97,527 research outputs found

    Concepts of Law

    Get PDF

    Memory cost of quantum contextuality

    Get PDF
    The simulation of quantum effects requires certain classical resources, and quantifying them is an important step in order to characterize the difference between quantum and classical physics. For a simulation of the phenomenon of state-independent quantum contextuality, we show that the minimal amount of memory used by the simulation is the critical resource. We derive optimal simulation strategies for important cases and prove that reproducing the results of sequential measurements on a two-qubit system requires more memory than the information carrying capacity of the system.Comment: 18 pages, no figures, v2: revised for clarit

    The development of temporal concepts: Learning to locate events in time

    Get PDF
    A new model of the development of temporal concepts is described that assumes that there are substantial changes in how children think about time in the early years. It is argued that there is a shift from understanding time in an event-dependent way to an event-independent understanding of time. Early in development, very young children are unable to think about locations in time independently of the events that occur at those locations. It is only with development that children begin to have a proper grasp of the distinction between past, present, and future, and represent time as linear and unidirectional. The model assumes that although children aged 2 to 3 years may categorize events differently depending on whether they lie in the past or the future, they may not be able to understand that whether an event is in the past or future is something that changes as time passes and varies with temporal perspective. Around 4 to 5 years, children understand how causality operates in time, and can grasp the systematic relations that obtain between different locations in time, which provides the basis for acquiring the conventional clock and calendar system

    Grounded Concept Development Using Introspective Atoms

    Get PDF
    In this paper we present a system that uses its underlying physiology, a hierarchical memory and a collection of memory management algorithms to learn concepts as cases and to build higher level concepts from experiences represented as sequences of atoms. Using a memory structure that requires all base memories to be grounded in introspective atoms, the system builds a set of grounded concepts that must all be formed from and applied to this same set of atoms. All interaction the system has with its environment must be represented by the system itself and therefore, given a complete ability to perceive its own physiological and mental processes,can be modeled and recreated
    corecore