142,650 research outputs found

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    Representation of Temporal Relationship Among Events

    Get PDF
    Representation and Reasoning about a temporal information became a crucial aspect for many of the natural language process applications namely question answering system temporal summarization etc., Temporal information exists majorly in two forms i.e either in in the form of qualitative nature or quantitative. Temporal information extraction is vital to project the relation among the events that occur in any scenario. This information intern enables to answer queries about date, duration and other temporal nature of events. This paper focus on automatic extraction and representation of temporal relation among the events. Few attributes of TIMEML tags namely and are used to retrieve temporal information among events. Reasoning was applied to retrieve the unknown information from the known ones. Experiments were conducted on TIMEML corpus and the results obtained from the experiments were found to be encouraging

    Temporal Reasoning without Transitive Tables

    No full text
    rapport interneRepresenting and reasoning about qualitative temporal information is an essential part of many artificial intelligence tasks. Lots of models have been proposed in the litterature for representing such temporal information. All derive from a point-based or an interval-based framework. One fundamental reasoning task that arises in applications of these frameworks is given by the following scheme: given possibly indefinite and incomplete knowledge of the binary relationships between some temporal objects, find the consistent scenarii between all these objects. All these models require transitive tables --- or similarly inference rules--- for solving such tasks. We have defined an alternative model, S-languages - to represent qualitative temporal information, based on the only two relations of \emph{precedence} and \emph{simultaneity}. In this paper, we show how this model enables to avoid transitive tables or inference rules to handle this kind of problem

    On finding approximate solutions of qualitative constraint networks

    Full text link
    Qualitative Spatial and Temporal Reasoning (QSTR) represents spatial and temporal information in terms of human comprehensible qualitative predicates and reasons about qualitative information by solving qualitative constraint networks (QCNs). Despite significant progress in the past three decades, more and more evidence has shown that it is inherently hard to find exact solutions for expressive qualitative constraints. In many applications, however, we are often required to make decisions in a very limited time. In these cases, finding a good approximate solution in seconds is much more desirable than waiting days for an exact solution. In this paper, we will exploit the algebraic structure of qualitative calculi (e.g. Interval Algebra and RCC8) as well as their conceptual neighbourhood graphs to develop approximate methods for consistency checking in QSTR. Moreover, we propose and empirically compare four independent methods to serve as tools for finding good approximate solutions for the given qualitative calculi. © 2013 IEEE

    A tool for reasoning about qualitative temporal information: the theory of S-languages with a Lisp implementation

    No full text
    http://www.jucs.org/jucs_14_20/a_tool_for_reasoningInternational audienceReasoning about incomplete qualitative temporal information is an essential topic in many artificial intelligence and natural language processing applications. In the domain of natural language processing for instance, the temporal analysis of a text %provides yields a set of temporal relations between events in a given linguistic theory. The problem is first to express events and any possible temporal relations between them, then to express the qualitative temporal constraints (as subsets of the set of all possible temporal relations) and compute (or count) all possible temporal relations that can be deduced. For this purpose, we propose to use the formalism of S-languages, based on the mathematical notion of S-arrangements with repetitions [schwer:CRM02]. In this paper, we present this formalism in detail and our implementation of it. We explain why Lisp is adequate to implement this theory. Next we describe a Common Lisp system \SLS\ (for S-LanguageS) which implements part of this formalism. A graphical interface written using McCLIM, the free implementation of the CLIM specification, frees the potential user of any Lisp knowledge. Fully developed examples illustrate both the theory and the implementation

    Qualitative constraint satisfaction problems : algorithms, computational complexity, and extended framework

    Full text link
    University of Technology, Sydney. Faculty of Engineering and Information Technology.Qualitative Spatial and Temporal Reasoning (QSTR) is a subfield of artificial intelligence that represents and reasons with spatial/temporal knowledge in a qualitative way. In the past three decades, researchers have proposed dozens of relational models (known as qualitative calculi), including, among others, Point Algebra (PA) and Interval Algebra (IA) for temporal knowledge, Cardinal Relation Algebra (CRA) and Cardinal Direction Calculus (CDC) for directional spatial knowledge, and the Region Connection Calculus RCC-5/RCC-8 for topological spatial knowledge. Relations are used in qualitative calculi for representing spatial/temporal information (e.g. Germany is to the east of France) and constraints (e.g. the to-be-established landfill should be disjoint from any lake). The reasoning tasks in QSTR are formalised via the qualitative constraint satisfaction problem (QCSP). As the central reasoning problem in QCSP, the consistency problem (which decides the consistency of a number of constraints in certain qualitative calculi) has been extensively investigated in the literature. For PA, IA, CRA, and RCC-5/RCC-8, the consistency problem can be solved by composition-based reasoning. For CDC, however, composition-based reasoning is incomplete, and the consistency problem in CDC remains challenging. Previous works in QCSP assume that qualitative constraints only concern completely unknown entities. Therefore, constraints about landmarks (i.e., fixed entities) cannot be properly expressed. This has significantly restricted the usefulness of QSTR in real-world applications. The main contributions of this thesis are as follows. (i) The composition-based method is one of the most important reasoning methods in QSTR. This thesis designs a semi-automatic algorithm for generating composition tables for general qualitative calculi. This provides a partial answer to the challenge proposed by Cohn in 1995. (ii) Schockaert et al. (2008) extend the RCC models interpreted in Euclidean topologies to the fuzzy context and show that composition-based reasoning is sufficient to solve fuzzy QCSP, where 31 composition rules are used. This thesis first shows that only six of the 31 composition rules are necessary, and then introduces a method which consistently fuzzifies any classical RCC models. This thesis also proposes a polynomial algorithm for realizing solutions of consistent fuzzy RCC constraints. (iii) Composition-based reasoning is incomplete for solving QCSP over the CDC. This thesis provides a cubic algorithm which for the first time solves the consistency problem of complete basic CDC networks, and further shows that the problem becomes NP-complete if the networks are allowed to be incomplete. This draws a sharp boundary between the tractable and intractable subclasses of the CDC. (iv) This thesis proposes a more general and more expressive QCSP framework, in which a variable is allowed to be a landmark (i.e., a fixed object), or to be chosen among several landmarks. The computational complexity of the consistency problems in the new framework is then investigated, covering all qualitative calculi mentioned above. For basic networks, the consistency problem remains tractable for Point Algebra, but becomes NP-complete for all the remaining qualitative calculi. A special case in which a variable is either a landmark or is totally unknown has also been studied. (v) A qualitative network is minimal if it cannot be refined without changing its solution set. Unlike the assumptions in the literature, this thesis shows that computing a solution of minimal networks is NP-complete for (partially ordered) PA, CRA, IA, and RCC-5/RCC-8. As a by-product, it has also been proved that determining the minimality of networks in these qualitative calculi is NP-complete

    Temporal Sequences of Qualitative Information: Reasoning about the Topology of Constant-Size Moving Regions

    Full text link
    International audienceRelying on the recently introduced multi-algebras, we present a general approach for reasoning about temporal sequences of qualitative information that is generally more efficient than existing techniques. Applying our approach to the specific case of sequences of topological information about constant-size regions, we show that the resulting formalism has a complete procedure for deciding consistency, and we identify its three maximal tractable sub-classes containing all basic relations
    • …
    corecore