484 research outputs found

    Realization of Mixed WDM Transmission System

    Get PDF

    Signal processing with optical delay line filters for high bit rate transmission systems

    Get PDF
    In den letzten Jahrzehnten ist das globale Kommunikationssystem in einem immer größerem Maße ein integraler Bestandteil des täglichen Lebens geworden. Optische Kommunikationssysteme sind die technologische Basis für diese Entwicklung. Nur Fasern können die riesige benötigte Bandbreite bereitstellen. Während für die ersten optischen Übertragungssysteme die Faser als "flacher" Kanal betrachtet werden konnte, machen Wellenlängenmultiplex und steigende Übertragungsraten die Einbeziehung von immer mehr physikalischen Effekten notwendig. Bei einer Erhöhung der Kanaldatenrate auf 40 Gbit/s und mehr ist die statische Kompensation von chromatischer Dispersion nicht mehr ausreichend. Die intrinsische Toleranz der Modulationsformate gegenüber Dispersion nimmt quadratisch mit der Symbolrate ab. Daher können beispielsweise durch Umwelteinflüsse hervorgerufene Dispersionsschwankungen die Dispersionstoleranz der Modulationsformate überschreiten. Dies macht eine adaptive Dispersionskompensation notwendig, was gleichzeitig auch Dispersionsmonitoring erfordert, um den adaptiven Kompensator steuern zu können. Vorhandene Links können mit Restdispersionskompensatoren ausgestattet werden, um sie für Hochgeschwindigkeitsübertragungen zu ertüchtigen. Optische Kompensationstechniken sind unabhängig von der Kanaldatenrate. Daher wird eine Erhöhung der Datenrate problemlos unterstützt. Optische Kompensatoren können WDM-fähig gebaut werden, um mehrere Kanäle auf einmal zu entzerren. Das Buch beschäftigt sich mit optischen Delay-Line-Filtern als eine Klasse von optischen Kompensatoren. Die Filtersynthese von solchen Delay-Line-Filtern wird behandelt. Der Zusammenhang zwischen optischen Filtern und digitalen FIR-Filtern mit komplexen Koeffizienten im Zusammenhang mit kohärenter Detektion wird aufgezeigt. Iterative und analytische Methoden, die die Koeffizienten für dispersions- und dispersions-slope-kompensierende Filter produzieren, werden untersucht. Genauso wichtig wie die Kompensation von Dispersion ist die Schätzung der Dispersion eines Signals. Mit Delay-Line-Filtern können die Restseitenbänder eines Signals genutzt werden, um die Dispersion zu messen. Alternativ kann nichtlineare Detektion angewandt werden, um die Pulsverbreiterung, die hauptsächlich von der Dispersion herrührt, zu schätzen. Mit gemeinsamer Dispersionskompensation und Dispersionsmonitoring können Dispersionskompensatoren auf die Signalverzerrungen eingestellt werden. Spezielle Eigenschaften der Filter zusammen mit der analytischen Beschreibung können genutzt werden, um schnelle und zuverlässige Steueralgorithmen zur Filtereinstellung bereitzustellen. Schließlich wurden Prototypen derartiger faseroptischen Kompensatoren von chromatischer Dispersion und Dispersions-Slope hergestellt und charakterisiert. Die Einheiten und ihr Systemverhalten wird gezeigt und diskutiert.Over the course of the past decades, the global communication system has become a central part of people's everyday lives. Optical communication systems are the technological basis for this development. Only fibers can provide the huge bandwidth that is required. Where the fiber could be regarded as a flat channel for the first optical transmission systems wavelength multiplexing and increasing line rates made it necessary to take more and more physical effects into account. When the line rates are increased to 40 Gbit/s and higher static chromatic dispersion compensation is not enough. The modulation format's intrinsic tolerance for dispersion decreases quadratically with the symbol rate. Thus, environmentally induced chromatic dispersion fluctuations may exceed the dispersion tolerance of the modulation formats. This makes an adaptive dispersion compensation necessary implying also the need for a monitoring scheme to steer the adaptive compensator. Legacy links that are CD-compensated by DCFs can be upgraded with residual dispersion compensators to make them ready for high speed transmission. Optical compensation is independent from the line rate. Hence, increasing the data rates is inherently supported. Optical compensators can be built WDM ready compensating multiple channels at once. The book deals with optical delay line filters as one class of optical compensators. The filter synthesis of such delay line filters is addressed. The connection between optical filters and digital FIR filters with complex coefficients that are used in conjunction with coherent detection could be shown. Iterative and analytical methods that produce the coefficients for dispersion (and also dispersion slope) compensating filters are researched. As important as the compensation of dispersion is the estimation of the dispersion of a signal. Using delay line filters, the vestigial sidebands of a signal can be used to measure the dispersion. Alternatively, nonlinear detection can be used to estimate the pulse broadening which is caused mainly by dispersion. With dispersion compensation and dispersion monitoring, dispersion compensators can be adapted to the signal's impairment. Special properties of the filter in conjunction with an analytical description can be used to provide a fast and reliable control algorithm for setting the filter to a given dispersion and centering it on a signal. Finally, prototypes of such fiber optic chromatic dispersion and dispersion slope compensation filters were manufactured and characterized. The device and system characterization of the prototypes is presented and discussed

    Digital Signal Processing Techniques For Coherent Optical Communication

    Get PDF
    Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservation of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once again considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge deterministic effects pose for long-haul optical data transmission. Experimental results which demonstrate the possibility to digitally mitigate both dispersion and nonlinearity are presented. Impairment compensation is achieved using backward propagation by implementing the split-step method. Efficient realizations of the dispersion compensation operator used in this implementation are considered. Infinite-impulse response and wavelet-based filtering are both investigated as a means to reduce the required computational load associated with signal backward-propagation. Possible future research directions conclude this dissertation

    High-Capacity Short-Range Optical Communication Links

    Get PDF

    Robust optical transmission systems : modulation and equalization

    Get PDF

    Multidimensional Constellation Shaping for Coherent Optical Communication Systems

    Get PDF
    To overcome the increasing demands for Internet traffic, exploiting the available degrees of freedom in optical communication systems is necessary. In this thesis, we study how constellation shaping can be achieved in various dimensions and how various shaping schemes affect the whole performance in real systems. This thesis investigates the performance of constellation shaping methods including geometric shaping and probabilistic shaping in coherent fiber-optic systems.To study geometric shaping, we explore multidimensional lattice-based constellations. These constellations provide a regular structure with fast and low-complexity encoding and decoding. We show the possibility of transmitting and detecting constellations with a size of more than 10^{28} points, which can be done without a look-up table to store the constellation points. Moreover, we experimentally realize our proposed multidimensional modulation formats in long-haul optical communication systems.Finally, we investigate the performance of probabilistically shaped quadrature amplitude modulation and compare it with uniform cross quadrature amplitude modulation in the presence of transmitter impairments, and with uniform quadrature amplitude modulation in links where higher-order modulation formats co-propagate with on-off keying wavelength channels

    Nonlinearity Mitigation in WDM Systems: Models, Strategies, and Achievable Rates

    Get PDF
    After reviewing models and mitigation strategies for interchannel nonlinear interference (NLI), we focus on the frequency-resolved logarithmic perturbation model to study the coherence properties of NLI. Based on this study, we devise an NLI mitigation strategy which exploits the synergic effect of phase and polarization noise compensation (PPN) and subcarrier multiplexing with symbol-rate optimization. This synergy persists even for high-order modulation alphabets and Gaussian symbols. A particle method for the computation of the resulting achievable information rate and spectral efficiency (SE) is presented and employed to lower-bound the channel capacity. The dependence of the SE on the link length, amplifier spacing, and presence or absence of inline dispersion compensation is studied. Single-polarization and dual-polarization scenarios with either independent or joint processing of the two polarizations are considered. Numerical results show that, in links with ideal distributed amplification, an SE gain of about 1 bit/s/Hz/polarization can be obtained (or, in alternative, the system reach can be doubled at a given SE) with respect to single-carrier systems without PPN mitigation. The gain is lower with lumped amplification, increases with the number of spans, decreases with the span length, and is further reduced by in-line dispersion compensation. For instance, considering a dispersion-unmanaged link with lumped amplification and an amplifier spacing of 60 km, the SE after 80 spans can be be increased from 4.5 to 4.8 bit/s/Hz/polarization, or the reach raised up to 100 spans (+25%) for a fixed SE.Comment: Submitted to Journal of Lightwave Technolog

    Novel linear and nonlinear optical signal processing for ultra-high bandwidth communications

    Get PDF
    The thesis is articulated around the theme of ultra-wide bandwidth single channel signals. It focuses on the two main topics of transmission and processing of information by techniques compatible with high baudrates. The processing schemes introduced combine new linear and nonlinear optical platforms such as Fourier-domain programmable optical processors and chalcogenide chip waveguides, as well as the concept of neural network. Transmission of data is considered in the context of medium distance links of Optical Time Division Multiplexed (OTDM) data subject to environmental fluctuations. We experimentally demonstrate simultaneous compensation of differential group delay and multiple orders of dispersion at symbol rates of 640 Gbaud and 1.28 Tbaud. Signal processing at high bandwidth is envisaged both in the case of elementary post-transmission analog error mitigation and in the broader field of optical computing for high level operations (“optical processor”). A key innovation is the introduction of a novel four-wave mixing scheme implementing a dot-product operation between wavelength multiplexed channels. In particular, it is demonstrated for low-latency hash-key based all-optical error detection in links encoded with advanced modulation formats. Finally, the work presents groundbreaking concepts for compact implementation of an optical neural network as a programmable multi-purpose processor. The experimental architecture can implement neural networks with several nodes on a single optical nonlinear transfer function implementing functions such as analog-to-digital conversion. The particularity of the thesis is the new approaches to optical signal processing that potentially enable high level operations using simple optical hardware and limited cascading of components
    corecore