scale boosted to

show deep structures) for a conventional acquisition geometry of 320 individual shots with

320 receivers per shot. To reduce the artifacts, a non-stationary preconditioner (also denoted

as a deblurring filter in Aoki and Schuster (2009)) is applied to the Kirchhoff migration

image to give the result shown in Figure 2.3b. It is referred to as the deblurred image.

Comparison of the deblurred image and non-deblurred images shows that the deblurred

image has a more balanced reflectivity amplitude, which means that amplitude weakening

4The standard preconditioner (Nemeth et al., 1999; Plessix and Mulder, 2004) of inverse geometric
spreading is used at every iteration
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Figure 2.2. 2D SEG/EAGE salt model (reflectivity).

Table 2.1. Modeling parameters for conventional sources simulation.
Model size 645×150 Src Wavelet Ricker
Grid interval 9.14 m Peak freq. 50 Hz
Src number 320 Src interval 18.3 m
Rec. number 320 Rec. interval 18.3 m
Trace length 4 sec Regularization 1.0e-7
Subsec. size 5×5 pts Filter size 3×3 pts
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Figure 2.3. Migration images obtained with different methods: (a) Kirchhoff migration
image for conventional sources data, (b) KM image after deblurring (deblurred image),
(c) Least-squares migration image after 30 CG iterations, (d) Preconditioned least-squares
migration image after 30 DCG iterations.
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due to geometric spreading is compensated. The migration artifacts are also suppressed in

the deblurred image. However, the deblurring filter also introduces some high-frequency

noise into the deblurred image because it only approximates the inverse Hessian (see

Appendix A for details). In the end, the filter is effective for deblurring Kirchhoff migration

images, but it comes with the price of adding high-frequency noise. A more effective

deblurring filter (Yu et al., 2006) can be used but comes with added computation cost.

To summarize the overall effect of the deblurring filter, Figure 2.4 depicts the convergence

curves for both standard (CG) and deblurred LSM (it is referred to as DCG). Here, the

CG result after one iteration is equivalent to the Kirchhoff migration image, and the first

iteration result of DCG represents the deblurred image. I can see that the deblurring

filter reduces the data residual by 52%, in spite of the high-frequency noise it introduced.

It is not used after a few iterations and allows the least-squares migration to reduce the

remaining noise. Figure 2.3c shows the conventional sources least-squares migration image

after 30 CG iterations5, which is almost identical to the original model. It demonstrates

that least-squares migration can sometimes produce images of higher quality and resolution

compared to Kirchhoff migration (Nemeth et al., 1999), if the migration velocity is a

somewhat accurate rendering of the actual smoothed velocity.

2.3.2 Multisource Least-squares Migration

To simulate multisource data, conventional sources data are encoded and blended to-

gether to form a small number of supergathers. The 320 shot gathers are separated

into different clusters of supergathers, where each supergather in a cluster is formed by

stacking a unique set of shot gathers together to form the following data sets: thirty-two

10-shot supergathers, sixteen 20-shot supergathers, eight 40-shot supergathers, four 80-shot

supergathers, two 160-shot supergathers and one 320-shot supergather. Each shot gather

has a random time shift applied to it with a standard deviation equal to about seven times

the dominant period of the source wavelet. All the random time shifts are generated by a

random number generator that honors a uniform probability distribution. Figure 2.5 shows

the Kirchhoff migration images from all the experiments. Consistent with equation 2.11,

these results show that decreasing the number of supergather leads to increasing levels of

crosstalk.

To further validate equation 2.11, I adopt the iterative stacking approach (multiple

migrations of all shots) in Romero et al. (2000), where all the 320 shots are encoded and

5DCG produces basically the same result after so many iterations, shown in Figure 2.3d.
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Figure 2.4. Normalized data residual plotted against iteration number. The line with
stars indicates the convergence of the conjugate gradient method and the line with squares
shows the convergence when the deblurring filter is used as a preconditioner.
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Figure 2.5. Kirchhoff migration images obtained from the following clusters of supergath-
ers, (a) thirty-two 10-shot supergathers, (b) sixteen 20-shot supergathers, (c) eight 40-shots
supergathers, (d) four 80-shot supergathers, (e) two 160-shot supergathers and (f) one
320-shot supergather. Here, all shot gathers consisted of 320 traces, and each supergather
in a cluster was formed from a unique set of shot gathers.
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blended together and migrated with different encoding functions for many iterations. The

migration images from different iterations are then stacked together to improve the SNR.

Numerically, I use the formula

SNR =
||mref ||

||m(k) −mref ||
, (2.12)

for the SNR calculation, where mref is the reference migration image for conventional

sources (Figure 2.3a) and m(k) is the stacked image after k iterations (k-fold). According

to equation 2.11, the SNR is proportional to
√

I, I being the number of iterations. The

numerical results in Figure 2.6 largely agree with the prediction, where the measured SNR is

normalized by the SNR of the 1st iteration to compare with the
√

I curve. Figure 2.7 shows

(a) the Kirchhoff migration image of a 320-shot supergather with only 1 stack (I = 1); (b)

the 5-fold stacked image (I = 5); (c) the 10-fold stacked image (I = 10); and (d) the 20-fold

stacked image (I = 20). These numerical results suggest that iterative stacking is very

effective in suppressing random crosstalk noise. The iterative stacking method is applicable

to marine data with either wave-equation or reverse time migration, where the supergathers

are not explicitly formed, but instead, the back-propagated wavefields are superimposed

together. However, without least-squares migration, these migration artifacts will persist

in the images.

For the case where S is much greater than 1, Figure 2.8 presents the migration images

where the input data consist of only one supergather (N = 1, in equation 2.11) but there are

different numbers of shot gathers in the supergather: (a) S=40, (b) S=80 and (c) S=160.

These results along with Figure 2.5f demonstrate that the SNRs of these migration images

are mostly independent of the number of shot gathers in the supergather. At first glance, this

result appears contradictory to intuition because the migration of a 160-shot supergather

might be expected to yield a less noisy image than a 80-shot supergather. However, the

160-shot supergather has a higher crosstalk noise level (by a factor of
√

2) than the 80-shot

supergather, which cancels the
√

2 SNR enhancement in migrating a 160-shot supergather.

The key point here is that increasing the number of unique supergathers is more effective

at SNR enhancement than increasing the number of unique shot gathers per supergather.

According to equation 2.11, even a single 320-shot supergather can be used to get

an accurate image if the number of iterations is large enough. To verify this prediction,

Figure 2.9a-c shows the MLSM images after iteratively migrating a 320-shot supergather;

here, the deblurring filter is applied to stabilize and speed up the convergence. It is clear that

the image quality increases with the number of iterations. After 60 iterations, the MLSM

image is of high quality and mostly free of migration artifacts and crosstalk. It indicates
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Figure 2.6. The predicted and measured signal-to-noise ratios of iterative stacking method
are plotted against iteration number as dashed and solid lines. The measurements have been
normalized by the 1st iteration result.
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Figure 2.7. Stacked images for iterative stacking after (a) 1 iteration; (b) 5 iterations; (c)
10 iterations; (d) 20 iterations.
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Figure 2.8. Kirchhoff migration images obtained from the following supergathers (a) one
40-shot supergather, (b) one 80-shot supergather and (c) one 160-shot supergather.
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Figure 2.9. Least-squares migration images of a 320-shot supergathers after (a) 10, (b)
30, (c) 60 iterations with static encoding or (d) 10, (e) 30, (f) 60 iterations with dynamic
encoding.
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that MLSM can accurately estimate the model even when hundreds of shots are blended

together in the processing step, and it does not require too many iterations. Moreover,

since the SNR is proportional to
√

N , N being the number of supergathers, the crosstalk

noise will be more effectively suppressed when there is more than one supergather.

2.3.3 Dynamic Encoding vs Static Encoding

Following Krebs et al. (2009) and Boonyasiriwat and Schuster (2010), a different time-

shift encoding of the shot gathers at each iteration can be used for MLSM; I call this

dynamic encoding compared to static encoding where a shot gather has the same time shift

for any iteration. To compare the effectiveness of the dynamic encoding method relative

to static encoding, the MLSM of one 320-shot gather is computed with dynamic encoding.

Figure 2.9e-f shows the migration images after 10, 30, and 60 iterations. Compared to

Figure 2.9a-c, the MLSM result is improved, which indicates that dynamic encoding is

more effective than static encoding in reducing crosstalk.

To quantitatively show the image quality improvement due to dynamic encoding, the

SNR is calculated for the MLSM images and compared to the SNR of the statically encoded

images in Figure 2.10. For each iteration, the corresponding conventional sources least-

squares migration image is used as the reference signal. Here, I assume that the convergence

rate is the same for conventional sources and multisource least-squares migration. Results

clearly show that the dynamic encoding helps suppress the crosstalk and produce images

with higher SNR compared to static encoding. With dynamic encoding, the assumption

that the crosstalk noise at every iteration is uncorrelated with the crosstalk at previous

iterations is closer to the ideal case compared to static encoding. The drawback is that now

I supergathers with different encoding functions are required at input, so that the I/O cost

will increase and approach that of conventional migration for a large number of iterations

(I).

However, the numerical results show that MLSM algorithm is less efficient in reducing

crosstalk than the iterative stacking method as shown in Figure 2.10. The SNR of the

60-iteration MLSM image with dynamic encoding (Figure 2.9f) is comparable to the SNR

of the 20-fold stacked image (Figure 2.7d: Note that the migration artifacts in this image

are considered as signal in the SNR calculation). One possible explanation is that during

the iterations of MLSM the gradients or conjugate directions are computed from different

residual data and scaled by different step lengths to make different contributions to the

MLSM image and cause the SNR enhancement of MLSM to be suboptimal. Therefore, in

real applications, many supergathers (N) should be used. According to equation 2.11, more
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Figure 2.10. The solid line with squares shows the measured SNR for images of one
320-shot supergather with static encoding; the solid line with stars shows the results with
dynamic encoding. Here the measured SNR is normalized by the first iteration result. The
dashed line indicates the prediction from equation 2.11.
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supergathers will greatly improve the SNR of final images, which is evident in examining

the change from (f) to (a) in Figure 2.5.

When the processing technique for blending sources is used in full waveform inversion,

the SNR of the inverted result is expected to behave in a manner similar to that of MLSM,

but analysis is difficult because full waveform inversion is a highly non-linear process.

2.3.4 Computational Cost

Each iteration of iterative LSM costs about two migrations, so the cost of iterative LSM

is about 2I times that of standard migration. Assuming an ideal land acquisition geometry

where the geophones are fixed and S shot gathers are recorded, the total computational cost

in computing the migration image is Costconv ≈ Sα for conventional prestack migration,

where α is the cost of one wave-equation migration. In comparison, if N supergathers are

migrated, then the cost5 per iteration of LSM is only 2Nα. If I iterations are needed then

the total cost of LSM is Costmulti ≈ 2NαI. Therefore I conclude that the cost of MLSM

can be less than standard migration if

2NI < S. (2.13)

In the empirical results, a high quality image is obtained after 60 iterations for a 320-

shot supergather, which translates to about 2.7 times speedup if the numerical tests are

performed with wave-equation migration or reverse time migration. Meanwhile, the image

is free of migration artifacts and with balanced amplitudes (Figure 2.9c).

Another important saving is the reduction of I/O cost. For Kirchhoff migration, the

I/O cost can be the dominant factor for the run time. By statically encoding S shots

into a supergather, the I/O cost is reduced to 1/S of the original cost, which allows

significant saving in run time of MLSM. For dynamic encoding, if I iterations are needed,

I supergathers with different encoding functions are required at input, so that the I/O cost

is reduced to I/S of the original cost. Therefore, MLSM with dynamic encoding does not

enjoy a large I/O cost reduction if the number of iterations is large. An optional strategy is

to periodically stop the iterations in static iterative LSM and restart them at the stopping

model but with a new encoding function in the supergathers. In the above calculation, the

cost of computation and I/O of preprocessing step is not considered.

5This assumes a wave-equation migration method.
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2.4 Conclusions

A multisource least-squares migration algorithm is proposed to efficiently produce high

quality images. This algorithm is implemented with Kirchhoff migration method and tested

with 320 synthetic shot gathers for the 2D SEG/EAGE salt model. An accurate image

is obtained by migrating a supergather composite of all these 320 shot gathers after 60

iterations. Compared to conventional Kirchhoff migration image, the I/O cost of MLSM

with static encoding is reduced by 320 times. The MLSM image is much more resolved than

conventional Kirchhoff migration image, because the migration artifacts are suppressed, the

reflector amplitudes are balanced, the image resolution is enhanced and the crosstalk noise is

reduced. According to the signal-to-noise ratio analysis, an acceptable number of iterations

are needed to achieve high enough SNR. This suggests that high quality images can be

produced with less cost than conventional migration method, if the MLSM algorithm is

implemented with the wave-equation migration method.

Two encoding strategies are discussed in this chapter. The MLSM algorithm with

static encoding enjoys lower I/O cost compared to the MLSM with dynamic encoding,

but the empirical results show that the MLSM with dynamic encoding, on the other hand,

is more effective in reducing crosstalk noise introduced by blended sources. Compared

to the iterative stacking method, the MLSM algorithm improves the image quality by

suppressing the migration artifacts, balancing the reflector amplitudes and enhancing the

image resolution, although the MLSM algorithm requires more iterations to reduce crosstalk

than the iterative stacking method. For example, the measured SNR of the 60-iteration

MLSM image with dynamic encoding is comparable with the SNR of the 20-fold stacked

image.

Future research is needed to address following questions. Firstly, the MLSM has only

been tested with fixed-spread acquisition geometry. The extension to marine acquisition

will be significant. Secondly, the least-square migration seeks a model that optimally fits

the data. This process is sensitive to the velocity model, and it is important to reduce

this sensitivity for real applications. A third interesting research topic is to look for model

dependent efficient encoding functions.



CHAPTER 3

PLANE-WAVE LEAST-SQUARES

REVERSE TIME MIGRATION

A plane-wave least-squares reverse time migration (LSRTM) is formulated with a new

parameterization, where the migration image of each shot gather is updated separately and

an ensemble of prestack images is produced along with common image gathers. The merits

of plane-wave LSRTM are the following: (1) plane-wave prestack LSRTM can sometimes

offer stable convergence even when the migration velocity has bulk errors of up to 5%; (2)

to significantly reduce computation cost, linear phase-shift encoding is applied to hundreds

of shot gathers to produce dozens of plane waves. Unlike phase-shift encoding with random

time shifts applied to each shot gather, plane-wave encoding can be effectively applied to

data with a marine streamer geometry; (3) plane-wave prestack LSRTM can provide higher

quality images than standard RTM. Numerical tests on the Marmousi2 model and a marine

field dataset are performed to illustrate the benefits of plane-wave least-squares reverse time

migration. Empirical results show that LSRTM in the plane-wave domain, compared to

standard reverse time migration, produces images efficiently with fewer artifacts and better

spatial resolution. Moreover, the prestack image ensemble accommodates more unknowns to

makes it more robust than conventional least-squares migration in the presence of migration

velocity errors.

3.1 Introduction

The least-squares migration method (Lailly, 1984; Cole and Karrenbach, 1992; Schuster,

1993; Nemeth et al., 1999; Duquet et al., 2000) has been shown to sometimes produce

migration images with better quality than those computed by conventional migration. Its

original implementation was with Kirchhoff migration (Nemeth et al., 1999; Duquet et al.,

2000), but was later developed for phase shift migration algorithms (Kaplan et al., 2010;

Huang and Schuster, 2012). When least-squares migration is implemented with the reverse

time migration method (Tang and Biondi, 2009; Dai and Schuster, 2010; Dai et al., 2010;
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Wong et al., 2011; Dai et al., 2012), it can reduce not only the acquisition footprint but

also the artifacts in the RTM image, while enhancing the image resolution. In addition,

Romero et al. (2000); Krebs et al. (2009); Tang and Biondi (2009); Schuster et al. (2011);

Dai et al. (2011, 2012) employed a phase-encoding multisource approach to increase the

computational efficiency by more than an order-of-magnitude compared to conventional

LSRTM.

For iterative phase-encoded multisource migration, many shot gathers are encoded with

random encoding functions and blended together to form a supergather. One supergather

can be modeled and migrated with one finite-difference solution to the wave equation for

multiple sources and so provide a high computational efficiency compared to standard LSM.

With increasing iteration number, the crosstalk between different shots will be increasingly

suppressed. Consequently, the computational cost of LSRTM is reduced to a level compa-

rable to conventional reverse time migration or even lower, depending on the acquisition

geometry.

There are two significant problems with LSRTM. The problems and my proposed solu-

tions are now presented.

1. The standard multisource LSRTM combined with the random encoding method is

that it requires all the encoded shot gathers to share the same receivers (fixed spread

geometry). Therefore, it is not applicable to marine streamer data which are recorded

by a towed receiver array (Routh et al., 2011; Huang and Schuster, 2012). To remedy

this problem, I devise a plane-wave LSRTM method that can be applied to both

land and marine datasets.1 The encoded source represents a physically realizable

planar or line source on the surface, given that the sampling of the shot location

is dense, regular, and continuous (Liu et al., 2006). Hence, the blending process

with linear phase encoding is identical to a tau-p transformation that is used to

transform shot-domain data to plane waves for plane-wave migration (Zhang et al.,

2005). Liu et al. (2006) described the relationship between linear time-shift encoding

and a plane-wave transformation. They also reported the existence of crosstalk when

the sampling of shots is too coarse, and proposed to stack over many different encoding

functions (different surface shooting angles) to reduce the crosstalk, which is similar

to the crosstalk reduction procedure for random phase encoding. In this way, Vigh

1An alternative remedy is to use frequency selection encoding, as proposed by Huang and Schuster (2012).
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and Starr (2008) implemented full waveform inversion in the plane-wave domain and

achieved significant computational savings.

2. Another drawback of multisource least-squares reverse time migration algorithm is

that its convergence is sensitive to the accuracy of the velocity model. When the

velocity model contains large bulk errors, the migration images from different shots are

inconsistent with each other, so the stacking process become less effective in reducing

crosstalk noise and the resolution of the final image is spoiled. In addition, when many

shots are blended together, it is difficult to separate them to produce common image

gathers as quality control tools. This problem is now remedied by incorporating

a regularization term into the LSRTM method that penalizes misfits between the

images in the plane-wave domain. In this way the defocusing due to velocity errors

is reduced. The formulation is similar to differential semblance optimization (Symes

and Carazzone, 1991) which inverted for the velocity model, but in this chapter only

the reflectivity image is produced. In contrast to a stacked image, the prestack image

ensemble accommodates more unknowns to allow for better fitting of the observed

data, and so the convergence of least-squares migration is improved (see Appendix

C).

In summary, I present a plane-wave prestack least-squares migration method where the

migration image of each shot is updated separately and an ensemble of prestack images is

produced with common image gathers. The advantage over conventional LSRTM where

all the shot gathers are explained by a single migration image is that it is relatively less

sensitive to bulk errors in the migration velocity. The plane-wave encoding technique

can significantly reduce the computational and input/output (I/O) cost. In contrast to

conventional multisource least-squares migration with phase-encoded supergathers, it can

be applied to marine data.

This chapter is organized into four sections. The first one is this introduction, which is

followed by the theory of LSRTM. The synthetic and field data examples are then presented

in the numerical results section, and this is followed by the summary.

3.2 Theory

The theory of least-squares reverse time migration is well established (Symes and Caraz-

zone, 1991; Mulder and Plessix, 2004; Dai et al., 2012). In this section, I will first review

the theory of LSRTM assuming the constant density acoustic wave equation,
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1
c(x)2

∂2p(x, t;xs)
∂t2

−▽2p(x, t;xs) = s(t;xs), (3.1)

where c(x) is the velocity distribution, and p(x, t;xs) is the pressure field associated with

the source term s(t;xs). A perturbation in the velocity model c(x) → c(x) + δc(x) will

generate a wavefield p(x, t;xs) → p(x, t;xs) + δp(x, t;xs), which obeys the equation

1
(c(x) + δc(x))2

∂2(p(x, t;xs) + δp(x, t;xs))
∂t2

−▽2(p(x, t;xs)+ δp(x, t;xs)) = s(t;xs). (3.2)

Expanding the velocity term according to

1
(c(x) + δc(x))2

≈ 1
c(x)2

− 2δc(x)
c(x)3

, (3.3)

and subtracting equation 3.1 from equation 3.2 yields the wave equation for the wavefield

perturbation δp(x, t;xs)

1
c(x)2

∂2δp(x, t;xs)
∂t2

−▽2δp(x, t;xs) =
∂2p(x, t;xs)

∂t2
2δc(x)
c(x)3

+ O(δc(x)2). (3.4)

Neglecting the higher order terms and defining the reflectivity model as m(x) = 2δc(x)
c(x) , the

above equation becomes

1
c(x)2

∂2δp(x, t;xs)
∂t2

−▽2δp(x, t;xs) = m(x)▽2 p(x, t;xs). (3.5)

Equations 3.1 and 3.5 will be used to derive the Born modeling operator. Numerically,

the calculation of the reflection data δp(x, t;xs) requires two finite-difference simulations:

one to solve equation 3.1 to obtain the wavefield p(x, t;xs), and one to solve equation 3.5

for the reflection data δp(x, t;xs). The wavefield δp(x, t;xs) will be recorded at the receiver

position xg to give the shot gather d(xg, t;xs). By the adjoint state method (Plessix,

2006), the migration operation of a shot gather d(xg, t;xs) requires two finite-difference

simulations, one for the source-side wavefield and one for the receiver-side wavefield:

1
c(x)2

∂2p(x, t;xs)
∂t2

−▽2p(x, t;xs) = s(t;xs), (3.6)

1
c(x)2

∂2q(x, t;xs)
∂t2

−▽2q(x, t;xs) = d(xg, t;xs), (3.7)

where q(x, t;xs) is the receiver-side wavefield. Note that the source-side wavefield p(x, t;xs)

propagates forward in time but the receiver-side wavefield q(x, t;xs) propagates backward
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in time. The migration image associated with the shot at xs is produced by applying the

imaging condition

m(x;xs) =
∑

t

▽2p(x, t;xs) · q(x, t;xs). (3.8)

To simplify the formulas, matrix-vector notation will be used to represent the Born

modeling operator

di = Lim, (3.9)

where di is the reflection data vector for the ith shot, m is a reflectivity model, and Li

represents the Born modeling operator associated with the ith shot. Similarly, the reverse

time migration operator can be expressed as

mmig,i = LT
i di. (3.10)

with mmig,i indicating the migration image for the ith shot and LT
i representing the

migration operator associated with the ith shot.

3.2.1 Least-squares Migration

For conventional least-squares migration (Nemeth et al., 1999), a reflectivity model m is

assumed to be independent of the shot position. For a dataset with Ns shots, the modeling

process can be expressed as 
d1

d2

·
dNs

 =


L1

L2

·
LNs

 [m] , (3.11)

and similarly for the migration

mmig =
[
LT

1 LT
2 · LT

Ns

] 
d1

d2

·
dNs

 =
Ns∑
i=1

LT
i di, (3.12)

where the final image is the stack of migration images from all of the individual shots.

For conventional least-squares migration, a reflectivity model m is sought that minimizes

the misfit functional

f(m) =
1
2

Ns∑
i=1

||Lim− di||2 +
γ

2
||m||2, (3.13)

where γ is the damping coefficient, and m is defined as the stacked migration image. This

method will also be referred as least-squares migration with the stacked image. In Dai

et al. (2012), the stacked migration image is computed from a blend of phase encoded shot

gathers, also known as a supergather. When the migration velocity is not accurate, the
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prestack images are not exactly the same from different shots, and the stacked image can

become blurred and convergence stalls.

In order to improve the robustness of LSRTM, I define the ensemble of prestack images

as a function of the shot position: m → m(x,xs), or in matrix-vector notation

m =


m1

m2

·
mNs

 , (3.14)

where mi is the migration image for the ith shot. Now for a dataset with Ns shots, the

forward modeling operation is
d1

d2

·
dNs

 =


L1

L2

·
LNs




m1

m2

·
mNs

 , (3.15)

and the migration operation is
mmig,1

mmig,2

·
mmig,Ns

 =


LT

1

LT
2

·
LT

Ns




d1

d2

·
dNs

 . (3.16)

For simplicity, I define L as the forward modeling operator for all the shot gathers

L =


L1

L2

·
LNs

 (3.17)

and equation 3.15 and 3.16 are rewritten in compact form

d = Lm (3.18)

and

mmig = LTd. (3.19)

Therefore, the misfit functional with the ensemble of prestack images is defined as

f(m) =
1
2

Ns∑
i=1

||Limi − di||2 +
γ

2

Ns∑
i=1

||mi||2

=
1
2
||Lm− d||2 +

γ

2
||m||2. (3.20)
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A preconditioned conjugate gradient algorithm

g(k+1) = LT [Lm(k) − d] + γm(k)

β =
g(k+1)Pg(k+1)

g(k)Pg(k)

z(k+1) = Pg(k+1) + βz(k)

α =
[z(k+1)]Tg(k+1)

[Lz(k+1)]TLz(k+1) + λ||z(k+1)||2
m(k+1) = m(k) − αz(k+1), (3.21)

can be implemented to find the solution m that minimizes the misfit in equation 3.20. In

above equation, P is the matrix representing the illumination compensation preconditioner

(Plessix and Mulder, 2004).

The ensemble of prestack images m contains many more unknowns than the stacked

image, and therefore provides more freedom to fit the observed data (see Appendix C).

Another advantage is that the common image gathers can be extracted from the prestack

images as an indication of the image quality.

3.2.2 Plane-wave Prestack LSRTM

In Dai et al. (2012), the multisource technique is implemented with random time shifts

and random source polarity encoding functions to greatly reduce the computational cost.

By stacking images from different supergathers and gradients from different iterations, the

coherent signal is enhanced while the crosstalk noise is reduced. In this report, the shot-

domain data are encoded with linear time-shift encoding functions and transformed into

plane waves. Assuming a 2D survey geometry, the encoding process can be expressed as:

d(xg, t; p) =
∑
xs

d(xg, t;xs) ∗ δ(t− p · xs), (3.22)

where the shot-domain data d(xg, t;xs) are encoded with a time shift function δ(t− p · xs)

and stacked together. As illustrated by Figure 3.1, the time shift p · xs is a linear function

of source position xs, and p is the ray parameter defined as

p =
sinθ

v
, (3.23)

where θ is the surface shooting angle and v is the velocity at the surface. For the 3D case,

the plane-wave is computed from linear combination of surface sources along the x-direction

or both the x- and y-directions to form planar sources (see Zhang et al. (2005) and Duquet

and Lailly (2006) for details). Since the plane waves are coherent signals, the migration
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Figure 3.1. The diagram of plane wave encoding (reproduced from Zhang et al. (2005)),
where the time shift is linear function to the source location x and the slope is the ray
parameter p.
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image of one plane wave does not contain crosstalk noise seen in the migration image of

a phase-encoded supergather. Instead, it contains aliasing artifacts, which can be reduced

by stacking images from many different angles. Zhang et al. (2005) provided an estimate

of how many angles are needed as a function of recording aperture, velocity model, and

estimated dipping angle range of the reflectors.

In the plane-wave domain, the prestack image ensemble is a function of the ray parameter

m → m(x, p), (3.24)

or in matrix-vector notation

m =


m1

m2

·
mNp

 , (3.25)

assuming there are Np plane-wave gathers. In above equation, mi is the image associated

with the ith plane-wave gather. A new misfit functional is defined in the plane-wave domain

as

f(m) =
1
2

Np∑
i=1

||Limi − di||2 +
γ

2
||Cm||2,

=
1
2
||Lm− d||2 +

γ

2
||Cm||2, (3.26)

Note that di represents the ith plane-wave gather and Li is the forward modeling operator

associated with it. In this chapter, I choose a regularization term that penalizes the

difference of migration images computed with slightly different incidence angles, and it

is defined as

||Cm||2 =
Np−1∑
i=1

||mi+1 −mi||2 (3.27)

γ is the damping coefficient and is chosen empirically. Then a preconditioned conjugate

gradient scheme similar to equation 3.21 can be implemented:

g(k+1) = LT [Lm(k) − d] + γCTCm(k)

β =
g(k+1)Pg(k+1)

g(k)Pg(k)

z(k+1) = Pg(k+1) + βz(k)

α =
[z(k+1)]Tg(k+1)

[Lz(k+1)]T Lz(k+1) + λ||Cz(k+1)||2
m(k+1) = m(k) − αz(k+1), (3.28)

to find the LSRTM prestack images. In the next section, unless otherwise denoted, all

LSRTM images are produced with the proposed new method.
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3.3 Numerical Results

The plane-wave prestack LSRTM algorithm is first tested with the Marmousi2 dataset

with a fixed spread acquisition geometry, and then tested with a 2D field dataset with a

marine streamer geometry. The numerical scheme in equation 3.28 is implemented with a

2-8 finite-difference method.

3.3.1 Synthetic Example: Marmousi2
Data with a Fixed Spread Survey

The plane-wave LSRTM is applied to a synthetic dataset for the Marmousi2 model.

The original model is modified to be the size of 8 km × 3.5 km with a 10 m grid interval

(Figure 3.2(a)). Synthetic data are generated with a fixed spread geometry where 801 shots

are excited with a 10 m offset interval at the depth of 10 m. Each shot is recorded with

801 receivers with a 10 m receiver interval. A Ricker wavelet with a 20-Hz peak frequency

is used as the source wavelet, and the record length is 8 sec in time. The true data are

generated by a pseudo-spectral modeling method (Kosloff and Baysal, 1982). Conventional

shot-domain RTM is first applied to the dataset with a smooth migration velocity (Figure

3.2(b)) to give the image shown in Figure 3.3. In the shallow part, there are strong artifacts

associated with the source positions and the ocean bottom even after high-pass filtering.

The amplitudes of the deep reflectors are very weak.

3.3.2 Plane-wave Transformation

The 801 shot gathers are encoded with linear time-shift encoding (equation 3.22) to

form 31 plane-wave gathers with ray parameters (p) ranging from -333 µs/m to 333 µs/m

with an even sampling in p. Figure 3.4 shows a plane-wave gather with p=22.2 µs/m. It is

obvious that the direct wave is well separated from the reflections and can be easily muted.

3.3.3 LSRTM of One Plane-wave Gather

Figure 3.5(a) shows the migration image of one plane-wave gather with a zero-degree

shooting angle at the surface. It contains strong aliasing artifacts. In this image, some of the

steeply dipping reflectors are not illuminated by the zero-degree plane wave. In addition,

the deep reflectors are poorly imaged because the planar wavefront is disrupted by shallow

structures before it propagates to the deep part and the reflections from deep reflectors are

rendered weak and incoherent. Applying the LSRTM method to this plane-wave gather

gives the image in Figure 3.5(b) after 30 iterations. Compared to Figures 3.3 and 3.5(a),



37

D
ep

th
 (

km
)

(a) The Modified Marmousi2 Model

 

 0

1

2

3
1.5

3

4.5

Offset (km)

D
ep

th
 (

km
)

(b) The Smooth Migration Velocity

 

 

0 2 4 6 8

0

1

2

3
1.5

3

4.5

Figure 3.2. The velocity models: (a) modified Marmousi2 model and (b) the smooth
migration velocity model. The migration velocity is smoothed by a triangle smoothing
filter with a window length of 100 m to get rid of the fine scale structures.
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Figure 3.3. The conventional shot-domain RTM image for the Marmousi2 model.
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Figure 3.4. A plane-wave gather with p=22.2 µs/m for the Marmousi2 model.



39

D
ep

th
 (

km
)

(a) Plane−wave RTM Image of One Supergather (p=0)
0

1

2

3

D
ep

th
 (

km
)

(b) LSRTM Image of One Supergather (p=0) after 30 Iterations
0

1

2

3

Offset (km)

D
ep

th
 (

km
)

(c) LSRTM Image with Dynamic Encoding after 31 Iterations

0 2 4 6 8

0

1

2

3

Figure 3.5. The plane-wave RTM image of the Marmousi2 model with only one angle
(p = 0); (b) The plane-wave LSRTM image of the marmousi2 Model with only one angle
(p = 0) after 30 iterations; and (c) The plane-wave LSRTM image of the Marmousi2 model
with only one angle per iteration. The angle is dynamically changed at every iteration.
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the aliasing artifacts are largely suppressed in the LSRTM image and those steeply dipping

structures are well illuminated. The LSRTM image also shows enhanced resolution in the

shallow part. However, this image contains strong high-frequency noise in the deep portion

of the model.

3.3.4 Dynamic Plane-wave LSRTM

To suppress the noise in Figure 3.5(b), the dynamic encoding approach (Krebs et al.,

2009; Schuster et al., 2011) is employed. The plane-wave LSRTM is still applied to just one

sugergather at each iteration, but the encoding function (in this case, the ray parameter)

is changed at every iteration. This time, 31 iterations are used to fully cover the angle

range, and the result is shown in Figure 3.5(c). In this example, the ray parameter p ranges

from -333 µs/m to 333 µs/m sequentially with a unique p for each iteration. With dynamic

encoding, the image has a much higher signal-to-noise ratio (S/N) compared to Figure

3.5(b), and in the deep part, most of the structures are well imaged. The LSRTM with

dynamic encoding is very efficient and has the potential to produce high quality images,

but there are no image gathers available for quality control or migration velocity analysis.

3.3.5 Plane-wave Prestack LSRTM

When all 31 plane-wave gathers are migrated by conventional RTM and the migration

images are stacked together, the final image is of higher quality than Figure 3.5(a) due to the

stacking process. Figure 3.6(a) shows the stacked plane-wave RTM image after high-pass

filtering. Compared to shot-domain RTM image in Figure 3.3, there are fewer artifacts in

the shallow part and the reflector amplitudes are more balanced in the deep part. There

are also some migration artifacts that are related to the strong diffractors.

In the next step, the 31 plane-wave gathers are migrated with the numerical scheme in

equation 3.28 and Figure 3.6(b) shows the plane-wave LSRTM image after 30 iterations,

which is of much higher quality when compared to Figures 3.3 and 3.6(a) in terms of

resolution. Also, the migration artifacts are less noticeable in the LSRTM image, and the

reflector amplitudes are nearly the same from shallow to deep depths. With the prestack

images, the common image gathers (CIGs) can be extracted from the plane-wave RTM and

LSRTM images.

Figure 3.7 shows the common image gathers from the RTM image, where it is obvious

that the migration velocity is accurate since all the image gathers are flat. Strong low-

wavenumber artifacts can be seen, which are expected to be the RTM artifacts (Liu et al.,

2011). There is some coherent noise present in the gathers, which can be related to internal
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Figure 3.6. Comparison of images: (a) plane-wave RTM image of the Marmousi2 model
and (b) plane-wave LSRTM image of the Marmousi2 model after 30 iterations. All the 31
plane-wave gathers are used.
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Figure 3.7. The common image gathers extracted from the plane-wave RTM image.
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multiples. With an increasing number of iterations, the quality of CIGs is improved, as

shown in Figure 3.8. The low-wavenumber artifacts are mostly removed in the CIGs from the

LSRTM image. However, in the complex region of the model (faults), some steeply-dipping

coherent noise is preserved during the iterations of LSM.

3.3.6 Computational and I/O Cost

Table 3.1 summaries the computational cost and the I/O cost of each of the migration

methods. All the calculations are scaled to the conventional RTM method. The conventional

LSRTM in shot-domain is the most expensive method with computational cost 60, assuming

each iteration takes twice the computation of one RTM operation and 30 iterations are

needed. The computational cost of standard plane-wave RTM is 31
801 = 0.04 and the cost

of LSRTM for 30 iterations is 31∗2∗30
801 = 2.32 times that of standard RTM. The dynamic

LSRTM is very efficient and its computational cost is only 31∗2
801 = 0.08 of standard RTM. In

terms of I/O cost, there are only 31 plane-wave gathers, so the plane-wave RTM and LSRTM

methods only have 31
801 = 4% of the I/O cost of conventional RTM for the Marmousi2 model

example, if the plane-wave gathers can be stored in the memory.

3.3.7 Sensitivity to Velocity Error

To test how the proposed method performs in the presence of migration velocity errors,

the migration velocity model in Figure 3.2(b) is scaled by 0.95 to introduce a 5% velocity

error, and the above 31 plane-wave gathers are migrated with the wrong velocity. If the

inversion is computed by conventional LSM, the convergence stalls at high data residual

(dashed line with stars in Figure 3.9), but inverting prestack images separately (see equation

3.28) provides a robust convergence (solid line with circles in Figure 3.9). Figure 3.10 shows

(a) the RTM image, (b) the conventional plane-wave LSRTM image after 30 iterations,

and (c) the plane-wave prestack LSRTM image (30 iterations also). It is obvious that

the plane-wave LSRTM image contains many fewer artifacts present in the RTM image.

The result obtained with the new method (Figure 3.10(c)) contains fewer high frequency

artifacts and shows better continuity for many reflectors compared to the result obtained

by conventional method.

Figure 3.11 shows the CIGs extracted from the RTM image, where all the events are

curved upwards indicating that migration velocity is too low. The CIGs extracted from the

plane-wave LSRTM image (Figure 3.12) are more continuous and show better S/N. There

are no CIGs available from conventional least-squares migration.
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Figure 3.8. The common image gathers extracted from the plane-wave LSRTM image
after 30 iterations.

Table 3.1. LSRTM and RTM computational cost, I/O expense, image quality and
sensitivity to errors in the migration velocity for the example of Marmousi2 model with
a fixed spread acquisition geometry.

RTM Shot-domain
LSRTM

Plane-wave
RTM

Plane-wave
LSRTM

Dynamic
LSRTM

Computation
Cost

1 60 0.04 2.32 0.08

I/O Cost 1 1 0.04 0.04 0.04
Image Qual-
ity

good highest better highest better

Sensitivity to
Velocity Er-
rors

good fair good good good
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Figure 3.10. Migration images with wrong velocity: (a) the plane-wave RTM image of the
Marmousi2 model, (b) image obtained by plane-wave LSRTM with the stacked image after
30 iterations, and (c) image obtained by plane-wave LSRTM with the prestack image after
30 iterations. All the 31 plane-wave gathers are migrated with 5% velocity error.
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Figure 3.11. The common image gathers extracted from the plane-wave RTM image
obtained with 5% velocity error.
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Figure 3.12. The common image gathers extracted from the plane-wave LSRTM image
after 30 iterations when the migration velocity contains 5% error.



47

3.3.8 Field Data Example

The proposed methods are tested on a 2D marine dataset. There are 515 shots with a

shot interval of 37.5 m, and each shot is recorded by a 6 km long cable with 480 receivers

and a 12.5 m interval. The nearest offset is 198 m. These 515 CSGs are transformed

into common midpoint profiles (CMPs), and 2D spline interpolation is used to fill in the

near-offset trace gap after normal moveout. The interpolated data are then transformed into

common receiver gathers with a split-spread acquisition geometry using reciprocity (Vigh

and Starr, 2008). In the CRG domain, each trace is multiplied by
√

i/ω in the frequency

domain and then scaled by
√

t in the time domain to correct for 3D geometrical spreading

(Zhou et al., 1997). A tau-p transform is applied to each CRG to generate 31 plane-wave

gathers with ray parameters (p) ranging from -333µs/m to 333 µs/m with an even sampling

in p. The plane-wave gathers are filtered with a Wiener filter to transform the original

wavelet to a Ricker wavelet with a 25 Hz peak frequency. The original wavelet is estimated

by stacking traces with a strong water bottom reflection, and windowing the water-bottom

reflection event. Figure 3.13 shows the plane-wave gather with a surface shooting angle

of zero (p = 0). The migration velocity (Figure 3.14) is obtained by waveform inversion

(Boonyasiriwat et al., 2010).

3.3.9 Shot-domain RTM

The dataset is first migrated with conventional shot-domain RTM method after prepro-

cessing, and the image is shown in Figure 3.15(a), which contains strong artifacts near the

shallow reflectors, which are caused by head waves and diving waves (Liu et al., 2011). In the

bottom right corner of the image, there are low-frequency horizontal stripes. In the zoom

views (Figures 3.16(a) and 3.17(a)), the RTM image shows double-dipping near-vertical

artifacts.

3.3.10 Plane-wave RTM

Figure 3.15(b) shows the plane-wave RTM image, which is of higher quality compared to

shot-domain RTM image. The artifacts in the shallow part are eliminated in the plane-wave

RTM image because head and diving waves do not strongly appear in the plane-wave gathers

(Figure 3.13). Similarly, the low-frequency horizontal stripes in the bottom right corner of

the conventional RTM image are removed in the plane-wave RTM image. The zoom views

(Figures 3.16(b) and 3.17(b)) also show better continuity for the reflectors and fewer artifacts

compared to the same zoom areas in Figures 3.16(a) and 3.17(a).
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Figure 3.13. A plane-wave gather with zero surface shooting angle (p=0 µs/m).
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Figure 3.14. The migration velocity model for the field data test, obtained by full waveform
inversion.
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Figure 3.15. The migration images obtained by: (a) conventional shot-domain reverse
time migration, (b) plane-wave reverse time migration, (c) plane-wave least-squares reverse
time migration and (d) plane-wave LSRTM with dynamic encoding. The blue and red boxes
indicate the areas for zoom view.
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the plane-wave RTM, (c) the plane-wave LSRTM and (d) the plane-wave LSRTM images
with dynamic encoding.
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Figure 3.17. The zoom views of the blue boxes: (a) conventional shot-domain RTM, (b)
the plane-wave RTM, (c) the plane-wave LSRTM and (d) the plane-wave LSRTM images
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3.3.11 Plane-wave Prestack LSRTM

In order to further improve the quality of the image, the plane-wave LSRTM algorithm

(equation 3.28) is applied to these 31 plane-wave gathers and the image after 30 iterations

is shown in Figure 3.15(c). Compared to the plane-wave RTM image, the LSRTM image

contains fewer artifacts and shows better resolution. In the zoom view of the red boxes

(Figure 3.16), the horizontal reflectors in the LSRTM image are of higher resolution and

are characterized by better balancing of amplitudes, which provides better delineation of

the normal faults compared to the RTM image. In the deep part of the section (blue boxes,

Figure 3.17), the LSRTM image shows similar advantages to better illuminate the faults,

in spite of the fact that these reflectors become more wiggly in the LSRTM image.

The common image gathers can be extracted from the prestack images and they suggest

that the migration velocity is not very accurate in the deep part and the reflectors are

undermigrated (Figure 3.18 and 3.19). In this example, the LSRTM algorithm can only

marginally improve the quality of the CIGs. The vertical artifacts at both edges of any one

CIG are removed, and some of the reflector amplitudes are enhanced, so that they appear

to be more continuous. In spite of the errors in the velocity model, the convergence of

plane-wave LSRTM is stable and robust (solid line with squares in Figure 3.20). In this

example, the plane-wave LSRTM still shows better convergence than the conventional LSM.

3.3.12 Dynamic Plane-wave LSRTM

When high computational efficiency is in demand, LSRTM can be performed with the

dynamic encoding approach (Krebs et al., 2009; Schuster et al., 2011), where one plane-wave

gather is used for each iteration and the ray parameter p (corresponding to surface shooting

angle) is dynamically changed from one iteration to another. Figure 3.15(d) shows the

LSRTM image with dynamic encoding after 31 iterations. It has resolution comparable to

Figure 3.15(c) but contains more noticeable artifacts (see Figure 3.16(d) and 3.17(d)).

3.3.13 Computational and I/O Cost

The computational cost of the plane-wave RTM is about 31×3
515 ≈ 1

5 of that for conven-

tional shot-domain RTM. Each iteration of the LSRTM is assumed to cost twice that of

the RTM method. So, for 30 iterations, the computational cost of the plane-wave LSRTM

is about 12 times that of the conventional RTM. The computational cost of the dynamic

plane-wave LSRTM is only about 40% of that for conventional RTM. The drawback is

that CIGs are not available for velocity analysis and the convergence is lessened because

at every iteration the problem is redefined with a new encoding function. For the I/O



54

D
ep

th
 (

km
)

Offset (km)

Common Image Gathers

0 4 8 12

0

2

4

Figure 3.18. The common image gathers extracted from the plane-wave RTM image of
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after 30 iterations for the field data test.
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costs, conventional RTM inputs 515 shots with 480 traces each, and plane-wave migration

only needs to read 31 plane-wave gathers with 1260 traces each. Hence, the I/O cost

of plane-wave migration and plane-wave least-squares migration is 31∗1260
515∗480 = 0.15 that of

conventional RTM, if all the data can be stored in the physical memory, so it might be

more suitable for GPU calculations. Table 3.2 shows the comparison of different methods

in terms of computational and I/O cost.

3.4 Discussion and Conclusion

We propose plane-wave LSRTM as an efficient alternative to RTM and, unlike random

phase-encoded LSRTM, a viable method for marine data. To reduce the computational

cost, the original shot-domain data are transformed into dozens of plane-wave gathers. The

advantages include (1) stable convergence even with velocity errors up to 5% in my example

and (2) the common image gathers are available for quality control and migration velocity

analysis. The drawback is that extra memory is needed to store all the prestack LSRTM

images at any one iteration. Numerical tests on the Marmousi2 model and a 2D marine

dataset show that plane-wave prestack LSRTM can produce images with fewer migration

artifacts, and higher resolution compared to a corresponding RTM image. The method

shows good convergence even when the velocity model is not accurate. I conclude that the

least-squares reverse time migration in the plane-wave domain can be an efficient method

to improve the quality of RTM images and produce common image gathers for MVA.
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Table 3.2. LSRTM and RTM computational cost, I/O expense, image quality and
sensitivity to errors in the migration velocity for the field data example with a marine
streamer acquisition geometry.

RTM Shot-domain
LSRTM

Plane-wave
RTM

Plane-wave
LSRTM

Dynamic
LSRTM

Computation
Cost

1 60 0.2 12 0.4

I/O Cost 1 1 0.15 0.15 0.15
Image Qual-
ity

good highest better highest better

Sensitivity to
Velocity Er-
rors

good fair good good good



CHAPTER 4

REVERSE TIME MIGRATION OF PRISM

WAVES FOR SALT FLANK DELINEATION

In this chapter, I present a new reverse time migration method for imaging salt flanks

with prism wave reflections. It consists of four steps: (1) migrating the seismic data with

conventional RTM to give the RTM image; (2) using the RTM image as a reflectivity model

to simulate source-side reflections with the Born approximation; (3) zero-lag correlation

of the source-side reflection wavefields and receiver-side wavefields to produce the prism

wave migration image; and (4) repeating steps 2 and 3 for the receiver-side reflections. An

advantage of this method is that there is no need to pick the horizontal reflectors prior to

migration of the prism waves. It also separately images the vertical structures at a different

step to reduce crosstalk interference. The disadvantage of prism wave migration algorithm

is that its computational cost is twice that of conventional RTM. The empirical results with

a salt model suggest that prism wave migration can be an effective method for salt flank

delineation in the absence of diving waves.

4.1 Introduction

Vertical structures such as salt flanks are usually not illuminated by primary reflections

and so cannot be well imaged by conventional migration methods (Hale et al., 1992). If on

the other hand strong diving waves are present, they can be reflected from the salt flank,

recorded on the surface, and migrated by a two-way migration method, such as Kirchhoff

migration (Ratcliff et al., 1991, 1992) or reverse time migration (RTM) (Baysal et al., 1983;

McMechan, 1983; Whitmore, 1983). Even a one-way migration method can be modified

(Hale et al., 1992) to incorporate diving waves for salt flank imaging.

If the diving wave is not extant due to the absence of a strong velocity gradient or a

limited recording aperture, prism waves can be migrated to illuminate vertical reflectors.

A prism wave is defined to be a doubly scattered wave from, typically, a vertical reflector,

as illustrated by the ray diagram in Figure 4.1(a). Cavalca and Lailly (2005) studied



59

Figure 4.1. Diagrams of a prism wave: (a) a velocity model with a horizontal reflector
and a vertical reflector. The yellow arrows indicate the ray path for a prism wave from the
source at the star to the receiver at the triangle; (b) the wave path of the prism wave with
a 20-Hz Ricker wavelet; and (c) the trace recorded at the triangle. The two arrivals in the
red window are the reflections from the horizontal reflector and the prism wave in panel
(b).
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the kinematics of prism waves and explored the possibility of incorporating the prism

waves in traveltime inversion for salt flank locations. To incorporate amplitudes in the

imaging, Marmalyevskyy et al. (2005) migrated the prism waves by a Kirchhoff-based

method for salt flank delineation with subhorizontal reflection boundaries specified from

the previous migration images. An iterative method was proposed by Malcolm et al. (2009)

to progressively incorporate migration of prism waves and multiples with a modified one-way

wave equation migration method, where each phase was isolated by a data fitting process.

At each step, different partial images were computed to illuminate different structures, e.g.,

the prism waves for salt flanks. They later tested their method on North sea field data with

the introduction of a regularization term for the inversion (Malcolm et al., 2011).

With reverse time migration, the migration of the prism waves can be accommodated

in the process by embedding the subhorizontal reflection boundaries in the velocity model

(Jones et al., 2007). However, incorporating the sharp boundaries into the velocity model

is not trivial, and the complex migration velocity will excite complex wavefields that lead

to artifacts in the RTM images (Liu et al., 2011). Another problem is that prism waves are

doubly scattered waves, which are usually weaker than primaries, so that the contribution

from the prism waves might be weak. In this chapter, I propose a new RTM method for

migrating the prism waves separately from the other reflectors by utilizing the migration

image from conventional RTM. The advantages of this approach over conventional RTM

are as follows: (1) It does not require modifying the migration velocity as conventional

RTM does; (2) It separately images different structures at different steps and reduces the

artifacts from crosstalk of different phases. The disadvantage of the proposed method is

that its computational cost is twice that of conventional RTM.

This chapter is organized into four sections. The first one is this introduction, which is

followed by the theory section. In the numerical results section, the synthetic examples of

a simple model and a salt model are presented. A summary will be provided in the end.

4.2 Theory

In the frequency domain, reverse time migration of a shot gather d(xg|xs) can be

expressed as

mmig(x|xs) =
∑
ω

∑
g

ω2W ∗(ω)G∗(x|xs)G∗(x|xg)d(xg|xs), (4.1)

where mmig(x|xs) is the migration image of the shot at xs, W (ω) is the source spectrum,

xg indicates the receiver location, G(x|xs) is the Green’s function from a source at xs to
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x; This Green’s function is computed by a finite-difference solution to the wave equation.

The ∗ indicates complex conjugate. For simplicity, the angular frequency ω is silent in the

Green’s function G and data function d.

For the velocity model in Figure 4.1(a), referred to as the L model, the recorded data

contain prism waves. The yellow arrows in Figure 4.1(a) indicate the ray path for a prism

wave excited at (x, z) = (4.5, 0) km and recorded at (x, z) = (2.5, 0) km, and Figure 4.1(b)

depicts the wavepath (Luo and Schuster, 1991) of the prism wave generated by a source with

a 20-Hz Ricker wavelet. The recorded trace is plotted in Figure 4.1(c) with a red window

outlining the reflection from the horizontal reflector and the prism wave. For simplicity, I

mute the direct wave and diffractions from the trace to keep only the part in the red window

d(xg|xs) = d1(xg|xs) + d2(xg|xs), (4.2)

where d1(xg|xs) and d2(xg|xs) denote the first-order scattering reflection wave and the

doubly scattered prism wave, respectively. When the horizontal reflector is extracted

from the migration images and embedded in the migration velocity model (Figure 4.3(a)),

conventional RTM can correctly migrate the prism waves to image the vertical reflector

(Jones et al., 2007). In this case, the Green’s function calculated with the migration

velocity in Figure 4.3(a) contains two arrivals: a direct wave arrival and a reflection from

the horizontal reflector as shown in Figure 4.2. Therefore, the Green’s functions in equation

4.1 can be decomposed into two parts:

G(x|xs) = Go(x|xs) + G1(x|xs), (4.3)

and

G(x|xg) = Go(x|xg) + G1(x|xg), (4.4)

where Go and G1 denote the direct and the reflected waves, respectively. Note that in this

case Go is a downgoing wave and G1 is an upgoing wave.

When the data in the red window of Figure 4.1(c) are migrated with the velocity model

in Figure 4.3(a), the migration image is shown in Figure 4.3(b), and is mathematically

described by
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Figure 4.2. Ray diagrams for the Green’s functions: (a) a two-layer velocity model. The
star and triangle indicate the source and receiver locations. The yellow arrow is the ray
path for the direct wave and the red arrows show the ray path for the reflected wave. (b)
The trace recorded at the triangle. It is simulated with a 20-Hz Ricker wavelet.
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Figure 4.3. When the data are migrated with (a) the homogeneous velocity (2 km/s) with
a horizontal reflector embedded (2.5 km/s); (b) the migration image of the data within the
red window in Figure 4.1(a) with the velocity model in panel (a).
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mmig(x|xs)

=
∑
ω

ω2W ∗(ω)[G∗
o(x|xs) + G∗

1(x|xs)][G∗
o(x|xg) + G∗

1(x|xg)][d1(xg|xs) + d2(xg|xs)]

=

F irst Ellipse∼O(r)︷ ︸︸ ︷∑
ω

ω2W ∗(ω)G∗
o(x|xs)G∗

o(x|xg)d1(xg|xs) (4.5)

+

Second Ellipse∼O(r2)︷ ︸︸ ︷∑
ω

ω2W ∗(ω)G∗
o(x|xs)G∗

o(x|xg)d2(xg|xs) (4.6)

+

Left Rabbit Ear∼O(r2)︷ ︸︸ ︷∑
ω

ω2W ∗(ω)G∗
1(x|xs)G∗

o(x|xg)d1(xg|xs) (4.7)

+

Right Rabbit Ear∼O(r2)︷ ︸︸ ︷∑
ω

ω2W ∗(ω)G∗
o(x|xs)G∗

1(x|xg)d1(xg|xs) (4.8)

+

F irst Prism Wave Kernel∼O(r3)︷ ︸︸ ︷∑
ω

ω2W ∗(ω)G∗
1(x|xs)G∗

o(x|xg)d2(xg|xs) (4.9)

+

Second Prism Wave Kernel∼O(r3)︷ ︸︸ ︷∑
ω

ω2W ∗(ω)G∗
o(x|xs)G∗

1(x|xg)d2(xg|xs) (4.10)

+ other terms. (4.11)

Note that the summation over the receiver g is omitted because there is only one trace in

this example. With the assumption that the reflection coefficient is the angle-independent

value r, the amplitude of the direct wave Green’s function Go is on the order of O(1) and the

amplitude of the reflection wave G1 is on the order of O(r). Similarly, d1 is with strength

of O(r). The prism wave d2 is a doubly scattered wave and its amplitude is on the order

O(r2). As an example, the first prism wave term in equation 4.9 has O(r3) because it is

a product of the d2 term with amplitude O(r2) and the migration kernel G1 × Go with

strength O(r). With these assumptions, the amplitude of each term in the above equation

can be expressed in terms of r as shown in the labels.

Figure 4.3(b) shows two ellipses. The first one corresponds to the migration kernel in

equation 4.5 with the strongest amplitude O(r). When the prism wave is migrated as a

primary wave (the term in equation 4.6), it shows up as the second ellipse in Figure 4.3(b)

with an amplitude O(r2). This ellipse is an artifact. The migration kernels in equations 4.7

and 4.8 correspond to these two “rabbit ears” with the strength O(r2). Equations 4.9 and

4.10 contain the migration kernels for the prism waves corresponding to these near-vertical

curves in Figure 4.3(b) and their amplitudes are on the order of O(r3), which are much
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weaker than other kernels, so in the migration image, the vertical reflector is of weaker

amplitude compared to the horizontal ones.

4.2.1 Prism Wave Reverse Time Migration

If the migration kernels in equations 4.9 and 4.10 can be computed directly, the prism

waves can be directly migrated without crosstalk interference. In the following section, fre-

quency domain formulas are used for mathematical simplicity, but the numerical calculation

is actually computed in the time domain by a finite-difference solution to the space-time

acoustic wave equation. Given a smooth migration velocity (homogeneous velocity in this

example) and a migration image of the horizontal reflector, the Green’s function for the

reflected wave can be computed with the Born approximation (Stolt and Benson, 1986)

G1(x|xs) =
∫
x′

ω2m1(x′)Go(x′|xs)Go(x′|x)dx′, (4.12)

where m1(x′) is the reflectivity model representing the horizontal reflector, and the Green’s

function Go is calculated using the migration velocity. Plugging equation 4.12 into equation

4.9, I get

mmig(x|xs) =
∑
ω

ω2W ∗(ω)
∫
x′

ω2m1(x′)G∗
o(x

′|xs)G∗
o(x

′|x)dx′G∗
o(x|xg)d2(xg|xs)

=
∑
ω

ω2

∫
x′

ω2W ∗(ω)G∗
o(x

′|xs)m1(x′)G∗
o(x

′|x)dx′G∗
o(x|xg)d2(xg|xs)

=
∑
ω

ω2[P1(x|xs)]∗[Qo(x|xs)], (4.13)

with

P1(x|xs) =
∫
x′

ω2W (ω)Go(x′|xs)m1(x′)Go(x′|x)dx′;

Qo(x|xs) = G∗
o(x|xg)d2(xg|xs). (4.14)

Numerically, P1(x|xs) are computed with two finite-difference simulations in the time

domain to solve the following two equations

(▽2 + ω2s2
o(x))Po(x) = W (ω)δ(x− xs); (4.15)

(▽2 + ω2s2
o(x))P1(x) = ω2m1(x)Po(x), (4.16)

where the slowness so(x) is the reciprocal of the migration velocity model. The receiver-side

wavefield Qo(x|xs) can be computed by solving

(▽2 + ω2s2
o(x))Qo(x|xs) = d2(xg|xs)δ(x − xg). (4.17)

Note the wavefield propagates backward in time when solving the above equation in the

time domain with the finite-difference method. When there is more than one trace in
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the shot gather, all the traces act as source wavelets of point sources at their respective

recording locations, which implies a summation over the receiver g. In summary, prism

wave migration requires three finite-difference simulations (equations 4.15, 4.16, and 4.17)

to calculate the image corresponding to the term in equation 4.9.

Figure 4.4 illustrates the process of prism wave migration with equation 4.9: (1) The

source wavefield Po(x) propagates downward starting from the source location; (2) Po(x)

is reflected at the horizontal reflector and becomes the reflected wavefield P1(x); (3) The

receiver wavefield Qo(x) propagates downward from the receiver; (4) The product of P1(x)

and Qo(x) is the migration image (the vertical curve in Figure 4.4 is part of the prism wave

migration kernel and computed by equation 4.13).

Similarly, the term in equation 4.10 can be computed by

mmig(x|xs) =
∑
ω

ω2W ∗(ω)G∗
o(x|xs)

∫
x′

ω2m1(x′)G∗
o(x

′|xg)G∗
o(x

′|x)dx′d2(xg|xs)

=
∑
ω

ω2W ∗(ω)G∗
o(x|xs)

∫
x′

ω2d2(xg|xs)G∗
o(x

′|xg)m1(x′)G∗
o(x

′|x)dx′

=
∑
ω

ω2[Po(x|xs)]∗[Q1(x|xs)], (4.18)

with Q1(x|xs) computed by a finite-difference solution to

(▽2 + ω2s2
o(x))Q1(x|xs) = ω2m1(x)Qo(x|xs), (4.19)

using the time reversed traces as source wavelets in equation 4.17.

Therefore, the migration image of the prism wave is the sum of the two terms from

equations 4.13 and 4.18,

mmig(x|xs) = ω2[P1(x|xs)]∗[Qo(x|xs)] + ω2[Po(x|xs)]∗[Q1(x|xs)], (4.20)

and it requires four finite-difference simulations in total. Compared to conventional RTM,

its computational cost is doubled. The advantages of this approach are as follows: (1)

It avoids modifying the migration velocity as in conventional RTM of prism waves; (2)

vertical structures are imaged in a separate step and reduces the crosstalk interference

between different phases.
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Figure 4.4. Diagrams of the ray paths illuminating the process of prism wave migration:
(a) source and receiver wavefields correlate at the correct image point. Panels (b) and (c)
show the ray paths to two image points that are above and below the right location. The
black vertical curve plots part of the prism wave migration kernel. The circles along the
curve show the locations of trial image points.
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4.2.2 Geometric Interpretation of the
Migration Kernel for Prism Wave

When the migration velocity is a homogeneous model with velocity c = 2 km/s, the

reverse time migration kernel plots as an ellipse for fixed source and receiver locations,

where the ellipse is defined by the formula

|x− xs|
c

+
|x− xg|

c
= τsg. (4.21)

Here τsg represents the travel time of a reflection arrival from the source at xs to the receiver

at xg. If a prism wave reflects off the horizontal reflector first and then reflects from the

vertical reflector (Figure 4.1(a)), and the depth of the horizontal reflector is known as zh,

the migration traveltime equation corresponding to this prism wave can be defined as

|x′ − xs|
c

+
|x− xg|

c
= τ ′sg. (4.22)

In the above equation, τ ′sg is the travel time of the prism wave from xs to xg. For x = (x, z)

above the horizontal reflector, x′ = (x, 2zh − z) is the mirror image of x with respect to

the horizontal reflector. For any x below the horizontal reflector, according to Huygens

principle, the Green’s function G1(x|xs) has an arrival time similar to that of the direct

wave Go(x|xs), with an additional amplification caused by ω2 in equation 4.12. Therefore,

below the horizontal reflector, the migration kernel plots as the ellipse in model space defined

by
|x− xs|

c
+
|x− xg|

c
= τ ′sg. (4.23)

This ellipse is an artifact and can be removed by up-down dip filtering applied to the traces

associated with G1 (Zhan and Schuster, 2012).

Figure 4.5(a) depicts the migration kernel corresponding to the ray path in Figure 4.1(a)

and equation 4.13. Figure 4.5(b) plots the curves defined by equations 4.22 and 4.23,

which are in excellent agreement with those associated with the migration kernel in Fig-

ure 4.5(a). In fact, equation 4.22 illustrates the basis of Kirchhoff migration of prism

waves (Marmalyevskyy et al., 2005). Similarly, the migration kernel of equation 4.18 is

plotted in Figure 4.6(b), which corresponds to the ray path in Figure 4.6(a). By symmetry

considerations, it is obvious that a vertical reflector placed on the right side can also fit the

observed prism wave. This kernel is plotted in Figure 4.6(c).

4.3 Numerical results

In this section, prism wave RTM is first tested with the simple L model in Figure 4.1(a),

and then tested with a salt model to illustrate its advantages over standard RTM.
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Figure 4.5. Migration kernels of prism waves: (a) the migration kernel of the prism
wave corresponding to the term in equation 4.9 in the case the vertical reflector is on the
left side. (b) The outline of the migration kernel in panel (a) according to the geometric
interpretation. The star and triangle indicate the source and receiver locations respectively.
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Figure 4.6. Migration kernels of prism waves: (a) the ray path for the prism wave with a
vertical reflector on the right side; (b) the migration kernel of the prism wave corresponding
to the term in equation 4.10 in the case the vertical reflector is on the right side; and (c)
the outline of the migration kernel in panel (b) according to the geometric interpretation.
The star and triangle indicate the source and receiver location respectively.
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4.3.1 Simple L Model

The L model in Figure 4.1(a) is sampled with a grid size of 301× 601 points, and a grid

interval of 10 m. There are 31 shots evenly distributed along the x-axis at a 10 m depth

with a 200 m shot interval. Every shot is recorded with the same 601 receivers at a 10 m

depth with a 10 m receiver interval for a fixed spread acquisition geometry. Figure 4.7 plots

a shot gather with the source at x = 4.6 km, which clearly shows the direct waves, the

diffractions from the top of the vertical reflector, the reflections off the horizontal reflector,

and the prism waves are marked by a yellow arrow.

The 31 shot gathers are first migrated with a homogeneous velocity model (2 km/s)

by a conventional RTM method, and the image is shown in Figure 4.8(a), where only the

horizontal reflector is visible. Then the proposed prism wave RTM algorithm is applied

to the same 31 shot gathers with the same homogeneous velocity and the RTM image

(Figure 4.8(a)) to give the image in Figure 4.8(b), which clearly depicts the vertical reflector.

The horizontal reflector acts as the location of secondary sources during the migration

process, which appears in the Figure 4.8(b) image.

4.3.2 Salt Model

Prism wave RTM can be used to delineate the vertical boundaries of a salt flank. In

the velocity model shown in Figure 4.9(a), an irregular salt body is placed along the left

boundary. The model size is 601× 601 points with a 10 m grid interval. The seismic survey

contains 301 shots fired at a depth of 10 m with an even x-sampling of 20 m. Every shot is

recorded with 601 receivers at a 10 m depth and a 10 m receiver interval along the x-axis. In

this case, the velocity gradient is not strong enough to generate diving waves for the short

recording aperture of a 6 km long receiver array. Figure 4.10 shows a shot gather with the

source position at x = 4 km, where the prism waves are marked by the yellow arrows.

The 301 shot gathers are migrated with the smooth migration velocity in Figure 4.9(b)

by a conventional RTM method, and the result is shown in Figure 4.11(a). This image

clearly illuminates the subhorizontal reflectors, but only a few diffractors are visible along

the salt flank. If the subhorizontal reflectors are picked from the RTM image and embedded

in the velocity model (Figure 4.12(a)), the conventional RTM method can correctly migrate

the prism waves to illuminate the steeply dipping salt flank shown in Figure 4.12(b). One

problem is that the sharp boundaries in the velocity model cause the wavefield to be

complex, e.g., internal multiples, and produce artifacts in the RTM image (Figure 4.12(b)).

Another problem is that the subvertical reflectors are of weaker amplitudes compared to

the horizontal ones.
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Figure 4.7. A shot gather with the source at x = 4.6 km. The shot gather contains the
direct wave, the reflection off the horizontal reflector, and the diffraction from the top of
the vertical reflector. The yellow arrow points out the prism wave.
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Figure 4.8. Comparison of migration images: (a) the RTM image obtained with a
homogeneous velocity model. The vertical reflector is not illuminated. (b) The RTM image
of the prism waves with homogeneous velocity and the reflectivity image in panel (a). The
vertical reflector is well imaged.
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prism waves.



76

D
ep

th
 (

km
)

(a) RTM Image
0

2

4

6

D
ep

th
 (

km
)

Offset (km)

(b) RTM of Prism Waves

0 2 4 6

0

2

4

6

Figure 4.11. Comparison of migration images: (a) the RTM image obtained with the
smooth migration velocity model. Along the salt boundary, only a few diffractors are visible.
(b) The RTM image of the prism waves with the same velocity model. The irregular salt
boundary is well imaged.
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Figure 4.12. Conventional method results: (a) the velocity model with subhorizontal
reflectors embedded; (b) the RTM image obtained with the velocity model in panel (a).
The irregular salt boundary is well imaged.
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The prism wave migration method uses the smooth migration velocity (Figure 4.9(b))

and the conventional RTM image (Figure 4.11(a)) to image the salt flank so that modifi-

cation of the migration velocity is avoided. Figure 4.11(b) shows the prism wave migration

image, where the salt flank is clearly imaged with strong amplitudes. However, this image

contains some strong artifacts associated with those in Figure 4.11(a).

To further improve the image quality, I apply a dip filter to Figure 4.11(a) to keep only

the subhorizontal reflectors, and the result is shown in Figure 4.13(a). Then, the proposed

method is applied with the filtered image and the smooth velocity model to migrate the

prism waves to produce the image in Figure 4.13(b), which contains fewer artifacts compared

to Figure 4.11(b). Figure 4.14(a) shows the image in Figure 4.13(b) after dip filtering to keep

only the subvertical reflectors. The final image is produced by summation of the migration

images in Figures 4.13(a) and 4.14(a) to give Figure 4.14(b), which is the migration image

with the best quality.

4.4 Discussion and Conclusion

In this chapter, I proposed a new method for migrating prism waves by RTM. There

are two steps to the method: (1) Conventional RTM is applied to the data to estimate the

geometry of the horizontal reflectors near the salt flank; (2) Prism wave RTM is applied

to the data again, except the prism imaging condition is used rather than the conventional

one. Dip filtering can also be applied to the images to reduce noise. For the simple L model,

the vertical reflector is not visible in the conventional RTM image, but it is well imaged by

migration of the prism waves with a homogeneous velocity model. In the example of the salt

model, the salt flank can be imaged by embedding the horizontal reflectors in the velocity

model, which is not trivial, but the best image is obtained by summation of two dip filtered

partial migration images: one from conventional RTM and the other from the migration of

the prism waves. The disadvantage of prism wave RTM is that its computational cost is

twice that of conventional RTM. The empirical results suggest that the proposed method

can migrate the prism waves correctly to delineate salt flanks and improve the image quality

with the help of dip filtering.
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Figure 4.13. Migration image with dip filtering: (a) the RTM image obtained with the
smooth migration velocity model after dip filtering to keep subhorizontal reflectors only;
(b) the RTM image of the prism waves.
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Figure 4.14. Vertial partial image and the final result: (a) the RTM image of the prism
waves after dip filtering for subvertical reflectors only; (b) the sum of two partial images:
one from conventional RTM and one from migration of the prism waves.



APPENDIX A

DEBLURRING FILTER

Following Aoki and Schuster (2009), I use a grid model with an even distribution of

isolated point scatterers mref as my reference model. According to equation (6), I get

mmig ref = LTLmref = LTd, (A.1)

where L is the linear diffraction stack operator, which only depends on the background

velocity vo and the source receiver configurations. Here a column of the LTL matrix

represents a migration Green’s function (Schuster and Hu, 2000). Then, as shown in

Figure A.1 I divide mref into somewhat large subsections centered around each point

scatterer. In each subsection, I define a small-sized filter fi, such that

[mmig ref ]i ∗ fi = [mref ]i. (A.2)

where i indicates the ith subsection and the notation [ ]i denotes the model in the ith

subsection. It is very important to choose a proper size for [mref ]i as it has to be big

enough to cover the main part of the migration butterflies (Schuster and Hu, 2000). In each

subsection, the reference model [mref ]i only contains a point scatterer. Thus, [mmig ref ]i
represents a migration Green’s function, but truncated by the subsection and fi is a local

filter, which approximates the inverse of the Hessian within the subsection. After solving for

fi by a least-squares method, I apply fi to the ith subsection of the original migration image

obtained from the field data, and construct another image mmf . Near the boundaries

between subsections, linear interpolation of nearby local filters is computed to make a

smoothly varying image. This process can be expressed as

mmf = mmig ∗ f. (A.3)

Here, f represents a bank of stationary filters (each filter is constant within its corresponding

subsection). We can rewrite equation A.3 in matrix notation

mmf = Fmmig. (A.4)
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Figure A.1. Steps for computing the deblurring filter. Step (a) Define smooth velocity
model with point scatterers denoted as circles in (b). Generate multisource data in (c),
migrate the multisource data and get an image shown in (d). Step (e), in each subsection,
compute a local filter according to [mmig ref ]i ∗ fi = [mref ]i and combine all the local filters
into the deblurring filter F.
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Since mmf is an approximation of m, and

m = (LTL)−1mmig, (A.5)

then the computed fi in each subsection can be formed as the approximated preconditioner

matrix

F ≈ (LTL)−1. (A.6)

We can improve the standard migration image by applying F to it, or, I can use F as a

preconditioner in an iterative LSM solution to speed up convergence.

There are limitations associated with the deblurring filter.

1. The subsection needs to be big enough to cover the main part of migration artifacts.

It also has to be large in order to avoid the interface between neighboring sections.

2. The migration Green’s function is constant within a subsection, so that I can keep the

filter constant with the subsection. To honor these two approximations, the velocity model

needs to be smooth, so that the variation in the migration Green’s function is smooth;

hence, I usually use a high-frequency Ricker source wavelet, which makes the migration

artifacts smaller.



APPENDIX B

SIGNAL-TO-NOISE RATIO

Consider an observed trace Rt, consisting of a signal trace St and zero-mean independent

and identically-distributed6 noise nt of variance σ2, as in

Rt = St + nt, t = 1, . . . , T.

When M such observed traces are drawn and stacked, I get

R̆t ,
M∑

m=1

R
(m)
t

=
M∑

m=1

[St + n
(m)
t ]

= MSt +
M∑

m=1

n
(m)
t , (B.1)

where R
(m)
t denotes the mth random realization of the signal trace St. (n(m)

t ’s are still i.i.d.)

The signal and the noise part of the stacked trace R̆t are denoted by

S̆t , MSt and (B.2)

n̆t ,
M∑

m=1

n
(m)
t (B.3)

respectively. Note that the root mean squared (rms) amplitude of the stacked signal S̆t is

AM ,

√√√√ T∑
t=1

S̆t
2
/T

= M

√√√√ T∑
t=1

St
2/T

= MA1, (B.4)

6A sequence of random variables is independent and identically distributed (i.i.d.) if each random variable
has the same probability distribution as the others and all are mutually independent.
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where A1 =
√∑T

t=1 S2
t /T is the rms amplitude of the signal trace St and the second equality

follows from equation B.2; and AM is defined as the rms amplitude of the M -fold stacked

signal S̆t, growing in proportion to M , according to equation B.4. The rms amplitude of

the stacked noise n̆t, σM , is defined as

σM ,

√√√√ T∑
t=1

< n̆t
2 > /T

=
√

< n̆t
2 >

=

√√√√< [
M∑

m=1

n
(m)
t ]2 >

=

√√√√<

M∑
m=1

n
(m)
t

2
>

=
√

Mσ, (B.5)

where <> denotes expectation, the second equality follows because nt’s are identically-

distributed, the third equality follows from equation B.3, the fourth equality follows because

n
(m)
t ’s are zero-mean and independent, and the last equality follows because n

(m)
t ’s are

identically-distributed with variance σ2. Equation B.5 shows that σM grows in proportion

to
√

M .

Finally, The SNR of R̆t is defined as the ratio of rms amplitude of signal over that of

noise (Papoulis, 1991),

SNR , AM

σM

=
MA1√

Mσ

=
√

MA1/σ, (B.6)

which exhibits a
√

M enhancement.



APPENDIX C

LEAST-SQUARES MIGRATION WITH

PRESTACK IMAGE

In least-squares migration, the goal is to solve the over-determined system of equations

d = Lm, (C.1)

where d is the data vector, L matrix represents the forward modeling operator, and m is

the model vector, and the corresponding normal equation is

LTd = LTLm. (C.2)

The direct least-squares solution is

m = [LTL]−1LTd. (C.3)

Assuming a dataset with three shots, each of dimension Ng × Nt, the total length of

the data vector is 3Ng × Ns. If the model vector is of the size Nx ×Nz, the dimension of

equation C.1 will be

[d]3NgNs = [L]3NgNs×NxNz [m]NxNz . (C.4)

For example, if the three shots are d1,d2, and d3, each with the length of Ng × Nt, the

above equation can be rewritten as d1

d2

d3

 =

L1

L2

L3

 [m] , (C.5)

where L1,L2, and L3 are the forward modeling operator associated with each shot respec-

tively. Here, di denotes the shot gather for the ith shot.
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When the least-squares migration is performed with a stacked image as shown in equa-

tion C.5, the answer m in equation C.3 is the solution to the whole problem. In this

dissertation, I propose to introduce an ensemble of prestack images

m =

m1

m2

m3

 (C.6)

into the inversion scheme, so that the system of equations becomesd1

d2

d3

 =

L1m1

L2m2

L3m3

 =

L1

L2

L3

 m1

m2

m3

 , (C.7)

where m1, m2, and m3 are the migration image associated for each shot respectively, each

with the size of Nx ×Nz. The direct solution to the equation C.7 ism1

m2

m3

 =

LT
1 L1

LT
2 L2

LT
3 L3

−1 LT
1 d1

LT
2 d2

LT
3 d3


=

[LT
1 L1]−1

[LT
2 L2]−1

[LT
3 L3]−1

 LT
1 d1

LT
2 d2

LT
3 d3

 =

[LT
1 L1]−1LT

1 d1

[LT
2 L2]−1LT

2 d2

[LT
3 L3]−1LT

3 d3

 . (C.8)

It is clear that the solution m1, m2, and m3 are independent of each other. By introducing

the prestack image into the inversion, I solve three small problems instead of one big

problem, thus make it possible to find stable solution when the equations are not consistent

with each other in the case of wrong migration velocity.



APPENDIX D

MATHEMATICAL DERIVATION WITH

ADJOINT STATE METHOD

In Chapter 4, the physical meaning of prism wave migration was explained with a simple

geometrical interpretation. From the mathematical point of view, the migration of prism

waves can be thought of as the adjoint operation of modeling a prism wave. To show this,

I will derive the forward modeling operator of a prism wave and apply the adjoint state

method to derive its corresponding migration operator. Given a background slowness model

so(x) and a reflectivity model m1(x), the reflection data for a shot at xs can be modeled

with the Born approximation using the following equations (Dai et al., 2012)

(▽2 + ω2s2
o(x))Po(x) = W (ω)δ(x− xs), (D.1)

(▽2 + ω2s2
o(x))P1(x) = ω2m1(x)Po(x). (D.2)

By introducing a perturbation to the slowness model so → so + δs, the wavefields become

Po → Po + δPo, P1 → P1 + δP1. Expanding the slowness term as

(so + δs)2 ≈ s2
o + 2soδs, (D.3)

equations D.1 and D.2 become

(▽2 + ω2s2
o + 2ω2soδs)(Po(x) + δPo(x)) = W (ω)δ(x − xs), (D.4)

(▽2 + ω2s2
o + 2ω2soδs)(P1(x) + δP1(x)) = ω2m1(x)(Po(x) + δPo(x)). (D.5)

Assuming m2(x) = −2so(x)δs(x), and subtracting equation D.1 from equation D.4, I get

(▽2 + ω2s2
o)δPo(x) = ω2m2(x)Po(x). (D.6)

Similarly, subtracting equation D.2 from equation D.5, I get

(▽2 + ω2s2
o)δP1(x) = ω2m1(x)δPo(x) + ω2m2(x)P1(x), (D.7)

where the higher order terms are neglected. Equation D.7 represents the modeling operator

for the prism wave δP1(x), which requires solving equations D.1, D.2, and D.6. Calculation

of the prism wave needs four finite-difference simulations.
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The above equations can be expressed with Green’s functions Go calculated with the

slowness so, so equation D.2 becomes

P1(x|xs) =
∫
x′

ω2W (ω)Go(x′|xs)m1(x′)Go(x′|x)dx′, (D.8)

and equation D.6 becomes

δPo(x|xs) =
∫
x′′

ω2W (ω)Go(x′′|xs)m2(x′′)Go(x′′|x)dx′′, (D.9)

where x′ and x′′ are dummy variables. Thus, the modeling operator of the doubly scattered

prism wave can be expressed as

δP1(x|xs) =
∫
x′′′

ω2Go(x′′′|x)m1(x′′′)δPo(x′′′|xs)dx′′′

+
∫
x′′′

ω2Go(x′′′|x)m2(x′′′)P1(x′′′|xs)dx′′′

=
∫
x′′′

ω2Go(x′′′|x)m1(x′′′)
∫
x′′

ω2W (ω)Go(x′′|xs)m2(x′′)Go(x′′|x′′′)dx′′dx′′′

+
∫
x′′′

ω2Go(x′′′|x)m2(x′′′)
∫
x′

ω2W (ω)Go(x′|xs)m1(x′)Go(x′|x′′′)dx′dx′′′ (D.10)

If I switch the order of integration for the first term, the above equation becomes

δP1(x|xs)

=
∫
x′′

ω2W (ω)Go(x′′|s)m2(x′′)
∫
x′′′

ω2Go(x′′′|x)m1(x′′′)Go(x′′|x′′′)dx′′′dx′′

+
∫
x′′′

ω2W (ω)Go(x′′′|x)m2(x′′′)
∫
x′

ω2Go(x′|s)m1(x′)Go(x′|x′′′)dx′dx′′′

=
∫
x′′

ω2W (ω)Go(x′′|xs)m2(x′′)G1(x|x′′)dx′′

+
∫
x′′′

ω2W (ω)Go(x′′′|x)m2(x′′′)G1(x′′′|s)dx′′′, (D.11)

where G1 represents the Green’s function for reflection wave:

G1(x|x′′) =
∫
x′′′

ω2Go(x′′′|x)m1(x′′′)Go(x′′|x′′′)dx′′′, (D.12)

G1(x′′′|xs) =
∫
x′

ω2Go(x′|xs)m1(x′)Go(x′|x′′′)dx′. (D.13)

When the wavefield δP1 is recorded at the receiver location xg, the shot gather d2(xg|xs)

of the prism wave can be expressed as

d2(xg|xs) =
∫
x

ω2W (ω)Go(x|xs)m2(x)G1(x|xg)dx

+
∫
x

ω2W (ω)G1(x|xs)m2(x)G1(x|xg)dx, (D.14)
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Equation D.14 is the forward modeling operator for the prism wave. By simply applying

adjoint of the forward modeling (Plessix, 2006), the migration image of the shot gather

d2(xg|xs) can be shown to be

mmig(x|xs) =
∑
ω

∑
g

ω2W ∗(ω)G∗
o(x|xs)G∗

1(x|xg)d2(xg|xs)

+
∑
ω

∑
g

ω2W ∗(ω)G∗
1(x|xs)G∗

o(x|xg)d2(xg|xs), (D.15)

which are exactly the terms in equations 4.9 and 4.10. The computation of these terms is

described in the text.
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