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1 Introduction

Over the course of the past decades, the global communication system has
become a central part of people’s everyday lives. These days, various applications
run on top of the internet providing reams of services that connect people across
borders and despite different time zones. Among the various applications that
can be used over the internet there are a few ones that set new demands for
the transmission technologies. Where e-mail, mostly-text WWW and instant
messaging are frugal with respect to bandwidth and latency the new development
towards “one line for everything” can be identified as one key driver.

The starting convergence of telephone, TV / video-on-demand and internet to
one IP-based service is dominated by the bandwidth needs of the video segment.
Now found all over the world, this new type of service was first introduced in
Asia (Japan and Korea). In Germany, Deutsche Telekom started the so-called
“Triple Play” service in mid 2006. Now, it is becoming more widely available
in more and more cities. World wide web based video broadcasting has also
become increasingly popular. User-generated content sites like Youtube attrack
a constantly growing number of visitors. Television and radio stations also use
the internet to broadcast their daily programs. For example, NBC in the United
States, BBC in Great Britain and the major channels in Germany have created
media centers where internet users can access clips of their programs at any
time.

New applications are another driver for the fixed lines. Working together over
long distances will be easier using video conferences and virtual private networks
that can reach over continents. International teams will be able to access and
process data stored in one central place in their private network (which is still
part of the internet).
Data storage, software and services migrate to servers in the internet - “the
cloud”. Giants of the internet industry like Google, Amazon or IBM already
offer cloud computing services such as Google Docs, Amazon EC2 and IBM
Smart Business services.
For elderly persons or people with poor health, electronic health monitoring
could ensure a better care and treatment. The examples mentioned previously
generate new needs for the bandwidth and robustness of the installed broadband
line.

By using new classes of devices such as smartphones (e.g. the iPhone) people
can constantly be connected to the internet, and from a multitude of locations.
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1 Introduction

Mobile phones delocalized voice conversations and introduced texting. Smart-
phones will delocalize e-mailing, browsing, instant messaging and downloading
and will also introduce new forms of communication. Following the tendency to
ubiquitous computing, a multitude of connected devices will form the internet
of things.

All things considered, a fast network access is required in a higher number of
locations. In today’s society, the number of installed WiFi hotspots is always
increasing. UMTS coverage and speed are also on the rise. Its successor, LTE,
is already in the starting blocks and is being developed. Wireless access points
have to be connected to a backbone to ensure a broadband connection. Thus,
backbone capacity upgrades are required in the internet.
The applications discussed previously set the requirement for a higher access
speed. Latency, however, is not a big issue. There are only a few critical appli-
cations like telephony, video conferences and online games which truly require
a low latency. Today’s latency provides an acceptable quality of service as ex-
perienced when using voice-over-IP. Increasing line speed, however, is the main
challenge and covers more than simply providing the home user with a faster
access. A higher speed for end users aggregates to a higher overall traffic in
the backbone and a higher throughput in the exchange points. This growth is
already in progress. For example, in the Frankfurt exchange point, within two
years, the traffic increased by more than 400%.

On the other hand, the customer sets tight economic boundaries for the
carriers. The end-user is not willing to increase the cost of his communication
access although they wish to have speed upgrades and additional traffic. Hence,
the costs per bit have to be lowered in a joint effort of network operators, system
vendors, equipment manufacturers and researchers.

1.1 Optical communication systems

Optical communication systems are the technological basis for this development.
Only fibers can provide the huge bandwidth that is required. Forming the back-
bone of the international communications network, photonics helps to connect
continents, countries and people. The answer to these challenges is increasing
the efficiency of the transmission. The line speed of the WDM channels was
increased and will be increased: The upgrade path goes from legacy 2.5 Gbit/s
lines to 10 Gbit/s, 40 Gbit/s and up to 100 Gbit/s which is currently in stan-
dardization. For 100 Gbit/s systems, different approaches are followed [41]. It
can be distinguished between parallel and serial concepts.

The straight-forward way to 100 Gbit/s is the bundling of multiple wavelength
channels of lower data rates (e.g. 10x10 Gbit/s or 4x25 Gbit/s) to a 100 Gbit/s
super channel. Indeed, this approach was the first to be standardized and also
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1 Introduction

the first to be commercially available. However, there is no gain in terms of spec-
tral efficiency. Just the handling of the channels and the multiplexing changed
in comparison to traditional (D)WDM systems.
OFDM with its numerous sub-carriers can be also interpreted as a parallel ap-
proach. OFDM offers some advantages in terms of scalability. It is proposed
that the trade-off between the tolerance to impairments such as chromatic dis-
persion or polarization mode dispersion and transmission length can be adjusted
in a wide range of operation. Nonetheless, OFDM has high requirements to sig-
nal processing power. Fast ADCs and DACs as well as high-throughput ASICs
are needed. Also, nonlinearities and the laser linewidth are issues. First real-
time receiver implementations using FPGAs were demonstrated in the lab at
multi-Gbit/s data rates. There is still a long way to 100 Gbit/s OFDM systems.

Serial 100 Gbit/s systems providing one optical channel with this high data
rate can be classified by the spectral efficiency. Generally speaking, increasing
the spectral efficiency results in a higher hardware effort. There is always a
compromise to find between the complexity in the electrical domain and in the
optical domain.
The simplest optical systems operating at about 1 bit/s/Hz. In that case on-
off-keying (OOK), differential phase-shift keying (DPSK) or duobinary formats
are used. Challenges are the high cut-off frequency needed in the electrical do-
main for components such as the optical modulator, the electrical amplifiers,
multiplexers and so on. These components are available for lab applications at
a high price. Due to the low spectral efficiency, a 100 GHz or even a 200 GHz
channel grid have to be considered.
Adding polarization multiplexing to the OOK, DPSK, ... formats or using (differ-
ential) quarternary phase shift keying ((D)QPSK) leads to setups with doubled
spectral efficiency of 2 bit/s/Hz. Adding complexity in the optics (polarization
splitters and combiners or 90◦ hybrids) relaxes the demands in the electrical
domain. Electronics from 40 Gbit/s products can be re-used lowering the ex-
penses. For these systems, still cost-effective direct detection at the receiver
side may be an option. 100 GHz or even 50 GHz channel grids are possible.
Doubling again the spectral efficiency (4 bit/s/Hz) pushes the fiber even more
toward its capacity limit. This enables 50 GHz DWDM channel grids and actu-
ally a 25 GHz spacing becomes possible. Using polarization multiplexed QPSK
requires much more complexity in the optical domain: polarization splitters and
combiners and 90◦ hybrids in conjunction with coherent detection have to be
used. In the electrical domain, the constraints for the cut-off frequency of the
electronics are more relaxed, again. This means, components of 40 Gbit/s sys-
tems can be reused once more. On the other hand, high speed ASICs are needed
for the processing of the raw data streams acquired by the ADCs after the co-
herent detection. With all the information from the optical domain available, all
linear impairments theoretically can be compensated. The first serial 100 Gbit/s
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1 Introduction

system that was commercially deployed used polarization multiplexed QPSK as
modulation format. In December 2009, Verizon put a 100 Gbit/s link on a single
wavelength between Paris and Frankfurt / Main into operation. That system
was provided by Nortel (now acquired by Ciena).

1.2 Fiber impairments and equalizers

Where the fiber could be regarded as a flat channel for the first optical trans-
mission systems wavelength multiplexing and increasing line rates made it nec-
essary to take more and more physical effects into account: Nonlinear effects
like Self-Phase-Modulation (SPM) and Cross-Phase-Modulation (XPM) are now
considered in the system design and Chromatic Dispersion (CD) is compensated
by special Dispersion Compensating Fibers (DCF) or by Fiber Bragg Gratings
(FBG). Polarization Mode Dispersion (PMD) is also a big issue.
When the line rates are increased to 40 Gbit/s and higher static chromatic disper-
sion compensation is not enough. The modulation format’s intrinsic tolerance
for dispersion decreases quadratically with the symbol rate. Thus, environ-
mentally induced chromatic dispersion fluctuations may exceed the dispersion
tolerance of the modulation formats. This makes an adaptive dispersion com-
pensation necessary implying also the need for a monitoring scheme to steer the
adaptive compensator. Legacy links that are CD-compensated by DCFs can be
upgraded with residual dispersion compensators to make them ready for high
speed transmission.

The generation of the feedback signal to the tunable dispersion compensator
(TDC) and the compensation itself may be performed in the electrical domain
as well as in the optical domain.

Electronic compensation and also the electronic generation of the feedback
signal can only be performed at the receiver side for a single channel. Using direct
detection decreases the performance as the phase information of the optical
field is lost. Coherent detection enables the full compensation of all linear
impairments at the cost of a much more complicated receiver architecture. The
power consumption of such an electronic equalizer becomes more and more
an issue with increasing line rates because the power dissipation increases with
the operating frequency. Furthermore, the required computation power is also
challenging.

Another approach is the optical compensation of link impairments. The opti-
cal compensation is independent from the line rate. Hence, increasing the data
rates is inherently supported. Optical compensators can be built WDM ready
compensating multiple channels at once. All this enhances the energy efficiency
pioneering green IT.
The control information for the optical compensator can still be acquired in the
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electrical domain. In that case, high speed electronics is at least partly needed
for eye opening or pulse width estimation. Using the receiver BER as a mea-
sure is also an option. Yet, with only reduced or indirect information available,
finding the optimal setting for the TDC might be hard. Again, the equalizer is
restricted to be used at the receiver.
That might be overcome by directly obtaining the control information from the
optical domain. Consequently, this kind of compensators can be used anywhere
in the network, not just at the receiver. True autonomous operation is provided
while the advantages of optical compensation (power efficiency, WDM opera-
tion, ...) are maintained.
Figure 1.1 illustrates these three options.

The transmitter can also be modified: The transmitted signal can be pre-
distorted so that an error-free signal is received. However, providing a feedback
signal to the transmitter is challenging and the implementation of the high-
speed electronics needed for the pre-distortion filter has the same constraints as
electronic post-compensation at the receiver. Hence, this approach will not be
regarded here.

Figure 1.1: Concepts for tunable dispersion compensation: a) electronic
compensation, electronic control signal, b) compensation in opti-
cal domain with control signal from electronics, c) compensation
in optical domain with control signal from optics (before or after
compensation)
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1.3 Outline of the thesis

Aspects of this widespread topic are addressed in this thesis. In the next chapter,
the basic properties of the impairment that will be dealt with - chromatic dis-
persion - will be discussed. Also, nonlinear effects and dispersion compensation
possibilities are reviewed and delay line filters as one compensation method will
be introduced.
Chapter three deals with the synthesis of such delay line filters. Iterative and
analytical methods that produce the coefficients for dispersion (and also disper-
sion slope) compensating filters were researched.
As important as the compensation of dispersion is the estimation of the dis-
persion of a signal. In chapter four, two dispersion monitoring methods were
investigated. Using delay line filters, the vestigial sidebands of a signal can be
used to measure the dispersion. Alternatively, nonlinear detection can be used
to estimate the pulse broadening which is caused mainly by dispersion.
With dispersion compensation and dispersion monitoring, dispersion compen-
sators can be adapted to the signal’s impairment. Chapter five deals with con-
trol algorithms for filter tuning. Special properties of the filter in conjunction
with an analytical description can be used to provide a fast and reliable control
algorithm for dispersion setting and wavelength adjustment of the dispersion
compensation filter.
Prototypes of such fiber optic chromatic dispersion and dispersion slope com-
pensation filters were manufactured and characterized. Chapter six deals with
the optimization and realization of these filters. Furthermore, the device and
system characterization of the prototypes is presented.
Finally, in the last two chapters, future directions are discussed and a conclusion
is given.
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Present long-haul high speed systems use optical single mode fibers (SMF) as
medium to transmit data. Using decent launch powers, nonlinearities of this
medium can be neglected. Under these assumptions, the single mode fiber
is a linear medium. Describing the fiber with the wave equation explains the
dispersive effects that limit the transmission length. Anyhow, under certain
conditions nonlinearities have to be taken into account. Therefore, an overview
of cause and effect of nonlinearities is given and self-phase modulation (SPM)
is focused.
Being the major impairment of the linear fiber, chromatic dispersion has to
be compensated. Consequently, a review of dispersion compensation methods
will follow. One possibility for adaptive dispersion compensation is the use of
delay line filters. These delay line filters can be realized as optical delay line
filters or as digital FIR filters. Both realizations are equivalent. However, the
differences due to the realization in optical domain or in electrical domain will
be addressed. Finally, the focus will be on optical delay line filters and their
mathematical description.

2.1 Linear fiber transfer function

The fiber can be treated as a linear dispersive medium satisfying the wave
equation with the electric field E, the refractive index n, the speed of light in
vacuum c and the time t

△E = −
(

n

c

)2 ∂2E

∂t2
. (2.1)

Using the field
E(z, t) = A(z, t)F (x, y)e−j(β0z−ω0t) (2.2)

with the slowly varying envelope A(z, t), the mode field F (x, y) oscillating at
the carrier frequency ω0 and propagating with β0 in the direction of z the second
derivatives needed for (2.1) can be calculated1

1This approach can be applied to optical small bandwidth systems. All optical
transmission systems belong to that category using a carrier frequency of 200 THz and
a signal bandwidth of less than 1 THz.
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∂2E(z, t)

∂z2
= F (x, y)e−j(β0z−ω0t)

(

∂2A(z, t)

∂z2
− 2jβ0

∂A(z, t)

∂z

+β2
0A(z, t)

)

(2.3)

∂2E(z, t)

∂t2
= F (x, y)e−j(β0z−ω0t)

(

∂2A(z, t)

∂t2
+ 2jω0

∂A(z, t)

∂t

−ω2
0A(z, t)

)

. (2.4)

Due to the slowly varying envelope A(z, t) of the signal with a bandwidth that
is much smaller than its carrier frequency following estimations can be made

∂2A(z, t)

∂z2
≪ −2jβ0

∂A(z, t)

∂z
+ β2

0A(z, t) (2.5)

∂2A(z, t)

∂t2
+ 2jω0

∂A(z, t)

∂t
≪ ω2

0A(z, t) (2.6)

leading to the differential equation

−2jβ0
∂A(z, t)

∂t
+ β2

0A(z, t) =
(

nω0

c

)2

A(z, t) . (2.7)

Now, a Fourier transform is applied to describe the linear dispersive fiber in fre-
quency domain. The frequency dependency of the refractive index n(ω) causes
the dispersive behavior by leading to a frequency dependent propagation con-
stant

β(ω) =
n(ω)ω0

c
. (2.8)

Inserting (2.8) into the Fourier-transformed differential equation (2.7) leads to

0 =
∂A(z, ω)

∂z
+

j

2β0
(β2(ω)− β2

0)A(z, ω) . (2.9)

The changes in refractive index and therefore in the propagation constant are
relatively small (β(ω) ≈ β0) so that the approximation

β(ω)2 − β2
0 = (β(ω)− β0)(β(ω) + β0) ≈ (β(ω)− β0)2β0 (2.10)

can be used simplifying the differential equation

0 =
∂A(z, ω)

∂z
+ j(β(ω)− β0)A(z, ω) . (2.11)
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Now, the propagation constant is expanded as a Taylor series around the center
frequency ω0 with ω′ = ω − ω0

β(ω′) = β0 +
∂β

∂ω
ω′ +

∂2β

2∂ω2
ω′2 +

∂3β

6∂ω3
ω′3 + . . . (2.12)

The linear term represents the group delay2 τ , the quadratic term is the first order
group velocity distortion (leading to the chromatic dispersion) and the cubic term
is the second order group velocity distortion (leading to the dispersion slope).
In most cases the higher order (> 3) group velocity distortions (dispersions) are
not of interest. For the sake of simplification, βk is introduced for the Taylor
series approximation factor of order k

β1 =
∂β

∂ω
(2.13)

β2 =
∂2β

2∂ω2
(2.14)

β3 =
∂3β

6∂ω3
(2.15)

...

From the system point of view, chromatic dispersion D and dispersion slope S
are more commonly used than the group velocity distortions (GVD) . They can
be calculated from β2 and β3, respectively

D = −2πc

λ2
β2 (2.16)

S =
(

2πc

λ2

)2

β3 +
4πc

λ2
β2 . (2.17)

Concluding, the linear fiber has two effects on the transmitted signal: It is atten-
uated and it suffers from dispersion. The optical transmission systems regarded
in this thesis operate in the third optical transmission window of the single-
mode fiber at a wavelength of about 1550 nm. There, a typical value for SMF
attenuation is 0.2 dB/km. In the linear case, this attenuation can be treated
independently from the dispersive effects. Chromatic dispersion is one of the
limiting factors for high bit rate optical transmission systems. A SMF has a
typical chromatic dispersion of 17 ps/(nm km), respectively β2 = −20 ps2/km.
The chromatic dispersion causes a pulse broadening due to different propaga-
tion speeds for the different spectral components of the pulse. This limits the

2the reciprocal value of the group velocity vgr = 1

τ
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transmission distance depending on the pulse shape and chirp used because of
inter-symbol interference.

The slowly varying envelope A(z, t) at the transmitter (z = 0) can include
frequency changes with respect to the carrier frequency3 ω0. Assuming gaussian
pulses4, the complex envelope at the transmitter (in equation (2.2)) can be
written as

A(t) = A0e
− t2

2T2

0 e
−j Ct2

T2

0 . (2.18)

The gaussian pulse shape is defined by A0e
− t2

2T2

0 with the half 1/e-pulse width
T0. The chirp is characterized by the chirp parameter C leading to the time-

dependent frequency offset e
−j Ct2

T2

0 . Propagating this pulse shape along the fiber
using equation (2.2) leads to the pulse width after the fiber length L [49]

T (L) = T0

√

(

1 +
Cβ2L

T 2
0

)2

+

(

β2L

T 2
0

)2

. (2.19)

For Cβ2 > 0 the pulse broadening is increased by the chirp. On the other hand,
Cβ2 < 0 first compresses the pulse (decreases the pulse width). At the fiber
length

Lmin = − CT 2
0

β2(1 + C2)
(2.20)

the pulse has its minimal pulse width. For longer fibers, the pulse broadens
again. Compared to the chirp-free case, this broadening is also increased by the
chirp.

A measure for the pulse broadening is the dispersion length LD. At the
dispersion length, the pulse broadened to

√
2 of its original width T0. For the

chirp-free case (C = 0), the dispersion length calculates to

LD =
T 2

0

|β2|
. (2.21)

Taking into account the chirp, the dispersion length is reduced to

LD,C =
LD√

1 +C2
. (2.22)

3Chirp may be caused by direct modulated lasers but also by external modulators.
It can be used purposefully or be an undesired effect.

4Unlike other pulse shapes such as raised cosine that are used in deployed systems,
Gaussian pulses do not change their shape under the influence of dispersion. This eases
the mathematical description of the pulse broadening process.
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Generally, the dispersion length LD decreases quadratically with decreasing pulse
width T0, i. e. for transmission at higher bit rate with more narrow pulses the
transmission length without dispersion compensation gets very small. Even small
dispersion values may lead to link outages. Thus, dispersion compensation is
unavoidable.

2.2 Fiber nonlinearities

When the launch powers into the fiber are increased, nonlinearities due to the
high power density have to be dealt with. The nonlinear processes can be cate-
gorized into stimulated scattering and into the optical Kerr effect because of a
changing refractive index in the fiber.
Contrary to the change of the refractive index, the stimulated scattering has a
threshold power. Stimulated Raman scattering (SRS) and stimulated Brillouin
scattering (SBS) are avoided in the optical communication systems by not ex-
ceeding the threshold power. Note that these effects can also be used for optical
amplification.
The power-dependent refractive index in the fiber leads to self-phase modu-
lation (SPM), cross-phase modulation (XPM) and four wave mixing (FWM).
Self-phase modulation may occur in single channel systems. The power of the
signal leads to a nonlinear phase change of the signal. Cross-phase modula-
tion is similar to self-phase modulation but is caused by the power fluctuations
of neighboring channels in WDM systems. Four-wave mixing adds new spec-
tral lines and can be compared to third-order intermodulations in the electrical
domain.

For the mathematical description, the general vectorial wave equation has to
be used [49]

∇×∇× E(r, t) +
1

c2
∂2E(r, t)

∂t2
= −µ0

∂2Ψ(r, t)

∂t2
(2.23)

where E(r, t) is the electric vector field and Ψ(r, t) = εE(r, t) is the polarization.
Ψ can be expanded to the powers of E using the susceptibility tensors χ(n)

Ψ = ε0
(

χ(1)E + χ(2)EE + χ(3)EEE + . . .
)

. (2.24)

The first term χ(1)E covers the linear case and the second term χ(2)EE can
be neglected for silica glass fibers due to the fiber’s inversion symmetry [49].
Hence, the third term of this expansion χ(3)EEE leads to the contributions of
the nonlinear processes. Therefore, the polarization can be divided in its linear
and its nonlinear contributions

Ψ = Ψlin + Ψnonlin . (2.25)
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The contribution of the nonlinear polarization Ψnonlin is treated as a small vari-
ation compared with the linear polarization Ψlin. This is a plausible assumption
because the refractive index change induced by nonlinearities is smaller than
10−6. Furthermore, the approximation that the polarization remains constant
over the fiber length leads to a scalar approach. Note that the polarization
only remains constant for polarization maintaining fibers. For the effects con-
sidered in this thesis, this approach is known to produce reasonable results for
the standard single-mode fiber and the dispersion compensating fiber [1]. Again,
like in the linear fiber transfer function, optical small bandwidth systems with a
bandwidth of less than 1 THz are regarded.

A nonlinear contribution to the dielectric constant can be expressed. In terms
of optics, the refractive index is used. The resulting refractive index [1]

n′ = n+ n2|E|2 (2.26)

consists of the linear (power-independent) part n and the nonlinear part n2. The
resulting absorption consisting of the linear part α and the nonlinear part α2 is
expressed in a similar way [1]

α′ = α+ α2|E|2 . (2.27)

Having a much smaller influence as the refractive index change, the nonlinear
influence on attenuation is neglected. For the time domain description, the
nonlinear parameter γ is introduced [1]

γ(ω0) =
n2(ω0)ω0

Aeffc
(2.28)

setting the relationship between the power dependent and also frequency de-
pendent refractive index change n2(ω0) and the effective mode area [1]

Aeff =

(

∞
∫

−∞

∞
∫

−∞

|F (x, y)|2 dxdy

)2

∞
∫

−∞

∞
∫

−∞

|F (x, y)|4 dxdy

(2.29)

of the fiber at the frequency ω0 with the field distribution F (x, y). Using the
retarded time

t′ = t− z

vgr
= t− β1z (2.30)
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means following a pulse over its propagation with the group velocity vgr. For
pulse widths of more than 5 ps, this leads to the differential equation [1]

0 = j
∂A

∂z
+ j

α

2
A− β

2

∂2A

∂t′2
+ γ|A|2A . (2.31)

Compared with the differential equation (2.9) for the linear fiber, this equation
contains the nonlinear contributions and also the attenuation. The attenua-
tion influences the nonlinear effects because the pulse power is reduced with
increasing fiber length. The effective length

Leff =
1− e−αL

α
(2.32)

describes the fiber length of an unattenuated (α = 0) fiber with the same non-
linear impact as an attenuated fiber. Introducing Leff removes the attenuation
dependency from the differencial equation (2.31) leading to the most simple
equation dealing with third order nonlinear effects in the fiber. This special
case was intensively studied and is referred to as nonlinear Schrödinger equation
(NLS)

0 = j
∂A

∂z
− β

2

∂2A

∂t′2
+ γ|A|2A . (2.33)

The interaction of attenuation, dispersion and nonlinearities in the fiber are
commonly taken into account using numerics. The split-step Fourier method is
the most common approach in numerical calculations and simulations. The fiber
is segmented in small sections of ∆z where it can be assumed that nonlinearity
and dispersion act independently from each other. In a first step, only the
nonlinearity is evaluated in time domain. In a second step, dispersion is applied
in frequency domain5. That way, section by section in ∆z steps the pulse is
propagated through the fiber.

Assuming Gaussian pulses, equation (2.31) can be evaluated for the pulse
broadening, again. While the linear case in chapter 2.1 lead to the dispersion
length LD (equation (2.21)), the nonlinearities now introduce a power dependent
nonlinearity length [1]

LNL =
1

γP0
(2.34)

where the pulse is broadened to
√

2 of its original length due to the peak power
P0 of the pulse. Using the characteristic lengths LD and LNL, different cases
can be distinguished.
If the fiber length L is much shorter than LD and LNL, both effects can be

5The dispersive impact is calculated more quickly in frequency domain being a com-
plex multiplication. Staying in time domain would result in requiring a convolution
which is more lengthy than two Fourier transforms and one complex multiplication.
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neglected. Anyway, this effect is not of interest because the dispersion length
becomes very short for high bit rate systems. Taking the example of the commer-
cially deployed 100 Gbit/s links using polarization multiplexed DQPSK signals6,
the dispersion length in SMF is about 80 km, for DCF 16 km. For a 100 Gbit/s
NRZ approach7, the dispersion length would be only 5 km for SMF and 1 km
for DCF.
If the nonlinear length is much bigger than the dispersion length, the fiber can
be regarded as linear dispersive medium. Revisiting the examples, 100 Gbit/s
polarization multiplexed DQPSK with 0 dBm launch power leads to a nonlin-
ear length of 500 km in standard single mode fiber at a nonlinear parameter
γ ≈ 2/(W km) [1]. Feeding 0 dBm in a dispersion compensating fiber with
γ = 6/(W km) [35] still leads to 167 km for LNL. 100 Gbit/s NRZ with bal-
anced zeros and ones leads to lower values for LNL of 250 km for SMF and
83 km for DCF. Yet, also for DCF, the dispersive effect is dominating because
of the as well decreased dispersion length LD.
Increasing the launch powers induces the third case. The dispersion length and
the nonlinearity length are about the same. This means, chromatic dispersion
and nonlinearities interact with each other and can not be treated separately.
In such a situations, for example solitons can be created. Hence, extensive nu-
merical calculations employing e.g. the split-step Fourier method have to be
used. For the 100 Gbit/s polarization multiplexed DQPSK, the launch power
for LD = LNL would be 8 dBm (SMF) and 10 dBm (DCF), respectively. For
100 Gbit/s NRZ, this power increases to 17 dBm (SMF) and 19 dBm (DCF).

The nonlinear effect that has to be taken into account in the first place is
self-phase modulation. The intensity of the signal itself leads to a nonlinear
phase shift ΦNL. Without dispersion, this phase shift is [49]

ΦNL = −γP0Leff (2.35)

where P0 is the peak power of the pulse propagating through the fiber with the
effective length Leff and the nonlinear index γ. The phase modulation of the
complex fiber input envelope A(0, t)

A(L, t) = A(0, t)ejΦNL (2.36)

leaves the amplitude unchanged. It leads to a chirp, though, modifying the
carrier frequency by [49]

∆f =
1

2π
γLeff

dP

dt
. (2.37)

6This modulation scheme has the lowest symbol rate of all 100 Gbit/s approaches
discussed in chapter 1.

7NRZ has the highest symbol rate of the previously mentioned systems.
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For slopes with power changes dP/ dt > 0 this means blue shift and for slopes
with dP/ dt < 0 red shift. This phase modulation generates new spectral com-
ponents broadening the signal spectrum.
Taking into account chromatic dispersion which converts phase modulation into
amplitude modulation [8] SPM may lead to pulse compression as well as to
pulse broadening. For positive dispersion D > 0, SPM first compresses the
pulses by compensating for the higher propagation speed of the high frequency
components of the pulse. With more accumulated dispersion, the pulse broadens
less than without SPM. For D < 0, SPM leads to an enhanced pulse broaden-
ing by supporting the dispersion induced higher propagation speed for the low
frequency components of the pulse.

2.3 Compensation of chromatic dispersion

Different approaches are followed to compensate the effect of chromatic disper-
sion. They can be distinguished in different ways:� Technology: Optical compensation vs. Electronic compensation� Bandwidth: Per-channel compensation vs. Full-band compensation� Flexibility: Static compensation vs. Adaptive compensation

The main approaches are compared in Table 2.1. Today’s most common method
is the use of dispersion compensating fibers. The DCFs are not tunable and
they are susceptible to nonlinearities. The insertion loss of the fiber requires
also additional optical amplifiers. Chirped fiber bragg gratings on the other
hand are tunable and have a low insertion loss. However, they have to be
thermally stabilized and they show an inherent group delay ripple that may
distort the signal. With manageable effort, these distortions can be electronically
compensated [11].
For future systems, electronic equalization and optical filters are the options.
Although first customers already deployed 40 Gbit/s and 100 Gbit/s links with
electronic equalization, the complexity and the energy consumption is still an
issue. Also commercially available are microoptical virtual image phased arrays
(VIPAs) [7, 44]. However, these structures have in part a noticeable polarization
dependency. This is not acceptable for polarization multiplexed systems used
in 100 Gbit/s transmission. The tuning with micro optic lenses and mirror is
complicated as well.

Despite of the fact that sophisticated dispersion compensators can replace
the DCF spools, still in most of the systems they are deployed. For the foresee-
able future, legacy and high bit rate channels will coexist on the deployed fiber
infrastructure with static dispersion management. Fluctuations of the residual
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dispersion e.g. due to environmental influence will make a residual dispersion
compensation indispensable for high speed transmission channels. At these sym-
bol rates the modulation format inherent dispersion tolerance is too small to
tolerate these changes in chromatic dispersion. Following, delay line filters for
residual dispersion compensation are discussed. Digital FIR as well as optical
delay line filter realization options are compared. In the end, the realization in
optical domain is focused.

Approach Characteriza-

tion

Advantages Disadvantages

Disper-
sion
Compen-
sating
Fibers

Optical
compensation,
full-band
compensator,
static

“Perfect”
compensation
of dispersion
and dispersion
slope possible,
easy (passive)
operation

Only static
compensation is
possible (need
for additional
residual
dispersion
compensation),
high insertion
loss causes use
of addition
optical
amplifiers,
nonlinearities
may become an
issue

Fiber-
Bragg-
Gratings

Optical
compensation,
available as
per-channel and
full-band
compensator,
tunable

Low insertion
loss, high
amounts of
dispersion can
be produced,
can be placed
at various
locations in the
network due to
WDM
capability and
tunability

Group delay
ripples are an
inherent
problem, higher
line rates are
more
susceptible to
that issue.
FBGs have to
be stabilized.

Table 2.1: Dispersion compensation methods

16



2 Basics

Approach Characteriza-

tion

Advantages Disadvantages

Optical
filters

Optical
compensation,
full-band,
tunable,
different
technologies
(arrayed
waveguide
gratings,
photonic
integrated
circuits, optical
delay line
filters)

Tunability and
WDM
operation allow
a broad field of
operation, good
energy
efficiency

Still in
development:
stability is still
an issue, tuning
is complicated
for higher filter
orders

Digital
filtering

Electronic
per-channel
equalization at
the receiver

Mature
technology
known from
wireless
communications

Coherent
detection
needed for full
performance,
can only be
placed at the
receiver
(per-channel
equalization),
high energy
consumption,
high data rates
are challenging,
modulation
format specific

Table 2.2: Dispersion compensation methods (continued)
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2.4 Delay Line Filters

Delay line filters are passive components based on the coherent superposition
of incident fields. An incoming signal is split into different signal paths. These
paths are delayed with respect to each other. Assuming that this relative delay
length is shorter than the coherence length of the signal source8 the signal is
superimposed with one ore more delayed copies of itself. Feedback loops are also
possible but this leads to infinite impulse response (IIR) type filters which is out
of the scope of this work as they can not be realized in fiber optics9. However,
the mathematical description and filter design process would be similar and can
be easily extended to the feedback loop case.

2.4.1 Mathematical Description

In general terms, the input field

Ei = E0(t)e
jωt (2.38)

is split into up to (N+1) different copies that are delayed individually by multiples
of the unity delay Ti = iT0 (0 ≤ i ≤ N). The unity delay T0 defines the spectral
periodicy of the filter called Free Spectral Range (FSR). The filter order N is
determined by the highest delay TN = NT0. These copies of the input field
Ei are finally recombined. The splitting and combining ratios determine the
complex weighting coefficients10 bi. The output field computes to

Eo = b0Ei + b1e
jωT1Ei + b2e

jωT2Ei + . . . (2.39)

Thus, the filter transfer function H(ejω) = Eo

Ei
can be written as

H(ejω) =

N
∑

i=0

bie
jωiT0 . (2.40)

Setting z = e−jωT0 produces the standard description of a FIR filter in z-
transform

H(z) =

N
∑

i=0

biz
−i . (2.41)

8This is easy to reach for all signal sources in optical communications. A typical
DFB laser source has a coherence length of 1 - 100 m, ECLs even more, where delays
usually are in the mm range.

9The free spectral range of IIR filters depends on the optical length of the feedback
loop. For a FSR of 100 GHz, a circumference in the mm range is needed which is not
possible to manufacture in fiber optics.

10|bi| ≤ 1 for passive filters
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Note that unlike for classical electrical FIR filters the filter coefficients bi are
complex here. It is worth mentioning that this representation can be used re-
gardless of the way the electrical field is manipulated, i. e. the same description
applies for optical delay line filters (direct manipulation of the electric field) and
for electronic filters in conjunction with coherent detection (real and imaginary
part of the field are manipulated separately in butterfly finite impulse response
(FIR) filter structures).

2.4.2 Realization options

The analogy of delay line filters to FIR filters was already mentioned before. This
type of filters can be realized in electrical domain as well as in optical domain.
Using digital signal processing, the filters are regarded as complex-valued FIR
filters. In optical domain, the same functionality can be achieved using optical
delay line filters. The identical key characteristics are treated differently in
electrical domain and in optical domain.

Frequency periodicity

Electronic FIR filters and optical delay line filters both show a frequency peri-
odicity. For the digital FIR filters, the sampling rate of the symbol restricts the
maximum frequency of the signal. Aliasing has to be avoided by applying band-
pass or lowpass filters that limit the signal frequencies. On the other hand, for
optical delay line filters the free spectral range also limits the maximum signal
frequency. Higher frequency components would be filtered by the characteristics
of the next “filter channel”. This can be interpreted as aliasing in the optical
domain. It is worth mentioning that the length of the delay T0 defines the
spectral periodicity for electrical as well as for optical domain

1

T0
= fsampling = FSR . (2.42)

Bandwidth

The bandwidth of the filter transfer function is also equivalent: In electrical
domain, oversampling results in using a lower bandwidth than the theoretically
(Nyquist criterion) available one. The oversampling ratio OSR is defined as

OSR =
fs,max
fmax

=
2fs,max
fsampling

(2.43)
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with the maximum signal frequency fs,max and the available maximum fre-
quency fmax = fsampling/2. In optical domain, the relative bandwidth used
(RBWU) provides the same information using the optical bandwidth Bopt

RBWU =
Bopt
FSR

=
2fs,max
fsampling

= OSR . (2.44)

Figure 2.1: Analogy between optical filtering with delay line filters and elec-
tronic filtering with FIR filters

Electronic vs. optical filtering

Figure 2.1 illustrates the discussed analogy between optical and electronic fil-
tering. However, in actual implementations, also some distinctions arise due to
the different technologies. Usually, for optical delay line filters the FSR is set to
the (ITU) grid of the WDM channels to take advantage of the multi channel
capability of the optical delay line filters. Thus, depending on the modulation
format, the required RBWU differs. On the other hand, oversampling is rarely
used in electronic systems due to the enormous effort of high speed signal pro-
cessing. Thus, in most cases sampling of two bits per symbol (Nyquist rate)
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or even slightly below is applied. Therefore, the electronic filters should always
provide a bandwidth of nearly 100%. On the other hand, this can be achieved
more easily because filter orders in electronic filtering are usually higher than in
optical filtering.
Electronic FIR filters are commonly used for single channel equalization after
the receiving photo diode. The frequency periodicity is an unwanted feature
that is suppressed by low pass filtering11. Then again, the frequency periodicity
of optical delay line filters is used to equalize different channels with one de-
vice taking advantage of the FSR being equal to the WDM grid. Aliasing or
frequency mixing in the photo diode is prevented by the demultiplexing filter
or heterodyne receiver architectures. Hence, the equivalent characteristics of
digital FIR filtering and optical delay line filters are used differently according to
the technological and economic framework of the application.

Although all considerations and all algorithms are valid for both kind of re-
alizations due to the equivalence of digital FIR filtering and optical delay line
filters the latter remain in focus here. The technological differences are the driv-
ing force of the specializations. However, obviously an adaptation to electronic
filters will be easy if needed.

2.4.3 Realization in Optics

Optical delay line filters consist of optical couplers, optical phase shifters and
optical delay lines. The signal is split and combined by the couplers with the
complex coupling ratios κ. These coupling ratios equal the scattering parameter
Sji describing the relationship between the input port i and the output port j
of the coupler.

Figure 2.2: Structure of a general fiber optic delay line filter with (l+1) kxk
couplers (l stages, k lines)

11Often, the band limitation of the photo diode, the amplifiers and other electronic
components redundantize an extra low pass aliasing filter.
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For describing the physical transfer function of a general filter shown in Figure
2.2 using the S-parameters of the couplers, the phase shifters and the delay lines,
a signal flow graph can be used. The S-parameters of the kxk couplers are named
Smji where m = 1 . . . l + 1 is the number of the coupler in the structure with l
stages, i = 1 . . . k are the input ports and j = k + 1 . . . 2k are the output ports
of the coupler. The general transfer function is constructed by multiplying the
elements of the paths leading to a certain delay z−µ = ejωµT0 in the structure
and summing the paths pµ,ν for the respective delays z−µ up to the filter order
N

H(z) =

N
∑

µ=0

(

z−µ
∑

ν

pµ,ν

)

. (2.45)

Please note that the sum of the paths determine the respective filter coefficient
from equation (2.41)

bµ =
∑

ν

pµ,ν . (2.46)

For example, there is only one path in the structure (Figure 2.2) with no delay

b0 = p0 = Sl+1
k+1,1

l
∏

m=1

Smk+1,1e
jϕm1 . (2.47)

For more delay elements, there might be multiple paths (e.g. for one delay
element it is possible to use the delay element in the first stage or the delay
element in the second stage and so on).
If in every filter stage any possible delay 0, T0, 2T0, 3T0, . . . is available the max-
imum filter order of the given structure is N = (k − 1)l. Trying to increase
the filter order by providing not any delay in every filter stage decreases dra-
matically the possible transfer functions that can be realized with the filter due
to cross dependencies of the S-parameters and the paths. That means, it is
not possible any more to construct all filter coefficients b0, b1, . . . independently.
Therefore, setting the delays Ti = iT0 in the structure (Figure 2.2) is strongly
recommended.

For the practical realization, two major structures are dominant: the serial
one and the parallel one (Figure 2.3). Parallel filter structures are often realized
as arrayed waveguide gratings12 (AWG) [27]. The different paths are weighted
with a phase profile [37]. The excitation of such a profile is very complex.
Serial architectures are composed by connecting tunable Mach-Zehnder interfer-
ometers in series [4, 12, 16, 26, 48]. Per filter order, two quantities are needed
to control the complex filter coefficients (absolute value and phase). Increas-

12also called phased array (PHASAR)
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Figure 2.3: Major structures of optical delay line filters (filter order N): a)
Serial structure with (N+1) 2x2 couplers (l=N stages, k=2 lines),
b) Parallel structure with 2 (N+1)x(N+1) couplers (l=1 stage,
k=N+1 lines)

ing the filter order by one increases the solution space by two dimensions. A
problem is here the inaccessibility of the phases and therefore of the coefficients
inside the structure. Using tap couplers and monitor photo diodes [15] is too
complicated especially for higher filter orders. Hence, these filters can only be
used with iterative control algorithms.

For fiber optic devices, only a single stage parallel structure can be used. In
single stage parallel structures (Figure 2.3 b)), it is possible to realize the filter
with length differences between the different paths. The absolute path length
between the input and the output is irrelevant. As soon as multiple stages are
introduced (Figure 2.3 a)) this is not possible any more. That implies absolute
path lengths in the mm range to produce feasible FSRs which is not possible in
fiber optics. To produce a fiber optical delay line filter (in the parallel structure)
the following steps were performed:

1. The output fibers of fiber coupler 1 are cut to equal lengths.

2. The input fibers of fiber coupler 2 are cut to the lengths l0, l0+L, l0+2L,
. . . where L = c

FSR neff
defines the FSR of the filter.

3. The corresponding output and input fibers of both fiber couplers are
spliced.
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In sections 3.4.1 and 3.4.3 fully analytical descriptions of fiber optic filters are
presented and in section 6 the properties of fiber optical filter prototypes are
discussed. There, also theoretical considerations and optimizations for these
special filters as well as implementation issues are explained.

The second limit of fiber optics is the fiber optic coupler. The number of
inputs and outputs of fiber optic couplers is limited by several constraints. Pro-
ducing fusion couplers requires a close packaging of the round fibers. Thus,
not any arbitrary number of fibers is practical [13]. The couplers used for the
practical realization discussed in chapter 6 are 3x3 types enabling 2nd order delay
line filters and 2x2 types enabling 1st order delay line filters. The manufactur-
ing process also influences the S-parameter matrix of the coupler. The idealized
model for nxn couplers includes only two different non-zero elements c0, c1 in the
S-parameter matrix. From the view of physics, these elements are the coupling
coefficients resulting from the field components staying in its fiber and the field
components coupling from one fiber to another. Furthermore, the coupler is
regarded as unitary (i. e. lossless) and possible coupling between the input ports
and between the output ports is neglected. This leads to a general S-parameter
matrix for a nxn fiber coupler

Snxn =































0 · · · 0 c0 c1 c1 · · · c1
...

. . . c1 c0 c1 · · ·
...

...
. . .

0 · · · 0 c1 · · · c1 c0
c0 c1 c1 · · · c1 0 · · · 0

c1 c0 c1 · · ·
...

...
. . .

...
. . .

c1 · · · c1 c0 0 · · · 0































. (2.48)

From the unitarity condition of the fiber coupler it can be concluded that

1 = |c0|2 + (n− 1)|c1|2 (2.49)

0 = (n− 2)|c1|2 + c0c
∗
1 + c∗0c1 (2.50)

leading to the connection between the absolute values of the S-parameter ele-
ments

|c1| =
√

1− |c0|2
n− 1

. (2.51)
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The phase difference ∆σ between c0 and c1 can be calculated from equations
(2.50) and (2.51)

∆σ = π − arccos

(

1

2

√

(n− 2)2

n− 1

(

1

|c0|2
− 1

)

)

. (2.52)

Please note that the special case for n = 2, the well-known phase difference
of 90◦ that is independent from the coupling ratio can be derived directly from
this equation.
For couplers with more inputs and outputs, this phase condition sets the bound-
ary for the coupling coefficient c0

(n− 2)2

n− 1

(

1

|c0|2
− 1

)

> 0 . (2.53)

This implies
(n− 2)2

n2
< |c0|2 < 1 (2.54)

and

0 < |c1|2 < 4

n2
(2.55)

for the coupling coefficients c0 and c1. For increasing port number n, the range
of coupling coefficients that can be realized becomes smaller. For filter order
n = 2 there is no constraint, for higher filter orders, there exists a minimum
coupling ratio for c0 and therefore a maximum coupling ratio for c1. Figure 2.4
shows how the range of power coupling ratios |c0|2 decreases with increasing
coupler port number n. This is a major limitation to the filter design process,
especially for higher filter orders.
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Figure 2.4: Minimum power coupling ratio with respect to number of coupler
output ports
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The objective of a filter synthesis is to find the filter coefficients that create the
desired transfer function. The filter design can be performed in time domain
and in frequency domain. From the system point of view, the frequency-domain
transfer function is of interest. The filter design was successful if the created
filter function equals the desired function within a certain margin. That margin
may vary depending on the filter application. For transmission systems applica-
tions, two filter imperfections are of importance: the (amplitude) bandwidth of
the filter1 and group delay deviations.
Following, the 3 dB-bandwidth of the filters and the group delay ripple rτ shall
be regarded. The group delay ripple is defined as the maximum difference be-
tween the group delay of the desired function τd and the group delay of the filter
τf within the operating frequency range

rτ = max(|τd(f)− τf (f)|) fmin ≤ f ≤ fmax . (3.1)

Using the z-transform to describe optical delay line filters (chapter 2.4.1)
opens different options for the approach. A given filter structure with its cou-
plers, delay lines and phase shifters may be described using these elements
applying a signal flow chart analysis. Here, the S-parameters of the physical
elements2 form the complex coefficients that are multiplied with the powers of
z resulting from the delay length of the path. On the other hand, it is pos-
sible to start with the filter design and map the calculated coefficients3 to the
physical parameters of a filter (such as coupling coefficients, phases and delay
lines). Depending on the application and filter design algorithm, either of the
approaches might be the easier choice.

For the sake of a realization-independent filter design, first, a normalization
scheme is introduced. The next section deals with general performance limits
of dispersion-compensating filters. Then, iterative methods as well as analytical
methods for filter design are discussed.

1FIR filters can not be designed as all-pass filters. Designing IIR all-pass filters
introduces additional restrictions to the filter design that have to be taken into account.

2the coupling coefficients of the couplers and phases of the phase shifters
3either as coefficients bi or as filter transfer function zeros z0,i, see 3.1
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3.1 Mathematical description and normalization

The general transfer function of a FIR filter in equation (2.41),

H(z) =

N
∑

k=0

bkz
−k , (3.2)

can be factorized by finding the zeros z0,k of the polynom [36]

H(z) = b0

N
∏

k=1

(

1− z0,k
z

)

. (3.3)

This representation has the advantage that the contributions from each filter or-
der can be treated separately, i. e. the amplitude transfer function is constructed
by multiplying the contributions of each filter order. The phase transfer function
as well as its derivatives, the group delay function and the dispersion function,
are developed by adding the contributions

|H(z)| = |b0|
N
∏

k=1

|1− z0,k
z
| (3.4)

ϕ(z) = arg(H(z)) = arg(b0) +

N
∑

k=1

arg(1− z0,k
z

) . (3.5)

It can be seen that for the general filter behavior b0 has no influence. It just
scales the amplitude transfer function and adds a constant phase which has no
influence on group delay and dispersion disappearing after derivation. Thus, a
filter function neglecting b0 reducing the complexity by one degree of freedom
can be written with b′k = bk

b0

H(z) = 1 +

N
∑

k=1

b′kz
−k (3.6)

H(z) =

N
∏

k=1

(

1− z0,k
z

)

. (3.7)

From now on, this definition will be used unless stated otherwise reassigning
b′k → bk.
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Single filter element’s transfer function

Describing Optical Delay Line filters in z-space a FIR filter element k of a filter
of the order N ≥ k can be written in pole-zero representation as

HF,k(z) = 1− z0,kz−1. (3.8)

In detail, each zero is represented by its radius and phase in a pole-zero plot

z0,k = ρ0,ke
jψ0,k . (3.9)

Normalization

The chromatic dispersion D is defined as the derivative of the group delay τ
with respect to the wavelength. The group delay τ itself is the derivative of
the phase response with respect to the wavelength. To be able to design filters
without respect to their actual working wavelength4 a normalized frequency
Ω = 0..2π (normalized to the Free Spectral Range) is introduced. It leads to
the normalized group delay τN (Ω), the normalized dispersion DN (Ω) and the
normalized dispersion slope SN(Ω)

Ω = 2π
[

1

FSR

(

f − c

λcenter

)

+
1

2

]

(3.10)

τN = τFSR (3.11)

DN = −DFSR
2λ2
center

c
(3.12)

SN = S
FSR3λ4

center

c2
(3.13)

where λcenter is the center wavelength and c is the speed of light in vacuum.
Table 3.1 provides the numbers for converting normalized and not normalized
quantities for the widely used case of 100 GHz free spectral range and a center
wavelength of 1550 nm.

Amplitude transfer function

The amplitude transfer function of one zero can be calculated as follows

|HF,k(Ω)| =
√

1− 2ρ0,k cos(Ω− ψ0,k) + ρ2
0,k . (3.14)

4Often, the center wavelength and not the center frequency of a filter or a channel is
given but the channel itself (bandwidth, FSR, ...) is characterized in terms of frequency.
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normalization de-normalization

group delay τN = 0.1 1
ps
· τ τ = 10 ps · τN

dispersion DN = −0.08 nm
ps
·D D = −12.5 ps

nm
·DN

dispersion slope SN = 0.064 nm2

ps
· S S = 15.57 ps

nm2 · SN

Table 3.1: Conversion between the normalized and not normalized values
for a free spectral range FSR=100 GHz and center wavelength
λcenter=1550 nm

The frequency Ωs where no transmission occurs (|HF,k(Ωs)| = 0) can be cal-
culated from the squared amplitude transfer function

cos(Ωs − ψ0,k) =
1 + ρ2

0,k

2ρ0,k
. (3.15)

The cosine term can maximally take the value cos(Ωs − ψ0,k) = 1. Therefore,
for the radius of the zero the relationship

1 ≥ 1 + ρ2
0,k

2ρ0,k
(3.16)

can be found which is only solved by ρ0,k = 1.

Phase transfer function, group delay and dispersion

Considering that the phase response for one element derived from equation (3.8)
is

φk(Ω) = arctan(
ρ0,k sin(Ω− ψ0,k)

1− ρ0,k cos(Ω− ψ0,k)
)± π (3.17)

then the group delay results in

τN,k(Ω) = −dφk(Ω)

dΩ
=

ρ0,k(ρ0,k − cos(Ω− ψ0,k))

1− 2ρ0,k cos(Ω− ψ0,k) + ρ2
0,k

(3.18)

which leads to the dispersion (with Ω0 = Ω− ψ0,k)

DN,k(Ω) = 2π
dτN,k(Ω)

dΩ

=
2πρ0,k(1− ρ2

0,k) sin(Ω0)

1− 4ρ0,k cos(Ω0) + 4ρ2
0,k + 2ρ2

0,k cos(2Ω0)− 4ρ3
0,k cos(Ω0) + ρ4

0,k

(3.19)
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Note that the special radius ρ0,k = 1 always produces no dispersion and is
therefore not of interest.

Analysis of the Dispersion Function

For the analytical filter design, the basic functions DN,k (of the filter element
k) have to be analyzed concerning their properties like symmetry, roots and
extrema. Those relations will be used later to simplify the calculations making
an analytical solution possible. Figure 3.1 shows the dispersion of one zero

Figure 3.1: Dispersion function of one zero with ρ0,k as parameter

with ρ0,k as a parameter. In our normalized frequency domain, the dispersion
function is periodic with period 2π. Furthermore, the dispersion function is an
odd function. It can be seen that this function’s shape is similar to a sawtooth
with the peak-to-peak height h and the drop width w. The periodicity, w and
h fully define a sawtooth function with its constant slopes between the extreme
points. Both height h and width w depend only on ρ0,k. ψ0,k causes only a
frequency shift.
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The roots of the dispersion function are always at Ω0 = ψ0,k and
Ω0 = ψ0,k + π. The extreme values DN,e of the dispersion function can be
found at a normalized frequency of

Ωe,1|2 = ψ0,k ± arccos
−(ρ2

0,k + 1) +
√

ρ4
0,k + 34ρ2

0,k + 1

4ρ0,k
(3.20)

|DN,e| = |DN,k(Ωe,1)| = |DN,k(Ωe,2)|

= π(ρ2
0,k − 1)

√

2(s− 1 + (s− 10)ρ2
0,k − ρ4

0,k)

3s − 5 + (3s− 26)ρ2
0,k − 5ρ4

0,k

(3.21)

with s =
√

ρ4
0,k + 34ρ2

0,k + 1.
Now, w and h can be expressed by the extreme values DN,e of the dispersion
and their frequencies Ωe,1 and Ωe,2.

h = 2|DN,e| (3.22)

w = Ωe,1 −Ωe,2

= 2arccos
−(ρ2

0,k + 1) +
√

ρ4
0,k + 34ρ2

0,k + 1

4ρ0,k
(3.23)

Furthermore, for each ρ0,k,s < 1 there is a ρ0,k,g > 1 with

DN,k(ρ0,k,s) = −DN,k
(

ρ0,k,g =
1

ρ0,k,s

)

. (3.24)

This means, the dispersion function of the inverse of the radius of the zero5 does
not change the general shape but is flipped at the x-axis.
Within the dispersion function, there is also a symmetry with respect to the
roots where α is an arbitrary offset to ψ0,k:

DN,k(Ω0 = ψ0,k + α) = −DN,k(Ω0 = ψ0,k − α) . (3.25)

5In the pole-zero-plot, these two corresponding zeros are locate inside and outside
the unity circle, respectively.
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Dispersion compensating filters

For dispersion compensating filters, further simplifications can be applied using
symmetry conditions. Dispersion compensating filters have always an even order
N and are constructed from pairs of a zero and its inverse6 [13]

H(z) =

N
2
∏

i=1

(

1− z0,i
z

)

(

1− 1

z0,iz

)

. (3.26)

Expanding the product it can be found that for the representation with the
coefficients this means a symmetry to the coefficient bN/2

H(z) = 1+b1z
−1+b2z

−2+ . . .+bN/2z
−N/2+ . . .+b2z

−N+2 +b1z
−N+1+z−N

(3.27)
halving the complexity of the filter design efforts.

3.2 Performance limits

The transfer function of the linear lossless fiber is

G(L, ω) = e−j
λ2

0
D′L

4πc
ω2

(3.28)

with the accumulated dispersion D′L, the angular frequency ω, the operating
wavelength λ0 and the speed of light c. Invoking an inverse Fourier transform
of the fiber dispersion compensating function (opposite sign of dispersion than
the fiber dispersion function) leads to its time domain pulse response

g(L, t) =

√

jcT 2
Tap

λ2
0D

′L
e
−j πc

λ2

0
D′L

t2

. (3.29)

When realizing a dispersion compensator as a FIR filter the maximum input sig-
nal frequency for the filter structure is limited by the aliasing effect (as discussed

6Note that the inverse of the zero not only inverts the radius leading to the behavior
expressed by equation (3.24) but also negates the phase leading to a frequency shift of
the dispersion function.
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in chapter 2.4.2). Thus, the maximum frequency ωn being handled by the filter
is determined by its unity delay duration TTap due to the Nyquist criterion7

ωn =
π

TTap
. (3.30)

The highest frequency component of the input signal ωs has to be smaller or
equal than the Nyquist frequency of the filter. Taking into account that the
dispersion compensation only has to be performed up to ωs, the previously
introduced relative bandwidth used RBWU can here be written as

RBWU =
ωs
ωn

. (3.31)

The angular frequency of the impulse response (first derivative of the phase term
in equation (3.29))

ω =
d
(

πc
λ2

0
D′L

t2
)

dt
=

2πc

λ2
0D

′L
t (3.32)

can then be windowed considering the highest frequency component for that
chromatic dispersion shall be compensated:

−ωs
2
≤ ω ≤ ωs

2
→ −ωnRBWU

2
≤ ω ≤ ωnRBWU

2
. (3.33)

This finally leads to the time window for the impulse response

−RBWU
λ2

0|D′|L
2cTTap

≤ t ≤ RBWU
λ2

0|D′|L
2cTTap

. (3.34)

Note that with our definition of the normalized dispersion (equation (3.12)) this
also can be written as

−RBWU
|DN |
FSR

≤ t ≤ RBWU
|DN |
FSR

. (3.35)

A rough estimation of the filter coefficients can be found by sampling the impulse
response in a rectangular time window8. Being the impulse response of the FIR

7Note that this applies for electronic realizations as well as for optical realizations.
However, the Nyquist criterion is more common in electronic systems. Its counterpart in
optics is the free spectral range of the filter. When the filter is centered around a carrier
the maximum frequency is half of the free spectral range due to the spectral periodicity.

8Windowing frequency-domain functions is a well-known approach [26, 42] but here
it is generalized for optical and electronic filters and for an arbitrary filter bandwidth
covering all possible realizations of dispersion compensating filters with unity delay.
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filter, these samples equal the filter coefficients. With the even filter order N ,
the weights compute to

bk =

√

jcT 2
Tap

λ2
0D

′L
e
−j πc

λ2

0
D′L

k2

, −N
2
≤ k ≤ N

2
. (3.36)

The filter order would then be the time window width divided by the tap width

N =
tmax − tmin

TTap
(3.37)

N = 2
λ2

0|D′|L
2cT 2

Tap

RBWU . (3.38)

Following the normalized notation, the filter coefficients9 and maximum required
filter order are

bk =

√

j

DN
e
−j π

DN
k2

, −N
2
≤ k ≤ N

2
(3.39)

N = DNRBWU . (3.40)

This rule for the relationship between filter order and produced dispersion can be
used to assess the results obtained in iterative filter design methods such as par-
ticle swarm optimization. Attention should be paid to the fact that group delay
ripple and amplitude transfer function bandwidth limitations are not included in
this estimation.

Taking into account the normalization (equation (3.12)) it can be seen that
the choice of the FSR has a significant influence on the needed filter order. A
given optical bandwidth Bopt = FSR ·RBWU can be realized differently. Due
to the quadratic impact of the free spectral range, higher filter orders will be
needed for high FSR and low RBWU. Savory’s [42] formula was derived for the
special case of the Nyquist sampling rate or, in optical domain RBWU = 1.
Normally, the FSR would be adjusted according to the channel grid to allow
WDM operation of the optical filter. Therefore, a relative bandwidth smaller
than one will be used resulting in a higher needed filter order. Note that this
would be equivalent to oversampling in electronic filtering. Figure 3.2 illustrates
that dependency for the example of the compensation of the chromatic disper-
sion of 500 km SMF for a 10 Gbit/s NRZ signal. It can be seen that the free
spectral range of the filter should be chosen as small as possible to minimize
the filter order needed for a given amount of dispersion.

9It is worth mentioning that the symmetry of the filter coefficients bk is exactly the
same as the one from the zero pairs discussed before. However, the indexing scheme is
different here.
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Figure 3.2: Maximum filter order of the optical filter needed for the com-
pensation of the dispersion of 500 km SMF for a 10 Gbit/s NRZ
signal depending on the realization FSR

Using system benchmarks such as eye opening penalty or Q factor investiga-
tions [42, 52] showed that usually not the maximum filter order is needed. In
a time-domain view, that means not to use the full impulse response of the fil-
ter. The parts of the impulse response with long delays contain low amounts of
power. Hence, the filter order can be reduced. However, that reduction will be
modulation format specific and not taken into account for the sake of a general
statement.

3.3 Iterative methods

Commonly, mean square error optimizations are used, e.g. to obtain a small eye
opening penalty [4] or a desired phase response [25]. These numerical methods
are not fast enough in general and there are also convergence problems [4].
An exhaustive search of the whole solution space would produce the optimal
solution but the solution space is too big to get a good estimation in decent
time. Therefore, the multi-dimensional solution space has to be searched with
sophisticated methods such as particle swarm optimization.

3.3.1 Particle swarm optimization

Particle swarm optimization (PSO) [21, 43] is a genetic algorithm. Like any
other genetic algorithm, PSO can not guarantee to reach an optimal solution.
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However, choosing enough probes and enough iterations, experience shows that
excellent results can be reached. Taking the rule-of-thumb derived in chapter 3.2
the quality of the obtained results can be evaluated.
Particle swarm optimization uses a number of probes, the so-called particles,
that may move inside the solution space each one representing one solution.
Depending on the quality of the solution (named fitness) the particles determine
their direction of movement for each iteration depending on

1. the own fitness,

2. the best fitness of the current iteration,

3. the best fitness ever reached by any particle.

The graphical representation leads to a swarm-like behavior reasoning the name
of this powerful numerical method.

PSO already has been used in optics [55, 56]. Now, it will be used to determine
the complex coefficients for dispersion compensating optical FIR filters.

Problem description

Dispersion compensating FIR filters show a symmetry (see chapter 3.1) so that
a filter of the even order N can be written in the form

H(z) = 1 + b1z
−1 + . . .+ b1z

−N+1 + z−N . (3.41)

From this representation, the amplitude transfer function, the group delay and
the dispersion function may be derived (chapter 3.1). Using the introduced
normalization, the filter design is independent from the various possibilities of
the realization.

The quality criterion that shall be minimized is the group delay ripple rτ (equa-
tion (3.1)), i. e. the difference between the filter group delay τf and the desired
group delay of the filter τd inside the design bandwidth Ωmin ≤ Ω ≤ Ωmax

rτ = max(|τd(Ω)− τf (Ω)|) . (3.42)

Note that for dispersion compensating filters τd is a piecewise linear function.
It is also important that the normalized amplitude transfer function

A(Ω) =
|H(Ω)|

max(|H(Ω)|) (3.43)
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of the filter has a sufficient 3 dB bandwidth. So, inside the design bandwidth
Ωmin ≤ Ω ≤ Ωmax it is checked whether for all frequencies the normalized am-
plitude is bigger than 1

2

√
2. If not, an amplitude penalty

pA = 10
(

1

2

√
2− Amin

)

(3.44)

with the minimum amplitude Amin <
1
2

√
2 inside the design bandwidth is added

to the group delay ripple leading to the fitness function F for the PSO

F = rτ + pA . (3.45)

Algorithm

For the PSO, first a set Px of M particles pi is introduced

Px = [p1, . . . , pM ] . (3.46)

Each particle pi is a vector with the same number of dimensions as the search
space of the optimization process. In our case, pi consists of N/2 complex planes
i. e. each particle is a vector of possible coefficients for the transfer function
H(z) (pi = [b1, . . . , bN/2]). Px is initialized with random values. The coordinates
inside the complex plane represent one solution each and are set individually for
each dimension of each particle within the rectangle (−10 . . . 10,−10j . . . 10j).
Empirically, that is the range where the optimal solution is expected.
Second, for each particle a speed vector vi is introduced. This speed vector
carries the information about where the particle moves to in the next iteration.
Hence, it has the same dimensions as pi. The set of all speed vectors is called
Vx

Vx = [v1, . . . , vM ] . (3.47)

The speed is initialized with a fixed value for each dimension of each particle
to 20 + 20j. Now, the fitness for each particle is calculated using equation
(3.45). In each iteration k, the position of each particle inside the search space
is updated using the velocity vector

P k+1
x = P kx + V kx . (3.48)

The velocity vector itself is updated using a weight function w that adopts the
update speed according to the ratio of current iteration k to maximum itera-
tions kmax, the globally best (with respect to fitness F ) position ever achieved
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Gx,best and the best position among the particles of the current iteration Px,best
multiplied by random values between 0 and the real-valued constants C1, C2

V k+1
x = w(k, kmax)V

k
x + rand(C1)(Gx,best − P kx ) + rand(C2)(Px,best − P kx )

(3.49)
with

w(k, kmax) =
0.5k + 0.4− 0.9kmax

1− kmax
. (3.50)

Figure 3.3: Principle of one iteration step of particle swarm optimization

Figure 3.3 visualizes one iteration step of the particle swarm optimization
algorithm including the fitness influencing the iterative behavior (movement of
the particles).

Discussion

The goal was to find a good compromise between calculation speed, repro-
ducibility and quality of the results. The quality was assured by comparing
the fitness of the results with values obtained by searching the whole solution
space. This was only possible for filter orders N = 2 and N = 4. Setting
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the number of particles to M = 100, the number of iterations to kmax = 200
and the random parameters C1 = C2 = 2 lead to a good compromise between
calculation speed and reliability of the results. The complexity of the solution
space increases exponentially with the filter order. Using a fixed number of it-
erations kmax and a fixed number of particles M the computation effort only
depends linearly on the filter order N . This is the main advantage that allows
to synthesize near-optimum filters with arbitrary phase transfer functions such
as dispersion compensation of up to filter order N = 10 which is sufficient for
most applications. For higher filter orders the search space finally grows too big
and the quality of the results deteriorates. The number of particles would have
to be increased slowing the calculation significantly down.

Results

Multiple runs of the particle swarm optimization were computed for various
combinations of dispersion and bandwidth to assess the algorithm’s capabilities
to generate dispersion compensating filters. Figure 3.4 shows the results. The
depicted penalty of the function F with respect to filter dispersion and bandwidth
(both normalized) results from group delay ripple and amplitude bandwidth
limitations (see equation (3.45)). For example, an acceptable penalty of 0.25
would mean for a 100 GHz FSR filter a group delay ripple of 0.25 ps at no
amplitude bandwidth limitations. Alternatively, the penalty could result from an
amplitude attenuation of 3.16 dB instead of 3 dB at the given bandwidth at no
ripple or from a combination of ripple and bandwidth limitation. The algorithm
rates the amplitude condition much stronger than the ripple condition as it is
more critical. For both cases (filter order N = 4 and filter order N = 10)
the algorithm is capable of designing filters with an acceptable penalty even for
filter orders that are just sufficient for the given combination of bandwidth and
dispersion. This confirms as well the rule-of-thumb derived in chapter 3.2 as it
underlines the capability of PSO to efficiently generate near-optimum filters.

Another interesting point is that extremely high relative bandwidths
(RBWU > 0.85) generally lead to higher penalties. FIR filters can not produce
all-pass amplitude transfer functions. On the other hand, the filter order limits
the slew rate of the amplitude and dispersion transfer functions. Thus, band-
width limitations or higher ripples especially at the borders of the filters are more
likely. It is worth mentioning that for digital filters this high bandwidth utiliza-
tion would mean processing frequency components near the Nyquist frequency
which is also known to be problematic.

It can also be seen that for the higher filter order N = 10 the performance
slightly deteriorates. Spending more effort to the computation (i. e. more
iterations and more particles) will lead to better results. Nevertheless, that will
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slow down the computations. Thus, the maximum filter order being handled by
PSO is limited by the computation time one is willing to spend.

3.3.2 Other iterative methods

Being a multi-dimensional nonlinear optimization problem, the filter synthesis
can also be performed with a vast number of other iterative methods. Not
every method is eligible in the same manner because of the characteristics of the
optimization problem: Its fitness function has a multitude of local extrema and
with respect to computation time, it is comparably costly to calculate the fitness
for a given set of coefficients. Two more iterative methods were implemented
and examined: the GROPE algorithm and the filter design by complex Chebyshev
approximation using the complex Remez algorithm.

GROPE optimization

Inspired by Kushner’s global optimization method [24] for a function with only
one variable in a one-dimensional solution space, his approach was extended for
more dimensions [19, 47]. Based on known solutions for the filter coefficients,
the next guess will be calculated for a “promising” coefficient set.

Two parameters determine where the “promising” coefficients are located
inside the solution space: On the one hand the fitness of the solution should be as
good as possible and on the other hand the algorithm should “explore” unknown
regions in the solution space. Therefore, a balance has to be found between the
optimization and the exploration to avoid being stuck in local optima. A quantity
to control the exploration is the so-called certainty. A point with a known fitness
has a certainty of one. On the line between two known points in the solution
space, the certainty decreases to the middle of that line and increases again
reaching the other known point. In the n-dimensional case, a grid of all known
points is generated and the next candidate point is calculated where the best
fitness is expected taking into account the uncertainty.

To work efficiently, the algorithm needs the knowledge of the result goal of the
evaluated function (here: the fitness of the solution). In the implementation,
the goal fitness was set to zero which means no group delay ripple and no 3 dB
bandwidth deterioration. However, the best solution may have a fitness bigger
than zero depending on the filter design criteria. Therefore, this assumption
leads to suboptimal results in the optimization process (the optimization might
“get stuck”). Here, further research is needed to improve this method.
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Figure 3.4: Penalties of filters generated with PSO for filter order N = 4 and
N = 10
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Complex Remez algorithm

As stated before, the filter design has to deal with finding the optimal complex
coefficients bi for FIR filters that approximate a desired function. In the fre-
quency space, the desired complex transfer function HD(Ω) and the complex
transfer functions of the filter HF (Ω) are regarded. The difference between both
functions leads to an error

E(Ω) = [HD(Ω)−HF (Ω)]W (Ω) (3.51)

weighted over frequency with W (Ω) in a design frequency range
Ωmin ≤ Ω ≤ Ωmax. The goal of the filter design is here to minimize the Cheby-
shev norm [40]

min
bi

(

max
Ωmin≤Ω≤Ωmax

|E(Ω)|
)

= δ . (3.52)

The complex Remez algorithm can be used to solve this optimization problem
and is already implemented as a MATLAB function cremez. This algorithm [20]
is a generalized Parks-McClellan [38] approach that can also handle arbitrary
phases. Other alternatives exist [2, 6, 39].

The MATLAB implementation was used to test this approach. The algorithm
shows a good and quick convergence. However, the main problem here is the
definition of the desired complex transfer function. The optimization goal here
is different from the demands set from the systems point of view. An ampli-
tude deviation of 3 dB can be tolerated from the ideal allpass behavior. Yet,
the Chebyshev norm treats amplitude and phase deviations the same10. This
is the main issue when designing the filter that way: Allowing a huge δ that
corresponds to the 3 dB amplitude transfer function property leads to enormous
group delay ripples. On the other hand, setting a tight limit for δ to reach a
decent group delay ripple leads to bad results because the allpass condition can
be hardly fulfilled that good.
This leaves a third alternative: The desired transfer function has to be defined
in a way that the amplitude condition is fulfilled “naturally” when the desired
phase transfer function leading to the dispersion function with a small group
delay ripple. An analytical description may help realizing this idea. This will be
challenging due to the tight limits from the Chebyshev norm, though.
Another possibility is to modify the algorithms for a different weight for am-
plitude and phase errors. However, that means not to work anymore with the
Chebyshev norm requiring a complete reconsideration of the mathematical basics
of the optimization algorithm.

10The Chebyshev norm can be visualized as a circle in the complex frequency locus
around the respective ideal point.
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3.3.3 Conclusion

From all the iterative approaches studied the particle swarm optimization showed
the best results. The well-known basic approach could be applied without
changes to the generation of filter coefficients for optical filters. A good set
of coefficients could be found regardless of the starting conditions. The com-
putation time on a standard PC usually took only some seconds. However, to
improve the convergence, more particles have to be added and more than one
calculation may be performed, especially for higher filter orders. This may eas-
ily push the computation time to some minutes for a given filter which is still
moderate.

The other algorithms that were investigated have to be adopted to be used
for the synthesis of optical FIR filter coefficients. This effort is out of the scope
of this work. However, improving these algorithms might result in a superior
convergence and better speed than particle swarm optimization.

3.4 Analytical methods for special cases

Whenever it is possible to find an analytical method to synthesize the filter co-
efficients from design parameters such as chromatic dispersion and bandwidth
this method will be the first choice. The causality in the mathematical deriva-
tions lets these methods produce a reliable solution instantly without iteration
steps. However, the relationship between the design parameters and the fil-
ter coefficients is too complex to be solved analytically for the universal case.
Nonetheless, for special filter architectures (preferably with low filter orders), it
is possible to describe the physical structure of the filter in a way that the filter
coefficients and also the design parameters may be derived directly. This will be
shown for a 2nd order dispersion compensation filter and for a 1st order dispersion
slope compensation filter. For higher filter orders, additional assumptions have
to be made. Exemplary, methods for higher order dispersion compensation filters
and higher order dispersion slope compensating filters with reduced complexity
will be developed. Note that these methods will not be optimal because they
do not take advantage of all available degrees of freedom in the filter design
process.

3.4.1 Second order dispersion compensating filter

A second order parallel delay line filter can be used to compensate dispersion.
This type of filter will be described fully analytically including optical bandwidth
and mean dispersion inside the usable bandwidth.
Starting from the physical structure of the filter (Figure 3.5), its elements will be
used to form its transfer function. This transfer function can be used to calculate
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the optical bandwidth and the mean dispersion inside the optical bandwidth.
These analytical terms are the basis for the optimization of the filter which will
be performed in chapter 6.2 for a maximum dispersion tuning range taking into
account a given optical bandwidth.

Figure 3.5: General optical delay line filter of order N = 2

The dispersion compensation and monitoring device in Figure 3.5 is a fiber
optic delay line filter of order N = 2. It can be tuned with phase shifters
(ϕ1, ϕ2, ϕ3). The coupling coefficients of the special 3x3 fiber couplers (κ1, κ2)
define the range of operation. The scattering parameter matrix of the 3x3 fiber
coupler with the amplitude coupling ratio κ is modeled as follows:

S3x3 =















0 0 0 κ κ′ κ′

0 0 0 κ′ κ κ′

0 0 0 κ′ κ′ κ
κ κ′ κ′ 0 0 0
κ′ κ κ′ 0 0 0
κ′ κ′ κ 0 0 0















. (3.53)

The 3x3 coupler is a special case of the nxn coupler discussed in 2.4.3 with n=3.
Therefore, the restrictions for κ = c0 and κ′ = c1 apply. Assuming unitarity11

it can be written
1 = |κ|2 + 2|κ′|2 (3.54)

and from
0 = |κ′|2 + κκ′∗ + κ∗κ′ (3.55)

the phase difference

∆σ = arg(κ)− arg(κ′) = π − arccos

(
√

1− |κ|2
8|κ|2

)

(3.56)

11i. e. lossless coupler
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as well as

κ′ =

√

1− |κ|2
2

ej∆σ (3.57)

follow. By tuning the phases ϕ1, ϕ2 and ϕ3 at the same time, small changes
can be applied to the filter’s FSR. The general transfer function for a dispersion
compensator with a passband centered in the middle of the FSR is

HF (z) = C(1 + b1z
−1 + z−2) . (3.58)

with the constant factor C that results from reducing the dependent variables
by factoring out (see equations (3.2) and (3.3)). Hence, for the symmetry of the
setup the coupling coefficients of both couplers are set equal (κ1 = κ2 = κ).
The phase shifters in the arms with no delay and with 2T have to be equal, too
(ϕ1 = ϕ3). Thus, for a fixed FSR only the the phase difference dϕ1 = ϕ2 − ϕ1

of the path with unity delay is relevant. Hence, the transfer function with optical
components (couplers, phase shifters) is

HF (z) = κ′κ′ejϕ1

(

1 +
κκ

κ′κ′
ejdϕ1z−1 + z−2

)

. (3.59)

Coefficients representation

Setting k = |κ| and applying equations (3.57) and (3.56) the complex coefficient
b1 of the transfer function can be determined:

b1 =
2k2

1− k2
e
j2 arccos

√

1−k2

8k2

ejdϕ1 . (3.60)

Now, the transfer function HF (z) = 1 + b1z
−1 + z−2 has to be evaluated:� The tuning is done by the phase shift dϕ1.� The range of operation is defined by the coupling coefficient k.

Describing the filter with system theory, zeros of the filter transfer function are
used with

HF (z) =
(

1− z0,1
z

)(

1− z0,2
z

)

(3.61)

where dispersion compensating filters are characterized by z0 = ρejψ = z0,2 =
1
z0,1

. Expanding the equation and comparing the coefficients the relation be-

tween both descriptions can be found

b1 = −
(

z0 +
1

z0

)

. (3.62)
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Accordingly, the pair of zeros can be obtained from the coefficient

z0,1,2 = − b1
2
± 1

2

√

b21 − 4 . (3.63)

Setting z = ejΩ the frequency dependent behavior is analyzed using the normal-
ized frequency Ω = 0 . . . 2π as explained in chapter 3.1.

3 dB bandwidth

The 3 dB bandwidth has to be found from the amplitude transfer function. Only
for transfer function zeros with ψ = −π

2
. . . π

2
the amplitude transfer function

has its global maximum (and thus, its passband) in the middle of the FSR.
Therefore, the tuning range for dϕ1 reduces to

dϕ1 =
3

2
π − arccos

√

1− k2

8k2
. . .

5

2
π − arccos

√

1− k2

8k2
. (3.64)

In this tuning range, the maximum of the amplitude transfer function is at
Ω = π. The 3 dB bandwidth is determined by finding the frequency where the
amplitude transfer function has values of |HF (Ω)| =

√
0.5|HF (π)| leading to

the following equation

√

2 (1− 2ρ cos(Ω− ψ) + ρ2)

(

1− 2

ρ
cos(Ω + ψ) +

1

ρ2

)

=

√

(1 + 2ρ cos(ψ) + ρ2)

(

1 +
2

ρ
cos(ψ) +

1

ρ2

)

. (3.65)

Taking advantage of the symmetry with respect to Ω = π the 3 dB bandwidth
w is w = 2(π − Ω3 dB) with

Ω3 dB = arccos

[

ρ2

2
cos(ψ) +

cos(ψ)

2
+

√

4ρ4 cos(ψ)2+4cos(ψ)2+12ρ2−2+8ρ cos(ψ)+8ρ3 cos(ψ)−2ρ4

4ρ

]

.

(3.66)

Mean dispersion

It is important for the tuning to be able to describe the relation between the
generated mean dispersion inside a bandwidth (RBWU) and the control vari-
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able (dϕ1) analytically. That relationship is specified with respect to the filter
coefficient b1 = Bejβ

DN,m =
1

πRBWU

π
∫

(1−RBWU)π

DN (Ω)dΩ (3.67)

with

DN =
4πB sin(β)(−B2 cos(Ω)+4 cos(Ω)3−4B cos(β)−8 cos(Ω))

B4+8B3 cos(β) cos(Ω)+8B2 cos(Ω)2+16B2 cos(β)2 cos(Ω)2

+32B cos(β) cos(Ω)3+16 cos(Ω)4

(3.68)

leading to

DN,m = −8B cos(χ) sin(χ) sin(β)3

(4B cos(β)3−8B cos(β)3 cos(χ)2+B2 cos(β)2+4 cos(β)2

+16 cos(χ)4 cos(β)2−16 cos(β)2 cos(χ)2−4B cos(β)

+8B cos(β) cos(χ)2−B2−4−16 cos(χ)4+16 cos(χ)2)RBWU

(3.69)

with

χ =
RBWU

2
π (3.70)

and its dependency from dϕ1 and k (equation (3.60))

B =
2k2

1− k2
(3.71)

β = 2 arccos

√

1− k2

8k2
+ dϕ1 . (3.72)

Monitor ports

The monitor ports in the structure shown in Figure 3.5 can also be described
using the coupler’s S-parameter matrix and the phase shifters ϕ1 = ϕ3 and ϕ2.
Thus, the transfer functions are

Hmon1(z) = κ′κejϕ1 + κ′κejϕ2z−1 + κ′κ′ejϕ3z−2 (3.73)

Hmon2(z) = κ′κ′ejϕ1 + κ′κejϕ2z−1 + κ′κejϕ3z−2 . (3.74)

As for the compensation port transfer function, dϕ1 = ϕ2 − ϕ1 is used and
κκ′ejϕ1 is factored out

Hmon1(z) = κκ′ejϕ1

(

1 + ejdϕ1z−1 +
κ′

κ
z−2

)

(3.75)
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Hmon2(z) = κκ′ejϕ1

(

κ′

κ
+ ejdϕ1z−1 + z−2

)

. (3.76)

The symmetry of these functions with respect to each other can be seen in
the transfer functions: The coefficient for b1 is the same where b0 and b2 are
exchanged between the monitor 1 and monitor 2 transfer functions. It is worth
mentioning that the filter tuning (i. e. changing dϕ1) only affects b1.

3.4.2 Simplified higher order filter for dispersion compensation

Second order filters12 are limited in terms of usable bandwidth and chromatic
dispersion that can be generated. If more dispersion has to be generated or a
higher bandwidth is needed, increasing the filter order is an option. However,
increasing the filter order by one increases the degrees of freedom for the filter
coefficients by two (because they are complex quantities). The exponential
growth of the solution space requires additional assumptions on the higher order
filter coefficients.

Dispersion compensation requires a dispersion function that is constant in a
portion of the FSR, the so-called relative bandwidth utilized (RBWU). Gene-
rally, sawtooth functions can be used to produce constant dispersion. Figure
3.6 illustrates the principle. Two opposite sawtooths can form a function that
is considered constant over RBWU if they have inverted and shifted slopes ac-
cording to the RBWU wanted. Note that for the sawtooth model RBWU is
defined between the zero crossings of the dispersion i.e. the slopes between the
constant parts of the dispersion are neglected.

For FIR filters, using the symmetry in equation (3.24) is possible. Such a
pair of dispersion functions can be found with a RBWU centered in the FSR as
described in [13] using the following conditions for the zeros

ρ0,2 =
1

ρ0,1
(3.77)

ψ0,2 = −ψ0,1. (3.78)

Thus, for the simplified higher order filter analytical design process only one
pair of zeros will be taken into account. Under these conditions, the transfer
function (from which the filter coefficients can be obtained) for a filter of order
N depends only on two parameters: ρ0,1 and ψ0,1.

HF (z) =

[

(1− ρ0,1e
ψ0,1z−1)(1− 1

ρ0,1
e−ψ0,1z−1)

]N
2

(3.79)

12This is the minimum filter order for dispersion compensating filters because a pair of
zeros is needed to generate constant dispersion inside the utilized bandwidth (RBWU).
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Figure 3.6: General principle of generating constant dispersion out of two
sawtooth-like functions

The design algorithm in general will be as follows:

1. Define the design parameters: filter order N , bandwidth of filter RBWU,
desired normalized dispersion DN

2. Calculate dispersion per zero pair DN,p = 2DN

N

3. Compute the coefficients ρ0,1, ψ0,1 for the zero pair from RBWU andDN,p
using the symmetry conditions (3.77) and (3.78)

ψ0,1 and ψ0,2 can be directly computed out of RBWU. As mentioned in chap-
ter 3.1 the unshifted versions of the dispersion functions have their roots at
Ω = 0 and Ω = π. Considering the relation between the zeros (3.77) and the
corresponding symmetry condition (3.24) would mean that a frequency shift of
ψ0,1 = 0 results in a dispersion of zero over the full bandwidth. Increasing
the frequency shift of the functions results in a higher dispersion but a smaller
bandwidth RBWU (see Figure 3.6). So, ψ0,1 and ψ0,2 compute to

ψ0,2 = −ψ0,1 = (1−RBWU)π . (3.80)

ρ0,1 and ρ0,2 are obtained by setting the mean dispersion inside RBWU to DN,p
and finding the inverse. The mean dispersion can be simplified using design
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(equations (3.77) and (3.78)) and symmetry properties (equations (3.24) and
(3.25)) provided in chapter 3.1 as follows

DN,p =
1

2πRBWU

π+ RBWU
2

2π
∫

π− RBWU
2

2π

[

DN,1(ρ0,1, ψ0,1,Ω)

+DN,2(
1

ρ0,1
,−ψ0,1,Ω)

]

dΩ (3.81)

=
1

πRBWU

π(1+RBWU)
∫

π(1−RBWU)

DN,1(ρ0,1, ψ0,1,Ω)dΩ (3.82)

= −4
ρ0,1(−ρ0,1−1+ρ0,1(cos(πRBWU))2+(cos(πRBWU))2)

RBWU(ρ2
0,1

−4ρ0,1(cos(πRBWU))2+2ρ0,1+1)(ρ0,1−1)
. (3.83)

It can be seen from the design process that ρ0,1 and ψ0,1 are calculated
independently from each other. The dispersion that shall be generated sets the
value for ρ0,1 and the bandwidth of the dispersion function (not of the amplitude
transfer function) determines ψ0,1. However, also the optical bandwidth has to
be taken into account. All the zeros have the same amplitude transfer function.
Thus, N/2 transfer functions of the filter pairs are multiplied with each other.
Equations (3.14) and (3.26) lead to

|HF (Ω)| =

[(

1− 2ρ0,1 cos(Ω− ψ0,1) + ρ2
0,1

)

·
(

1− 2

ρ0,1
cos(Ω + ψ0,1) +

1

ρ2
0,1

)]
N
4

. (3.84)

The 3 dB bandwidth can then be calculated by using the equation

(

1

2

)
2

N

=

(

1− 2ρ0,1 cos(Ω3dB − ψ0,1) + ρ2
0,1

)

·
(

1− 2

ρ0,1
cos(Ω3dB + ψ0,1) +

1

ρ2
0,1

)

(3.85)

for the respective ρ0,1 and ψ0,1 to find the Ω3dB . This 3 dB bandwidth of the
amplitude transfer function defined by equation (3.84) (“amplitude bandwidth”)
and the usable bandwidth of the dispersion function (“dispersion bandwidth”)
are not equal. The bandwidth is set according to the dispersion function (equa-
tion (3.80)). Hence, the simplified method can only provide a suboptimal per-
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formance.
The choice of the coefficients leads to an amplitude transfer function that has
a transmission minimum in the channel center for bandwidths lower than 50%.
Thus, only allpass-like transfer functions with a transmission minimum attenu-
ation of less than 3 dB are valid solutions. This limits the possible values for
ρ0,1 to values where not much dispersion is produced. For high bandwidths, the
transmission maximum is in the channel center. However, again the possible
values for ρ0,1 are limited by the amplitude transfer function’s bandwidth that
should not be smaller than the design bandwidth from the dispersion function.
Therefore, the best performance is reached for bandwidths of about 50%. Ge-
nerally, the bandwidth condition of the amplitude transfer function dominates
the group delay ripple condition.
For the best case (relative bandwidth RBWU=50%), Figure 3.7 a) shows how
much dispersion can be produced using this simplified method. Due to the fact
that the method does not take advantage of all the degrees of freedom available,
the performance is worse than theoretically derived in chapter 3.2 (dotted line).
Increasing the filter order leads to a lower gain in dispersion than possible. For a
100 GHz FSR and a center wavelength of 1550 nm, a 10th order filter produces
100 ps/nm dispersion instead of 250 ps/nm that could be possible.
The issues of the amplitude transfer function’s bandwidth mentioned before can
clearly be seen in Figure 3.7 b). For a filter order N=4, the dependency of
the produced dispersion with respect to filter bandwidth is shown. As men-
tioned before, the optimal relative bandwidth is 50% for this method. Other
bandwidths lead to a performance deterioration. The different nature of the am-
plitude transfer function’s bandwidth issues manifests itself in the asymmetry of
the deterioration with respect to the theoretical performance values.

Summarizing, it can be stated that the advantage of a simplified filter design
method with only one variable that is controlled by the bandwidth (RBWU →
ψ0) and one variable that is controlled by the dispersion (DN → ρ0) has to
be paid by a suboptimal performance. That performance even decreases for
small and for huge bandwidths and for very high filter orders. Nevertheless, for
medium filter orders in usual bandwidths of about 50% this method might be
an interesting approach. It can be also used to find a starting set for an iterative
approach. The iterative approach could vary the equal pairs of zeros increasing
the performance. Providing a good starting guess using analytic calculations
significantly decreases the computational effort of the iterative method applied
in a second step.

3.4.3 Dispersion slope compensating filter

For high speed systems (40 Gbit/s and above), compensation of just dispersion
is not sufficient. Therefore, also dispersion slope effects have to be taken into
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Figure 3.7: Performance of the simplified analytical method for higher order
filters: a) dependency of produced dispersion on the filter order
(RBWU=50%), b) dependency of produced dispersion on the
relative bandwidth (N=4)
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account. Dispersion slope can be compensated by applying a filter with an
opposite slope.

First order delay line filter

The most simple way to produce dispersion slope is a single stage Mach Zehn-
der interferometer (Figure 3.8) using 2x2 couplers (section 3.1). The slope
SN can be calculated taking into account the sawtooth-shaped model of the
dispersion function dividing the extreme values of the dispersion DN,e by the
difference of their normalized frequency values Ωe,1|2. The phase ψ0 can only
be used to tune the frequency position of the slope function. Placing the slope
compensating filter in the channel center results in ψ0 = 013. The symmetry
DN,e = |DN,i(Ωe,1)| = |DN,i(Ωe,2)| leads to the mean slope

SN = 2π
DN,e,2 −DN,e,1

Ωe,2 −Ωe,1
(3.86)

=
π(ρ2

0 − 1)
√

2(s− 1 + (s− 10)ρ2
0 − ρ4

0)

2[3s − 5 + (3s− 26)ρ2
0 − 5ρ4

0](π − arccos
−(ρ2

0
+1)+s

4ρ0
)

(3.87)

with s =
√

ρ4
0 + 34ρ2

0 + 1.

Figure 3.8: General optical delay line filter of order N = 1

The 3 dB bandwidth w3dB of that filter has also to be taken into account

w3dB = 2(π −Ω3dB) (3.88)

Ω3dB = arccos

(

1 + ρ2
0 − 2ρ0

4ρ0

)

. (3.89)

13In this special case of a first order filter that means ρ0 = b1.
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A single stage Mach Zehnder interferometer for dispersion slope compensation
consists of two identical 2x2 couplers with the scattering parameter matrix14

S2x2 =







0 0 κ jκ′

0 0 jκ′ κ
κ jκ′ 0 0
jκ′ κ 0 0







(3.90)

where κ is the amplitude coupling coefficient (κ′ =
√

1− κ2). Therefore, the
coefficient of the transfer function is

b1 = ρ0 =
1− κ2

κ2
. (3.91)

This means that tuning of the slope can only be done by changing the coupling
coefficient. As mentioned before a variation of the phase ψ0 just shifts the
frequency position of the slope function in the channel.

Due to the symmetry of the slope function and the symmetry of the 2x2 coup-
ler ports only power coupling ratios κ2 = 0 . . . 0.5 have to be regarded: The
corresponding coupling coefficients 1− κ2 lead to the same function with alter-
nate sign in the slope.

The bandwidth of the slope filter is determined by the 3 dB bandwidth w3dB of
the amplitude transfer function and the width w of the slope sawtooth function:
The smaller value sets the bandwidth for the dispersion slope compensating
filter. As shown in Figure 3.9 with increasing coupling coefficient κ < 0.5 the
amplitude bandwidth decreases but the slope bandwidth increases. The amount
of slope produced has a maximum for an optimal coupling coefficient κ2

S ≈ 0.28.
The maximum slope will be reached at a relative bandwidth of about 57%. For
maximum bandwidth, another optimal coupling coefficient can be computed
κ2
w ≈ 0.185. The maximum relative bandwidth that can be achieved is 73%.

Higher order filters

To reach higher amounts of dispersion slope or higher bandwidths, higher order
filters have to be used. As seen in the previous chapter, each filter order con-
tributes a sawtooth-like dispersion function. The slope of that sawtooth has a
bandwidth different from 50%. Thus, it is unsymmetrical. Given that s(Ω) is an
unsymmetrical sawtooth function with a specific width w and a specific height

14Again, the matrix is a special case of the one derived in 2.4.3.
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Figure 3.9: One stage dispersion slope compensator: a) bandwidth with re-
spect to power coupling coefficient, b) Slope with respect to
power coupling coefficient
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h, an arbitrary sawtooth sa(Ω) with the width W can be formed by adding N
frequency-shifted versions of this function

sa(Ω) =

N
∑

i=1

s(Ω + (i− 1)∆ψ) . (3.92)

Figure 3.10: Principle of generating an arbitrary sawtooth out of unsymmet-
rical sawtooths

The bandwidth of the falling slope is determined by the number of original
sawtooth functions N , the frequency shift ∆ψ and the width w of the original
sawtooth function s(Ω). In this first step, the amplitude transfer function will not
be taken into account. Figure 3.10 shows how it is possible to form an arbitrary
sawtooth using the original unsymmetrical sawtooths given by the dispersion
functions of the zeros. The height of this dispersion functions is only defined by
the amplitude of the zeros ρ0,i whereas the frequency shift is determined by the
phases ψ0,i. That means, the amplitude of the zeros is constant and the phase
varies (ρ0,i = const = ρ0 ∀k, ψ0,i = f(i)). Evaluating Figure 3.10 leads to the
condition for the phase of the zeros that can be expressed as

2πW = (N − 1)∆ψ + w . (3.93)
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Thus, the difference between the maxima of the dispersion functions ∆ψ is
determined by the filter order N and the width of the falling slope w of the
dispersion function of one element (see equation (3.23))

∆ψ =
2πW − 2 arccos

−(ρ2
0
+1)+
√
ρ4
0
+34ρ2

0
+1

4ρ0

N − 1
. (3.94)

Considering the shape of the dispersion functions (equation (3.19) and Figure 3.1
in chapter 3.1) it can be shown that w ≈ ∆ψ leads to a good approximation in
the design range of ρ0 and for reasonable values of N for ∆ψ

∆ψ ≈ 2πW

N
. (3.95)

So, both positive and negative dispersion slopes can be designed setting up the
angles of the zeros in an appropriate way. As before, the negative slope SN is
defined by the extrema DN,e and the relative width W of the resulting dispersion
function

|SN | =
2|DN,e|
W

. (3.96)

Note that the design criterion is the relative width W of the negative slope so
that for a given positive slope with a relative width Wp the relative width has
to be set to W = 1−Wp.

ψstart = π

(

1− sign(SN )

2
−W

)

(3.97)

φ0,i = ∆ψ
(

i− 1

2

)

(3.98)

ψ0,i = φ0,i + ψstart (3.99)

ψstart adjusts the function’s frequency shift in a way that the relative bandwidth
RBWU is centered in the FSR. The relative bandwidth RBWU is either the
width W of the negative slope or the width Wp of the positive slope depending
on the desired dispersion slope function. Therefore, the extreme value computes
to

|DN,e| = 2πρ0(ρ
2
0 − 1)

·
N
∑

i=1

[

sinφ0,i

1+4ρ0 cos φ0,i+4ρ2
0
+2ρ2

0
cos(2φ0,i)+4ρ3

0
cos φ0,i+ρ

4

0

]

.

(3.100)
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Finally, ρ0 can be calculated by the inverse of |DN,e|. This function should be
approximated as it is very complex. The amplitude transfer function causes a
high loss when designing negative dispersion slopes with ρ0 > 1. However, as
for first order dispersion compensation filters, applying the symmetry condition
solves that problem and enables the filters also for negative dispersion slope
(with exactly the same properties as the counterpart with positive slope). Thus,
the filters should always be designed for positive slope as described before. The
sign of the dispersion slope is finally determined by the symmetry condition by
setting ρ0 > 1 for positive slope or ρ0 < 1 for negative slope.

To include amplitude transfer function and slope function to the performance
assessment, the fitness definition (3.45) from the particle swarm optimization
(chapter 3.3.1) was used. Thus, optical filter bandwidth and group delay ripple
are included. In Figure 3.11, the dependency of the dispersion slope that can
be generated allowing a fitness of 0.15 (0 would be best) is shown with respect
to filter order N and relative bandwidth RBWU. There is no difference between
positive and negative dispersion slope that’s why only the positive dispersion
slope is shown here. It can be seen that the amount of dispersion slope that
can be created depends strongly on the desired bandwidth. The design of the
method (Figure 3.10) was without regard of the amplitude transfer function.
Also for the dispersion slope, the optical bandwidth is the limiting quantity
for the filter performance. Hence, constraints arise from the 3 dB bandwidth
condition. Especially for high bandwidths, this determines the maximal slope
that can be generated. Due to the additional limitations introduced by the
filter element’s amplitude transfer functions increasing the filter order does not
significantly improve the performance. However, increasing the filter order is
important in cases where the dispersion slope in a certain bandwidth can not be
generated at all.

For most applications, a first order filter will be enough to generate the dis-
persion slope. When the slope compensating filter is realized with a FSR of
100 GHz at a center wavelength of 1550 nm, a maximum of 2000 km SMF can
be compensated. In that case, the relative bandwidth would be 57%. For ap-
plications that require higher slopes and / or higher bandwidths, increasing the
filter order and forming an arbitrary sawtooth function out of the contributing
“natural” sawtooth functions of the filter zeros is a solution. For extremely high
bandwidths near 100%, the slope is limited by the amplitude transfer function
and also by the nature of the filter zero’s contributing sawtooth functions that
only have a finite slope.
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Figure 3.11: Maximum dispersion slope with respect to filter order N and
relative bandwidth RBWU at fitness 0.15
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4 Dispersion Monitoring

With increasing symbol rate, the dispersion tolerance decreases quadratically.
This may lead to situations where the dispersion tolerance of a modulation
format may be exceeded by dispersion fluctuations due to temperature drifts or
the residual dispersion from DCF granularity. Hence, adaptive residual dispersion
becomes unavoidable. To generate the control signal for adaptive compensators,
the signal’s dispersion has to be estimated.

Many concepts have been presented for dispersion monitoring. One concept
is to evaluate the conversion of phase modulation to amplitude modulation un-
der the presence of chromatic dispersion [8]. For RZ modulation formats, the
intensity change of the clock line in the spectrum can be used to determine the
amount of dispersion [18]. It is also possible to modify the transmitter by insert-
ing sub-carriers. Then, at the place of measurement, the delay (phase) between
the upper and the lower subcarrier is detected. Without knowing the signal path
through the optical network the chromatic dispersion can be estimated [9].

A similar approach is presented in [54] where upper and lower sideband filter-
ing of the optical spectrum provides two signals whose delay can be evaluated.
However, this setup needs fast (and thus expensive and power-consuming) elec-
tronics when used in ultra-high-speed networks. Yet, using a delay line filter
enables the separation of the upper and lower sideband without tuning. For
signals up to 10 Gbit/s, cost-effective electronics are available to estimate the
residual dispersion. Dispersion monitoring by means of vestigial sideband filter-
ing using an optical delay line filter will be presented in the first section.

Another method is the use of nonlinear detection for performance monitoring
[51]. This approach is not limited by the symbol rate because low-speed elec-
tronics can be used after the nonlinear detector. A number of different setups
and experiments have been presented [17, 50] demonstrating the potential of
this concept for amplitude modulation formats. The monitoring capability of
the approach also for phase-modulated signals is theoretically investigated in
the second part of this chapter. Finally, the dispersion estimation with nonlinear
detection is experimentally verified for amplitude modulated signals.

4.1 Vestigial sideband filtering

Dispersion monitoring without modification of the transmitter is possible by
using vestigial sideband filtering. Here, the dispersion-induced electrical phase
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shift of the received upper side band (USB) and lower side band (LSB) can be
evaluated [54]. A 2nd order fiber optical delay line filter (Figure 4.1) can be used
to pass the signal through while simultaneously providing the USB and LSB.

Figure 4.1: Setup of optical delay line filter

The delay-line filter consists of two 3x3-fiber couplers. To optimize the USB,
LSB and passband function for a 10 Gbit/s NRZ signal in a 50 GHz channel
grid, the analytical description of the three ports (chapter 3.4.1) was used to
find the power splitting ratio of the 3x3 couplers (20%/40%/40%). The three
fiber paths with delays were set so that the free spectral range (FSR) of the filter
is 50 GHz. The realization and characterization of delay-line filters is addressed
in chapter 6.
The filter can be thermally fine-tuned by adjusting the phases ϕ1 . . . ϕ3. The
optical bandwidth of the pass-through signal is about 15 GHz so that the signal
quality is not affected. The USB and LSB output port filter functions have
their maximum about 16 GHz away from the channel center. The bandwidth
is also about 15 GHz. The transfer functions are shown in Figure 4.2. The
insertion loss of the pass-through port is only 1.5 dB. Note that the design of
the filter allows the adjustment of the FSR as well as the adjustment of the
optical bandwidth of the pass-through function for other transmission speeds
and systems. Due to the periodical transfer function, only one filter is needed
in a WDM system when placed in front of the demux filter.

The chromatic dispersion adds a frequency-dependent delay to the optical
signal. If the upper side band and the lower side band are detected separately,
the delay ∆t can be seen in the electrical domain. The dispersion D can be
estimated from this delay

D =
∆t

λ0

(

1− 1

1+
∆fλ0

c

) , (4.1)
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Figure 4.2: Measured transfer functions of the passband, LSB and USB filter
output ports

where λ0 is the operating wavelength, ∆f is the frequency offset between the
two sidebands, and c is the speed of light in vacuum. If the electrical phase ϕ
is detected, it corresponds to the delay via the bit period tBit as follows

∆t =
ϕ

2π
tBit . (4.2)

4.1.1 Proof-of-concept

Figure 4.3 shows the proof-of-concept measurement setup. An ECL source was
used, externally modulated (NRZ) with a 10 Gbit/s PRBS signal. The amplified
signal is sent through SMF fiber of 5 km, 10 km, 15 km, 22.5 km, 27.5 km
and 32.5 km length that produces different dispersion values. The delay ∆t
between the upper and lower side band was estimated from the eye diagrams
of the received LSB and USB signals taken with a 20 GHz bandwidth multi
channel sampling scope triggered with the PRBS clock reference. Figure 4.4
shows the eye diagrams for the three outputs of the filter under the presence
of 80 ps/nm of chromatic dispersion (previously characterized 5 km fiber span)
and the estimated delay of 20 ps between the LSB and USB. At a wavelength
of about λ0 = 1550 nm and with a sideband separation of ∆f = 32 GHz using
(4.1) this computes to 78 ps/nm matching perfectly the fiber characteristics.
Similar eye diagrams were also evaluated for the other fiber lengths.
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Figure 4.3: Proof-of-concept measurement setup

The eyes of the LSB and USB signals are distorted due to the phase transfer
function of the filter and comparably low suppression of the other side band.
However, these signals shall not be detected. Commercially available compo-
nents can handle these signals and provide a good phase offset or delay estima-
tion.
The proof-of-concept measurement with the scope is not eligible for practical
use. Due to the noisy eye diagrams in practice (Figure 4.4) the time difference
∆t between USB and LSB can only be measured within an error margin of 5 ps.
This error leads to a 20 ps/nm change in dispersion. Accordingly, this equals
an uncertainty of about 1 km standard singlemode fiber1. Despite of the inac-
curacy, Figure 4.5 shows already an encouraging performance when evaluating
the eye diagrams as demonstrated in Figure 4.4 for different dispersion values.
Estimating the delay ∆t or the phase ϕ between the USB and the LSB signal
electronically will lead to significant improvements.

4.1.2 Electronic estimation

Figure 4.6 shows the experimental setup for the electronic dispersion estima-
tion which is similar in the optical domain to the setup for the proof-of-concept
measurements (Figure 4.3). The 10 Gbit/s NRZ signal is disturbed by positive
and negative dispersion (different DCF and SMF spans). After the amplifi-
cation by an EDFA the signal is fed into the filter that separates the USB
and LSB and lets the signal pass through. The USB and LSB signals (su(t)
and sl(t)) are received separately by two photo diodes (u2t XPRV2022D and
Lasertron QDMH1), amplified (Centellax UAIL30VM + Mini Circuits ZX60 and
Centellax UAIL30VM + SHF826H) and fed into a mixer (ZMX-8GLH). The DC
component of the mixer’s IF signal is evaluated. As demonstrated before, the

1Note that this accuracy is proportional to the symbol rate. Hence, for higher symbol
rates also better resolutions for time delay and the dispersion are available.
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Figure 4.4: Eye diagrams of the LSB, USB and passband signal at the pres-
ence of 80 ps/nm dispersion

Figure 4.5: Estimated dispersion vs. fiber dispersion for a 10 Gbit/s NRZ
signal LSB and USB measurement
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Figure 4.6: Experimental setup

chromatic dispersion causes a delay ∆tD between the USB and LSB signal in
the electrical domain after the photo diodes. Due to the fact that an increasing
group delay decorrelates the two sidebands of the data signal the cross corre-
lation coefficient Ξ can be used as a measure for the dispersion of the data
channel. It can be calculated by multiplying the spectral power of both side-
bands Ξ(∆t) = F−1 {Sl(ω)S∗

u(ω)}. Alternatively, the time-domain USB and
LSB signals (sl(t) and su(t) = sl(t+ ∆t)) can be multiplied by a mixer and its
DC output can be measured. The delay ∆t results from the dispersion and the
electrical path length difference: ∆t = ∆tD + ∆tel. Now, the contribution of a
single frequency component ai sin(ωit) of the input signal to the mixer output
DC voltage Vmix is regarded:

Vmix,i = a2
i
ωi
2π

2π
ωi
∫

0

sin(ωit) sin(ωi(t+ ∆t)) dt =
a2
i cos(ωi∆t)

2
. (4.3)

Therefore, the resulting DC component Vmix =
∑

i
Vmix,i depends only on the

delay ∆t. To remove the delay caused by electronics ∆tel it can be made use
of the fact that the maximum of Vmix should occur at zero dispersion after the
filter when ∆tel = 0. However, that is only true under the condition that the
incident power at the photo diodes remains constant. Otherwise, Vmix has to
be corrected

Vmix =
Vmix,uncorrected
Popt,A Popt,B

. (4.4)

Following, the corrected Vmix values will be regarded.

Simulations

The transfer functions of the USB and LSB ports have a great influence on
the output voltage Vmix. To investigate this, simulations were performed in
VPItransmissionMaker reproducing the experimental setup. First, the VSB part
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of the optical delay line filter was modeled for the sake of simplicity as perfectly
rectangular shaped USB and LSB filters with a variable sideband rejection rate.
The signal source was a 10 Gbit/s NRZ signal and the electrical phase shift ∆tel
was not taken into account so that the phase shift originates purely from the
dispersion ∆t = ∆tD. Sweeping the dispersion leads to a cross correlation floor
(Vmix,min) for huge dispersion values. On the other hand, the dispersion-free
case leads to the maximum voltage Vmix,max. With increasing rejection rate,
the difference between the minimum and the maximum value of Vmix increases
due to a decreasing cross correlation floor (see equation 4.3 and Figures 4.7 and
4.9). However, this decreasing cross correlation also leads to a lower value of
Vmix,max in the dispersion-free case. The maximum voltage Vmix,max can be
used to normalize the output voltage Vmix for better graphical comparison

Vmix,norm = Vmix − Vmix,max . (4.5)

The delay line filters used as a vestigial sideband filter not only have a non-
rectangular amplitude transfer function they also add dispersion and higher-order
dispersion to the signal. The non-rectangular amplitude transfer function leads
to a weighting of the spectral components of the signal and the filter dispersion
has the same influence as an electrical delay that can be calibrated out. Further-
more, the higher order filter dispersion decorrelates the two monitor port signals
and therefore increases the sideband suppression. To assess the influence of the
actual filter the analytic model (chapter 3.4.1) was implemented and used for
further simulations in VPItransmissionMaker.
Depending on the filter states, the transfer functions of the filter change. That
influences the attenuation of the filter monitor ports (and therefore the incident
optical power at the photo diodes), the dispersion and higher order dispersion
added by the filter at the monitor ports and the amplitude transfer function
changing the sideband suppression rate and the weighting of the spectral com-
ponents. Yet, all filter transfer functions can be used for dispersion measurement
although they perform differently. Figure 4.7 shows the normalized mixer output
Vmix,norm depending on chromatic dispersion for different filter states. The fil-
ter states were set tuning the phase ϕ = 0◦ . . . 360◦. In this simulation, neither
noise nor nonlinearities of the fiber were taken into account. An auto-correlation
of rectangular signals would lead to a triangular dependency for Vmix. On the
one hand, the transmitted signals are not rectangular and on the other hand
the frequency response of the VSB filter is not flat. The asymmetry between
positive and negative dispersion is caused by higher order dispersion and the
weighting of the frequency components. The maximum of the mixer output
function is always at zero dispersion. As the filter produces dispersion at some
filter states, the maximum of the voltage Vmix,norm is shifted. Generally, all
filter states could be used because the filter dispersion can be calibrated out.
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For the further investigations, the filter state ϕ = 36◦ was chosen due to its low
intrinsic chromatic dispersion and its high dynamic range.

Figure 4.7: Influence of the filter transfer function on the normalized mixer
output voltage (filter input power: 2 dBm)

Noise has an impact on the mixer output voltage Vmix because this volt-
age depends also strongly on the incident optical power at the photo diodes.
Fluctuations of this power lead to a noisy Vmix that limits the measurement ac-
curacy. Nonlinearities, especially self-phase-modulation, affect the pulse width
of dispersive signals. The influence on the signal also changes the mixer output
voltage Vmix. In Figure 4.8, the effects of noise and nonlinearities on the mixer
output voltage Vmix is shown. To evaluate the influence of nonlinearities, in the
simulation the fiber launch power was changed from 0 dBm to 10 dBm. The
filter input power was fixed at 2 dBm and was affected by noise. With increas-
ing fiber launch power and therefore increasing nonlinearities in the single mode
fiber, the asymmetry between positive and negative dispersion increases.

In practice, the maximum achievable extinction ratio of the produced delay
line filters is limited. That means, that there is always a certain amount of light
transmitted even if the transfer function is calculated to be zero for a certain
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Figure 4.8: Influence of noise and nonlinearities on the mixer output voltage
(filter state: 36◦ , filter input power: 2 dBm)
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frequency. That minimum transmittance tmin is applied to the filter amplitude
transfer function in the VPI model scaling the transfer function as follows

|HF,t(Ω)| = tmin + (1− tmin)|HF (Ω)| . (4.6)

For example, a tmin = 0.1 leads in the theoretical case of no transmission due
to the transfer function (HF (Ωmin) = 0)2 to a maximum power extinction of
20 dB. The transfer function is scaled accordingly. The filter was set to the
ϕ = 36◦ state, the filter input power was 2 dBm and nonlinearities and noise
were neglected.
An increasing tmin leads to bigger absolute values of the mixer output voltage
(because more power transverses the filter). This is corrected by using the
powers at the filter outputs Popt,A and Popt,B as described in equation (4.4).
However, with decreasing filter extinction the dynamic range of the Vmix,norm
voltage decreases also due to a lower sideband suppression. Figure 4.9 a) shows
the filter transfer functions for the corresponding minimum transmittances tmin.
In Figure 4.9 b), the simulation results for the normalized mixer output voltage
Vmix,norm are plotted.

Figure 4.9: a) Monitor port 1 and monitor port 2 transfer functions for dif-
ferent minimal transmission tmin, b) Normalized mixer output
voltage for different minimal transmission tmin

Measurements

The mixer output DC voltage Vmix of the received dispersion-impaired 10 Gbit/s
signal as well as the optical powers of the USB (Popt,A) and LSB (Popt,B) were
measured. These optical powers were needed to calibrate out the dependency
of Vmix from the incident optical power in the paths. Several measurements

2As mentioned in chapter 3.1, this case is not of practical relevance here.
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were taken with different electrical phases ∆tel. These measurements were re-
centered for the graphical representation so that the maximum is always at a
dispersion of 0 ps/nm3. The mixer output DC voltage Vmix was shifted so
that the maximum is at 0 mV finally leading to Vmix,norm. Figure 4.10 a)
shows the spectra of the LSB, USB and passband signals. The delay line filter
characteristics can also be seen shaping the noise floor. In Figure 4.10 b), the
normalized mixer DC voltage Vmix,norm is shown for two measurements taken
with different electrical phases ∆tel. Comparing the measurements and the
simulation model a good match with the simulation results (Figure 4.7) can be
observed.

Figure 4.10: a) Spectra at the filter’s three output ports, b) Measured mixer
output voltage for two different measurement configurations

4.1.3 Conclusion

Using the available free output ports of a simple fiber optical filter makes it pos-
sible to estimate the amount of actual dispersion affecting a signal during prop-
agation through fibers. A proof-of-concept system was realized for 10 Gbit/s.
Electronic processing is a practical approach for an easy-to-use measurement.
Calibration of the setup due to the group delay added by the electronic com-
ponents is needed once but can be achieved easily finding the maximum of the
output voltage that corresponds to 0 ps/nm. Using a tunable electrical delay
line and tuning it so that Vmix gets maximal would make the optical power
meters redundant. The state of the delay line would then be proportional to
the dispersion and the actual value of Vmix would correspond to the received
optical power assuming that the filter state does not change. Depending on the
application and the available components, that is a worthwhile variation of the
setup.

3This means calibrating out the electrical phase ∆tel.
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However, amplifiers, photo diodes and a mixer with higher bandwidths are
needed for higher line rates. In the moment, this is still an economic and
technological challenge.

4.2 Nonlinear Detection

Nonlinear detection can be used for pulse width (i. e. dispersion) monitoring
[17, 51, 54]. This approach is not limited by the symbol rate because the signal
that is produced by the nonlinear detector can be processed by low speed (and
therefore low-cost and low-power) electronics.

The principle of operation has been introduced for amplitude modulated sig-
nals. On the other hand, advanced modulation formats using the phase to carry
the information (e.g. (D)QPSK) are in constant discussion for future high bit
rate systems like 100 Gbit/s Ethernet with enhanced spectral efficiency. Hence,
the focus of the theoretical investigations on the use of nonlinear detection for
dispersion monitoring purposes will be on advanced modulation formats. How-
ever, the experiments (4.2.2) will be performed using just amplitude modulation.

4.2.1 Theoretical investigation

The influence of chromatic dispersion on the output signal of a nonlinear de-
tector is simulated using a combination of VPItransmissionMaker and Matlab.
Figure 4.11 shows the simulation setup.

Figure 4.11: Simulation setup for nonlinear output calculation and ampli-
tude distribution simulation

The transmitter is one of the types introduced in Figure 4.12 and transmits
a PRBS signal. As discussed in chapter 1.1, for 100 Gbit/s transmission, polar-
ization multiplexed DQPSK is implemented. This format has a symbol rate of
about 25 Gbaud/s. Due to overhead (e.g. for FEC), the line rate will be more
than 100 Gbit/s and therefore the symbol rate is slightly higher than 25 Gbaud/s.
In 40 Gbit/s systems, DPSK or polarization multiplexed DPSK is in use as mod-
ulation format. Note that the dispersion tolerance of a modulation format is
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mainly influenced by its spectral width, i. e. formats with a lower symbol rate
(and therefore a lower spectral width) can tolerate higher amounts of dispersion.
DPSK, DQPSK and RZ-DQPSK modulation formats were analyzed. Figure 4.12
shows the constellation diagrams of these formats including the transition paths
between the symbols. For comparison with [51] in addition to the focused
(D)xPSK modulation formats also simulations for RZ were performed. For
QPSK, two different transmitter implementations were studied. The serial im-
plementation using two (in this case ideal) phase modulators (PM) shows a
perfectly constant amplitude at the transmitter. The more commonly used
transmitter using two Mach-Zehnder modulators (MZM) already has amplitude
fluctuations at the receiver during the transition between symbols. Table 4.1
shows the tolerance (required OSNR for a bit error rate of 10−3) against the
chromatic dispersion (CD) of the single mode fiber (SMF) for the analyzed
modulation formats taken from [53] and scaled for 100 Gbit/s.

modulation for-
mat

CD 2 dB penalty @ 100 Gbit/s /
ps/nm

50% RZ 9
NRZ-DPSK 14
NRZ-DQPSK 31
50% RZ-DQPSK 29

Table 4.1: Dispersion tolerance for analyzed modulation formats for 100
Gbit/s

In the simulations, only the influence of chromatic dispersion was consid-
ered (i. e. PMD, nonlinear effects and fiber attenuation were neglected). Pre-
distorted systems were not regarded (the chirp of the transmitter was zero).
The nonlinear detector was modeled in Matlab with the nonlinear exponent of
two i. e. a quadratic relationship which can be found when employing ideal
two-photon absorption in Si-APDs. Following [51], P (t) is the time-dependent
power envelope of the optical signal, η describes the efficiency and Vnl is the
nonlinear output voltage

Vnl = η

∫

P (t)2dt . (4.7)

The cut-off frequency of the two-photon absorption diode is very low compared
to the bit rate. Thus, the nonlinear output voltage is composed by a large
number of bits. Assuming an equal distribution of the transmitted symbols, it
is not pattern-dependent. Still, it depends on the amplitude distribution during
the integration time.
The normalized nonlinear output Onl represents the output voltages of the non-
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Figure 4.12: Constellation diagrams including transitions and setup of a)
DPSK, b) DQPSK (ideal PM setup) , c) RZ-DQPSK and d)
DQPSK (MZM setup) transmitters
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linear detector Vnl with respect to the signal dispersion. It is normalized to the
value of the nonlinear output voltage at zero dispersion

Onl =
Vnl(D)

Vnl(0 ps/nm)
. (4.8)

The scope was used to collect all amplitudes of the optic field sampled with a
high time resolution during the simulation time window.

The distribution of these amplitude values can be represented as a histogram
where the amplitude values will be normalized to the square root of the signal
power. As an example, the histogram of a perfectly rectangular-shaped NRZ
signal with 50% ones and 50% zeros will consist of two equal peaks: One at 0
and one at

√
2.

Figure 4.13: Output signal of the nonlinear detector for different modulation
formats in the presence of dispersion

Nonlinear behavior

Dispersion estimation using nonlinear detection actually is a pulse width esti-
mation via the autocorrelation. The nonlinear detector and the electronics can
work well below the link speed integrating multiple symbols assuming a uniform
distribution of the transmitted symbols. Where conventional detection with a
standard (slow) photo diode outputs the same mean signal level regardless of
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the pulse width4 nonlinear detection has a pulse width dependent output sig-
nal level. Higher input signal levels are weighted more than lower input signal
levels. Thus, the nonlinear detector produces an output signal that is not only
influenced by the mean input power but also by the amplitude distribution of
the optical field.

For amplitude modulated signals it is clear that the dispersion-induced inter-
symbol-interference leads to a change in the signal level distribution that affects
the nonlinear output. Here, under the influence of higher amounts of dispersion
the signal amplitudes are concentrated to a medium level resulting in a lower
nonlinear output signal level compared to the dispersion-free case.
For ideally pure phase modulated signals (such as NRZ-(D)xPSK) one could
expect that the amplitude is not affected by dispersion. There were two effects
identified explaining why this is not the case. First, the transmitter already
produces some amplitude changes during the transition between symbols which
means the symbol transition does not walk perfectly on a circle in the constella-
tion diagram. That behavior depends on the setup of the transmitter. However,
no real transmitter is expected to only affect the phase. Second, there is the
effect that phase modulation turns into amplitude modulation in the presence
of dispersion [8], even for ideally pure phase modulated signals without any
imperfections. Once there is a residual amplitude modulation the amplitude
distribution will change with respect to dispersion which can be evaluated by
the nonlinear detector.

Figure 4.13 shows the dependency of the nonlinear output signal of the non-
linear detector from signal dispersion. The effect of dispersion changes quadrat-
ically with the bit rate used (chapter 2.1). That’s why the x-axis can be scaled
easily to other bit rates. Without fiber nonlinearities and transmitter chirp, neg-
ative dispersion causes the same behavior as positive dispersion. Therefore, here
only positive dispersion is plotted. However, it is possible to determine the sign
of the dispersion with a differential setup using two nonlinear output measure-
ments. In the case of nonlinearities or transmitter chirp, negative and positive
dispersion show different behavior that has to be characterized separately.
In Figure 4.13, the upper x-axis shows the corresponding length of standard
single mode fiber (SMF) for 100 Gbit/s. The output of the nonlinear detec-
tor was normalized for each modulation format to the nonlinear output value
when the nonlinear detector was attached directly after the transmitter (no
dispersion). With increasing dispersion, each modulation format shows its char-
acteristic behavior. Unlike the formats with dominating amplitude changes (RZ,
RZ-DQPSK) the primarily phase-modulated (DPSK, DQPSK) signals show an
increasing nonlinear output when they experience more dispersion. Thus, pre-
dominantly amplitude modulated formats have a local maximum at zero disper-

4This is simply what a power meter does.
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sion where phase modulated formats have a local minimum. This behavior must
be taken into account in the design process of a control circuit that steers a
dispersion compensator minimizing the residual dispersion. All kinds of formats
are supported but the steering algorithm has to be adjusted according to the
modulation format in use.

Note that the periodicity of the nonlinear output signal for RZ is caused by
the self-imaging (Talbot) effect [3] of the RZ duty cycle of 50%. The periodicity
in Figure 4.13 matches the theoretical value obtained from [3] of 12.5 ps/nm
(at 100 Gbit/s 50% RZ).

It can be also observed that the dispersion values for which the nonlinear out-
put signal is unique matches the dispersion tolerance of the modulation formats
shown in Table 4.1. This is sufficient for residual dispersion compensation. A
control circuit will adjust an adaptive dispersion compensator in a way that the
resulting dispersion is within the dispersion tolerance of the modulation format.

Figure 4.14: Field amplitude level distribution and resulting normalized out-
put of the nonlinear detector (normalized nonlinear output)
for DQPSK (MZM) modulation format under presence of chro-
matic dispersion
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Dependency of the nonlinear output signal from the amplitude distribution

The amplitude distribution of the optical field may be used to explain the ob-
served behavior. Generalizing, it will be shown that signals with equal amplitudes
always produce a lower nonlinear signal than signals with the same power and
unequally distributed amplitudes. Let a be the optical field amplitude of a sam-
pled signal block with N samples having the same amplitude. The energy of
that signal is E ∼ Na2. The nonlinear output voltage Vnl averaging over this
block of N samples is

Vnl,e = a4 . (4.9)

If the amplitude of the first sample is lowered and the amplitude of the last
sample is raised in a way that the energy of the block stays the same the
changes of the signal level of the first sample µ1 > 0 and of the last sample
µN > 0 can be defined as follows

(a− µ1)
2 + (a+ µN )2 = 2a2 . (4.10)

The samples with lowered and raised level on the left side shall have the same
energy as two of their unchanged counterparts on the right side of the equation.
Obviously, the signal level change of the last sample µN depends on µ1

µN = −a+
√

a2 + 2aµ1 − µ2
1 . (4.11)

The nonlinear output voltage of the second, unequally distributed nonlinear
signal is composed of (N-2) unchanged samples, the lowered first one and the
last one with a higher amplitude

Vnl,u =
1

N

[

(N − 2)a4 + (a− µ1)
4 + (a+ µN )4

]

. (4.12)

This expression can be simplified using equation (4.11) to

Vnl,u =
1

N

[

Na4 + 8a2µ2
1 − 8aµ3

1 + 2µ4
1

]

. (4.13)

The amplitude level change µ1 is always smaller than the amplitude a itself.
That implies

8a2µ2
1 − 8aµ3

1 > 0 . (4.14)

Thus, for unequally distributed amplitudes, the nonlinear output voltage Vnl,u
is always bigger than for equally distributed levels

Vnl,u = Vnl,e +
1

N

[

8a2µ2
1 − 8aµ3

1 + 2µ4
1

]

. (4.15)

78



4 Dispersion Monitoring

The RZ signal is highly unequally distributed without dispersion influence
(ones and zeros). Dispersion leads to a more uniform distribution leading to
a decreasing nonlinear output signal. Contrary, for phase modulated signals
without dispersion influence, there is mainly one amplitude level. The perfectly
phase modulated signals’ (DPSK and DQPSK transmitter modeled by ideal
phase modulators) amplitude distributions are more uniform than the one for
DQPSK using Mach-Zehnder modulators (see the constellation diagrams in Fi-
gure 4.12). Under the effect of increasing dispersion this amplitude distribution
spreads because of the already mentioned effects of PM-AM conversion and
residual amplitude modulation (DQPSK using MZMs). Due to power conser-
vation lower as well as higher amplitudes will occur. The nonlinear detection
process weights higher amplitudes more so that the nonlinear output signal in-
creases with dispersion. This effect is stronger the more uniform the amplitude
distribution is without dispersion influence explaining the high slope in the be-
ginning of the curve for DQPSK (ideal PM). For high dispersion values both
DQPSK realizations show a similar but biased behavior (due to the different
amplitude distribution directly after the transmitter).
To sum up, amplitude modulated signals start at zero dispersion with a highly
unequal distribution (ones and zeros). Phase modulated signals have a perfectly
equal distribution at zero dispersion. Hence, the nonlinear output increases for
phase modulated signals and decreases for amplitude modulated signals. Note
that the nonlinear behavior is the same for positive (shown here) and negative
dispersion. More details can be found in [45].

Performance monitoring using amplitude histogram analysis is a different op-
tion discussed in [23]. However, the nonlinear output signal is a simpler quan-
tity that can be regarded as the mean value of the squared amplitudes of the
histogram. Figure 4.14 illustrates the described behavior for the DQPSK mod-
ulation format. In the 3D plot, for each signal dispersion value (x-axis) the
amplitude distribution (y-z plane) is shown. The amplitude values are normal-
ized to the signal power (y-axis). Thus, the z-axis shows the occurrence of a
given normalized amplitude for a given accumulated signal dispersion. So, the
effect on the signal is illustrated when the signal travels along the fiber and
accumulates more dispersion (x-axis). Additionally, the resulting nonlinear out-
put signal of the nonlinear detector is shown with respect to the accumulated
signal dispersion. In the special case (DQPSK) for low dispersion values there
is mainly one amplitude value present. Increasing the dispersion spreads the
amplitude distribution and causes (as expected) the increasing nonlinear output
signal. Note that for extremely high dispersion values for all modulation formats
the amplitude distribution of the optical field will be centered at the normalized
amplitude one (which corresponds to the mean power).
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4.2.2 Experiments

A pulse width estimation using nonlinear detection will be demonstrated. Cross
dependencies influencing the measurement will be discussed and quantified. Fi-
nally, the pulse width estimation is performed and the dependency of the non-
linear output with respect to dispersion is measured.

Experimental setup

Figure 4.15 shows the experimental setup. It consists of a transmitter, the
link and the measurement block at the receiver side. The modulator inside
the transmitter is a JDSU dual-drive Mach-Zehnder modulator (DDMZ type
21051696). This z-cut device was driven single-ended. Hence, the modulator
produced chirp.

Figure 4.15: Experimental setup for dispersion monitoring using nonlinear
detection

Depending on the driving voltage and the bias point of the modulator in
the transmitter, NRZ and RZ modulation can be generated. Unlike the simple
models of ideal transmitters used for the simulations in the previous chapter,
the devices used for the experiments have bandwidth limitations, chirp and
also some jitter. Hence, the results can not be applied directly to the following
experiments. Furthermore, the amount and sign of the transmitter chirp depends
on the chosen bias point [10]. To ensure the strongest possible influence of
dispersion on the transmitter signal, the highest possible clock rate of 17 GHz
provided by a R&S SMP 04 frequency generator was chosen for the Centellax
TG2P1A PRBS source.
Figure 4.16 a) shows the chosen bias points for NRZ at the rising (NRZ) and
the falling slope (-NRZ) of the modulator characteristic. These different bias
points cause an opposite sign of the NRZ signals’ chirp.
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The RZ signal was generated by biasing the modulator in its maximum point
and driving it with a peak-to-peak voltage of ideally twice the modulator’s Vπ,
as shown in Figure 4.16 b). Therefore, the “1”s as well as the “0”s of the driving
voltage result in low light output. Hence, only during the transitions, a pulse
is shaped. If the driving voltage is lower than 2Vπ, the signal extinction will
decrease but the RZ pulse shape remains. The rise and fall time of the driver
and modulator specify this pulse width, i. e. changing the bit rate changes the
duty cycle of the so generated RZ (and not the pulse width). For the 17 GHz
clock frequency, the duty cycle is about 66%. Note that the bit error rate of
this RZ can not be measured easily because this method (producing RZ pulses
with the symbol transitions) means a differential encoding of the modulating
bits. However, encoding a PRBS differentially still leads to a random sequence
that can be used for measurement purposes. Note that this kind of modulation
could be named differential RZ (DRZ). However, it is not common in commercial
systems. It was chosen in the lab for the sake of a simple RZ pulse generation
with only one modulator. Inverse RZ (-RZ) pulses with the same differential
encoding can be generated by biasing the modulator in its minimum point and
driving it with 2Vπ.
In the experiments, the modulator was driven for the RZ generation with the
maximum available voltage that was somewhat smaller5 than 2Vπ . For the NRZ
generation, the driving voltage was chosen to be 5 dB lower than for the RZ
case.

Figure 4.16: Bias points and driving voltage for a) NRZ and b) RZ pulse
generation

5The exact voltage needed to achieve Vπ at the modulator’s electrodes could not
be determined because several RF components (e.g. modulator and PRBS source) were
used outside its specifications at the clock frequency of 17 GHz.
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The dispersion was produced by a combination of standard singlemode fibers
(SMF) and dispersion compensation fibers (DCF). The optical losses were com-
pensated by an EDFA (erbium doped fiber amplifier). Due to the polarization
dependencies in the setup (e.g. the polarization dependent gain of the EDFA
and the polarization dependent loss of the switch), the EDFA input polariza-
tion was optimized. At the receiver side, it could be switched between linear
(power measurement) and nonlinear detection. An optical delay line filter (see
6.2) could be included into the setup. The two monitor ports were attached to
the switch. When the power of the monitor port 1 was measured, the nonlinear
detector was connected with monitor port 2 and vice versa.

Two-photon absorption in a Silicon avalanche photo diode was used to provide
nonlinear detection. A PerkinElmer single photon counting module that operates
in Geiger mode was used as nonlinear detector. Above a given power threshold,
this process shows a nearly quadratic dependency of its output signal (detected
photons) from the incident power. The nonlinear detector had to be equipped
with a focusing unit consisting of a collimator and a microscope objective to
achieve a high power density at an overall power level that does not destroy the
sensitive detector.

There is a trade-off between measurement accuracy (noise suppression) and
measurement time. One degree of freedom is the photon counting interval and
the number of averages can also be changed. On the one hand, shorter intervals
for counting the photons lead to a better coherence between measured optical
power and the nonlinear signal (number of counts) and to a shorter measurement
time. On the other hand, the accuracy of the number of counts decreases due to
a higher variance for shorter intervals. The measurement time is directly propor-
tional to the number of averages taken. At the same time, averaging suppresses
noise and improves the accuracy of the measurements. Therefore, a compro-
mise has to be found between measurement time (influenced by the number of
averages as well as by the measurement interval for counting the photons). Fol-
lowing, the photons were counted for one second and ten measurements were
averaged to achieve reliable values and good noise suppression. More details
on the measurement setup can be found in [46]. There, the optimization of
the measurement setup (focusing unit and the choice of measurement time,
measurement duration and number of measurements) is discussed in depth.

Nonlinear detector

First, the nonlinear detector itself has to be characterized. The most important
property is the nonlinear coefficient. To measure the nonlinear coefficient, the
dependency of the nonlinear output signal with respect to input CW power
is investigated. In the setup (Figure 4.15), the modulation was switched off.
The fiber spans were removed and the incident optical power on the nonlinear
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detector was swept using the variable optical attenuator after the EDFA. The
slope in the double logarithmic graph in Figure 4.17 corresponds to the nonlinear
exponent. Three regions can be distinguished: Below -22 dBm, nearly no two-
photon absorption takes place due to the low input power. The probability that
two photons are absorbed at the same place at nearly the same time is too low.
The next region is between -13 dBm and -3 dBm input power. Two-photon
absorption can be observed but the nonlinear exponent is about one because
the power density is still too low for nonlinear behavior. However, above 0 dBm
input power is the range of operation for the nonlinear detector: The power
density is high enough to show a nonlinear dependency between input power
and counted photons.

Figure 4.17: Incident CW power versus nonlinear detector output

Cross dependencies

The number of counts depends on the amplitude distribution of the signal. As
shown in chapter 4.2.1, this amplitude distribution changes with the accumu-
lated dispersion of the signal. However, it is also influenced by other quantities.
The mean incident power has a major impact on the nonlinear signal. At a point
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of operation of 3 dBm, a small power fluctuation of 0.1 dB causes a relative
change of the (linear) number of counts of about 5% (assuming quadratic non-
linearity). If the power fluctuation increases to 0.3 dB, the number of counts will
change about 15%. It will be seen later in this section (Figures 4.20 and 4.21)
that the influence of dispersion leads to changes of the nonlinear signal in this
order of magnitude (15%). Therefore, the power is monitored and the absolute
number of counts per second is corrected accordingly. First, the small power
changes within the consecutive number of measurements around the point of
operation are calibrated out by correcting the counts using a linear regression
of the measured powers versus the measured counts per second (Figure 4.18).
In a second step, the counts can be shifted to the wanted point of operation
using the measurement characteristic counts vs. incident power (Figure 4.17) of
the nonlinear detector. Therefore, different input power levels at the nonlinear
detector in its range of operation are supported.
The EDFA has a minor polarization dependent gain (PDG) leading to changing

Figure 4.18: Adjusting the number of counts according to small power
changes with linear approximation

output powers depending on the EDFA input polarization. The switch has a also
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small polarization dependent loss (PDL). Measurements showed that the polar-
ization does not change once a certain fiber span is plugged in. Therefore, it was
enough to optimize the input polarization of the EDFA to the maximum number
of counts per second once a new fiber span was installed to be measured.

Also noise changes the amplitude characteristics. Hence, the OSNR of the
signal influences the measured number of counts, too. The OSNR is mainly
determined by the EDFA amplification factor 10 log10

(

Pout

Pin

)

. For the experi-
ment, an attenuator was used to adjust the EDFA input power. By setting the
output power Pout, the ASE level of the EDFA is defined (when the EDFA is
not in saturation). Changing the EDFA input power Pin affects the signal to
noise ratio.
The amplifier produces a constant output power at different levels (6 dBm,
10 dBm and 14 dBm). This output power was attenuated to ensure the same
incident power (2.2 dBm) at the single photon counter. Small fluctuations of
this power were corrected using the small signal approximation to compute cor-
rected counts for 2.2 dBm. However, a small absolute difference in the counts
remains between the three cases. Figure 4.19 shows the number of counts per
second for a 17 Gbit/s 66%-RZ signal with respect to the EDFA amplification
at different EDFA output powers. Up to an amplification factor of about 20 dB,
the number of counts remains constant within the usual measurement fluctu-
ations. For higher amplification factors, the number of counts decreases due
to the noisier signal that changes the amplitude distribution. This dependency
of the nonlinear output signal has to be included in the calibration process to
cancel out the influence of noise.
When using a FBG (0.28 nm bandwidth) as ASE filter, the same curves can be
observed in principle. However, the effect of decreasing counts in that case is
caused by decreasing power. The FBG filters out the spectral parts outside the
signal spectrum lowering the nonlinear detector input power. On the other hand
that means the noise impact on the nonlinear signal can be drastically reduced
by such an ASE filter. The decrease of the input power of the nonlinear detector
can be calibrated out using the information provided by the powermeter in the
setup.

The dynamic range of this setup can be calculated using Figure 4.19. Once
the point of operation of the nonlinear detector (Figure 4.17) is set and is
maintained carefully the input signal power Pin may vary around 15 dB without
major changes in the count number after the EDFA: Amplification factors up
to 20 dB can be accepted. Amplification factors lower than 5 dB will lead to
EDFA saturation changing the EDFA noise behavior.

85



4 Dispersion Monitoring

Figure 4.19: Dependency of the nonlinear output on the EDFA amplification
factor at 6 dBm, 10 dBm and 14 dBm EDFA output power

Dispersion estimation

Different options were considered for the dispersion measurement to deal with
the EDFA noise: First, the EDFA input power can be held constant by an optical
attenuator. For shorter fiber spans (with lower attenuation), the attenuator is set
to higher values. Using a constant EDFA output power, the OSNR of the signal
remains constant. A second option is to operate the EDFA at amplification
factors lower than the 20 dB characterized in the previous chapter. Finally,
the already quantified influence of the OSNR on the number of counts per
second can be used to calibrate out the noise influence. Now, the measurements
could be taken without changing the attenuator in front of the EDFA at any
amplification. With a known EDFA input power, the number of counts per
second caused by a different OSNR could be subtracted from the total number
of counts leading to the number of counts caused by pulse broadening.
For the experiments, it was chosen to keep the EDFA input power constant
by using an attenuator. The EDFA input power was fixed to -11 dBm. The
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EDFA output power was set to about 6 dBm leading to 2 dBm at the nonlinear
detector. Hence, the EDFA amplification also remained below 20 dB.

For the dispersion estimation, different combinations of DCF and SMF fiber
spans were used. The EDFA input power was fixed by attaching a variable
optical attenuator (VOA) to cancel out the OSNR dependency of the nonlinear
output signal discussed before. After the EDFA, beside the nonlinear and linear
detector, also an HP83480A sampling oscilloscope was connected to measure
the amplitude distribution of the signal. From this amplitude distribution, the
expected nonlinear output signal can be calculated (as explained in the previous
chapter) by squaring the respective power levels6 and multiplying them with their
relative frequency of occurrence. This nonlinear signal can then be compared to
the nonlinear signal provided by the single photon counter.

To compare both nonlinear signals in Figure 4.20, they were normalized to
their respective values of no dispersion (0 ps/nm). It can be seen there for two
different modulation formats (NRZ and inverse RZ) that the calculated nonlinear
output signals with respect to dispersion match very well. This demonstrates of
the functionality of the nonlinear detector and of the measurement setup as a
whole. The remaining difference between both curves results from measurement
tolerances of the single photon counter. The model of the nonlinear detector
used for the calculation of the nonlinear signal from the histogram assumes a
perfect quadratic dependency regardless of the actual input power. As depicted
in Figure 4.17 this is not the case. However, for the proof of concept and within
the operating conditions used here, this model is sufficient.

Figure 4.20: Dependency of nonlinear output on dispersion (at constant
EDFA input and output power): histogram estimation of non-
linear output and photon counter output for a) NRZ and b)
inverse RZ

6Squaring applies for a nonlinear exponent of two, i. e. ideal two-photon absorption.
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The simulations implied a symmetry for positive and negative dispersion val-
ues. Transmitter chirp and nonlinearities such as SPM can break this symmetry
by causing a pulse broadening that depends on the sign of the dispersion (see
chapters 2.1 and 2.2). At the maximum input power in the fiber (5 dBm),
the nonlinear length LNL remains longer than the dispersion length LD. Yet,
depending on the link design, an interaction between SPM and dispersion could
occur. However, changing the fiber input power did neither influence the signal
spectrum nor the pulse shape. Hence, nonlinear effects can be neglected here.
As mentioned before, the modulator chirp changes with the bias point. This
affects the pulse shape: Under the influence of chromatic dispersion, the pulse
may be compressed before broadening. Depending on the sign of the chirp, the
pulse compression happens in conjunction with positive or negative dispersion
(see chapter 2.1). Figure 4.21 shows the nonlinear output for the NRZ signals
(NRZ, -NRZ) biased at the rising and falling slope of the modulator character-
istic with opposite chirp and the nonlinear output for RZ and inverse RZ (-RZ).
Adjusting carefully the bias point leads to the same absolute value for the chirp
in the NRZ and -NRZ case which explains the symmetry of the corresponding
curves with respect to zero dispersion. This is expected from theory. The shape
of the curves could be predicted using numerical simulations with VPItransmis-
sionMaker assuming a chirp factor |C| ≈ 0.9 for the modulator in the setup. For
RZ and -RZ, there is very low chirp because the signal is biased in the maximum
or minimum of the modulator characteristic. Thus, the extreme point of the
nonlinear output signal is at zero dispersion and to a large extend, there is a
symmetry between positive and negative dispersion.

The resolution of this method can be estimated with the curves in Figure 4.20
and Figure 4.21. As mentioned before, the major impact on measurement accu-
racy is power fluctuations. Setting the point of operation of the nonlinear detec-
tor with an accuracy of 0.1 dB leads to an uncertainty of the number of counts of
5%. This uncertainty limits the dispersion resolution. A 5% change in the slope
of the nonlinear 17 Gbit/s signal around a dispersion of 0 ps/nm in Figure 4.20
and Figure 4.21 leads to an accuracy of about 160 ps/nm which corresponds to
10 km of standard singlemode fiber. The resolution scales quadratically with the
symbol rate because pulse broadening is measured. For smaller pulses (at higher
symbol rates) less dispersion is needed for the same broadening. However, the
resolution in these experiments is worse than the resolution when the dispersion
was estimated using a vestigial sideband filter (chapter 4.1). Decreasing the
influence of the cross-dependencies (mainly power fluctuations but also noise
and polarization effects) would lead to a greatly improved dispersion resolution.

A delay line filter can be used to provide two different nonlinear signals im-
proving the dispersion estimation. With the current setup, a power of about
2-4 dBm is required at the nonlinear detector. Therefore, only the filter states
that provide low attenuations at the monitor ports could be used. However,
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Figure 4.21: Dependency of nonlinear output on dispersion (at constant
EDFA input and output power): Different modulation formats
(NRZ with positive and negative chirp, RZ and inverse RZ)

keeping in mind the valid tuning range of the filter, low output powers at the
monitor ports are produced when the delay line filter works as dispersion com-
pensator with a low insertion loss. Strong amplification before the filter is not
an option because these high powers would destroy the detector when the fil-
ter drifts or when during tuning a filter state is set where the monitor port
attenuation is reduced. Furthermore, an amplifier output power of more than
15 dBm would be needed. Hence, for the experiments involving the delay line
filter monitor ports, the filter was set to a state where the monitor ports have a
low attenuation and the compensation port has a high attenuation. This setting
only provides basic information as the transfer function of the monitor ports is
different from the one expected at the filter state for the intended use (disper-
sion measurement with the monitor ports during dispersion compensation on
the filter output port).
Both monitor ports were connected to the switch in the setup. That way, at
the same time the power of monitor port one and the nonlinear output signal
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of monitor port two could be measured, and vice versa. This data was used for
filter adjustment and dispersion estimation. The delay line filter was centered
on the wavelength of the signal and the transfer functions of the monitor ports
were set to minimum attenuation. These algorithms will be described in detail
in the next chapter (section 5.2). It turned out that the major issue in this setup
is the filter drift. As mentioned before, the nonlinear detector is very sensitive
to power fluctuations. Already small fluctuations smaller than 0.5 dB lead to a
change in the count rate about as much as the influence of the chromatic dis-
persion does. Using the characteristics of power and noise influence, this effect
can be reduced. However, for comparable results, the filter has to be set in the
same state for all measurements. The convergence to exactly that filter state is
a time consuming task. The measurements, the calibration and the dispersion
estimation have to be performed before the filter drifts away and has to be reset.

There is only a small power range where the nonlinear detector has its point
of operation. If the power is too low, the detector does not act nonlinearly. High
powers destroy the detector. In the measurement setup, powers from 0 dBm
to 3 dBm were possible. An EDFA was used in the experiments to provide the
stable power at the nonlinear detector. Due to the fact that also noise influences
the output signal of the nonlinear detector the dynamic range of the measured
signal is limited. The EDFA saturation and the signal-to-noise ratio of the in-
put signal limit its dynamic range to 15 dB. The dispersion measurements using
nonlinear detection are very sensitive to power fluctuations. Therefore, the point
of operation for the nonlinear detector has to be maintained carefully. Changing
the power at the nonlinear detector at its point of operation only 0.1 dB leads
to 5% fluctuation of the nonlinear signal. This limits the dispersion resolution
because pulse broadening influences the nonlinear output signal of the detector
in the same order of magnitude. Assuming 5% inaccuracy of the nonlinear signal
means a dispersion resolution of about 160 ps/nm (10 km standard singlemode
fiber).
Here, already an autonomous operation was demonstrated using the monitor
ports to set the filter to a defined state and measure the dispersion. For a
practical application, the nonlinear detector has to be improved to be able to
work with much lower powers. A better focusing would be the first step. The
filter has to be stabilized better and adjusted faster. This will require improved
technologies (e.g. planar waveguides or fiber piezo elements as phase shifters).
Once measurements are possible in the intended filter states, the change of the
nonlinear signals when adjusting the monitor port transfer functions by tun-
ing the filter have to be characterized. Using this characterization, building a
completely autonomous dispersion compensator will be possible.

90



5 Control algorithms for filter adaptation

Not only the filter design is of importance for adaptive dispersion compensa-
tion also the control of the filter is crucial for the system performance of the
compensator. Depending on the information available about the system various
control strategies may be applied. These iterative and deterministic strategies
are discussed in the first part of this chapter. In the second part, two example
implementations for control strategies are explained and analyzed: Wavelength
centering of the filter and filter state adjustment enabling an autonomous oper-
ation.

5.1 Control strategies

The complexity of the control algorithm increases exponentially with the number
of control variables for the dispersion compensating device. Adjusting all the
controls of the dispersion compensating device at the same time by the control
algorithm may lead to severe convergence issues [4] and is not recommended. It
should be the task of the filter design process to provide a single-knob interface
(e.g. the desired dispersion) to the control algorithm. Therefore, the control
strategies discussed here rely on that kind of interface addressing only one control
variable.

Depending on the information available for the control algorithm, different
strategies can be followed to adjust the dispersion compensation filter to the
dispersion-impaired link.

The dispersion compensator investigated in this chapter is controlled by one
phase changing element (0◦-360◦), i. e. by only one control quantity. The fiber
optic dispersion compensator introduced in 3.4.1 was used as simulation model.
The simulations were carried out in VPItransmissionMaker using one polariza-
tion tributary of a 112 Gbit/s Polmux-RZ-DQPSK transmitter. The system
was dispersion limited. A combination of DCF and SMF provided the residual
dispersion that had to be equalized by the fiber optic dispersion compensator.
The quality criterion was the estimated bit error rate estimated at the receiver.
Figure 5.1 visualizes the setup.

The control behavior of this device for a residual dispersion of -128 ps/nm is
analyzed using Figure 5.2. The red curve shows the dispersion generated by the
filter depending on the variable controlling the filter state. Tuning the compen-
sator to its most advantageous state, a high bit error rate of 10−9 (black curve)
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Figure 5.1: Simulation setup for the evaluation of control strategies

can be reached which is optimal under the simulation conditions.
The hatched area depicts the control states where the FIR filter produces a high
attenuation. This rejection state should be avoided. The black curve shows the
simulated bit error rate with respect to the filter state. Being not at the power
limit, the system shows here only degradation due to the chromatic dispersion,
i. e. there is no penalty due to the high filter attenuation in this range. This
simplification is assumed here because the aim of this chapter is to compare
different control strategies.
The power budget in practical applications does not allow to neglect the attenu-
ation of the filter (which can be up to 10 dB) in most cases. Thus, the bit error
rate in the hashed area will show a different behavior. When changing from the
dispersion limited scenario to the loss limited scenario, the BER will increase
again although the dispersion is compensated better. Hence, a local optimum
is expected in the hashed area where a balance between the degradations due
to loss impairments and the degradations due to residual dispersion exist. This
local optimum will be at a low BER about 10−3. The exact filter state where
this local optimum will be reached depends on the actual power budget and can
not be generally predicted.

Once more, the amount of information that is accessible by the control algo-
rithm determines the possible ways to deal with that challenge. If no information
about the current filter state is available the current bit error rate has to be eval-
uated. If an optimum is found at a high bit error rate, it can be tried to invert
the filter (i. e. changing the filter state by 180◦) to get to the opposite point in
the BER vs. filter state curve (Figure 5.2) and restart the optimization process.
However, if the state with the low BER already was the optimum, this may lead
to severe outage times of the signal because the filter will never settle on a filter
state and keep on re-iterating.
When monitor ports are available to provide information about the filter state
these monitor signal can be used for the decision whether a filter inversion is
necessary or not. For example, the power distribution between the monitor ports
and the output port (see chapter 5.2.2) can be used to determine the filter state.
If a significant amount of the input power is measured on the monitor ports the
filter is in rejection state because of power conservation (the delay line filter is a
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passive device). In that case, it makes sense to invert the filter and restart the
BER optimization process. With full knowledge about the compensator, i. e. its
current state as well as its control behavior a deterministic setting to the wanted
filter state is the best solution.

Figure 5.2: Control behavior of dispersion compensating device

5.1.1 Iterative setting

If only the receiver BER is available an iterative approach has to be followed.
Keeping in mind the control behavior depicted in Figure 5.2, the gradient of
the BER vs. control variable characteristic can be used. This is possible for all
characteristics that have only one minimum and one maximum.
The BER value of the last state of the compensator (BER1, Phase1) and the
current pair of BER value and control variable (BER2, Phase2) are used to
calculate the new value for the control variable

Phase3 = (Phase2 + ∆Phase) mod 360◦ (5.1)

with

∆Phase← ∆Phase sign
[

log10

(

BER1

BER2

)]

. (5.2)

Figure 5.3 illustrates that approach. In Figure 5.4 the dependency of the iterative
setting of the dispersion compensator with different fixed step sizes of 5◦ , 10◦

and 20◦ can be seen. The actual time to convergence depends on the hardware
of the dispersion compensator. It can be calculated multiplying the setting time
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Figure 5.3: Gradient analysis for iterative adjustment of the dispersion com-
pensator control variable

for one change of the control variable by the respective number of iterations.
Obviously, a bigger step size leads to a quicker convergence but at the optimum
small fluctuations of the BER can lead to instabilities (the ”spikes” in the blue
curve). On the other hand, small step sizes lead to more stability at the cost of
a slower convergence. For this case, a step size of 10◦ was a good compromise
between speed and stability.

In the case that more information about the system is available, the conver-
gence speed and stability can be improved by setting the step size adaptively.
Near the goal BER, the steps will be smaller improving the stability and the max-
imum step size is applied for a high BER. This leads to a very fast convergence
and high stability at the optimum. Figure 5.5 shows that a huge maximum step
size of 100◦ leads to the best results. This approach is more stable and faster
than using a fixed step size of 10◦ chosen before.

5.1.2 Deterministic setting

Using a monitoring device that provides information about the amount of degra-
dation a deterministic approach may be followed. The required channel monitor
provides the goal value of the dispersion compensator state that has to be set.
Theoretically, the dispersion compensator can be set to the right value. Depend-
ing on hardware and estimation issues, a small correction might be necessary.
However, the deterministic setting is intrinsically quicker and more stable than
an iterative method. Figure 5.6 shows the results of a scenario where the de-
terministic setting is in advantage compared to the iterative method with an
adaptive step size which is also very fast and reliable. In this scenario, the
residual dispersion steps from -128 ps/nm to -160 ps/nm. This leads to a situ-

94



5 Control algorithms for filter adaptation

Figure 5.4: Iterative control behavior with a fixed step size of 5◦ , 10◦ and
20◦

ation where the system is outside its specifications, i. e. the goal BER can not
be reached any more even using the dispersion compensator. The determinis-
tic approach tunes the dispersion compensator so that the best possible BER
is reached and maintained. The iterative approach (that performed nearly like
the deterministic approach before) gets unstable because the specified goal BER
can not be reached any more. Deterministic setting requires additional hardware
effort (the channel monitor), though.

5.1.3 Results

The results of the previous sections are summarized in Table 5.1. If channel
monitoring is available, the deterministic setting of the dispersion compensating
device is always the best choice: The adaptation speed is only limited by the
device hardware. Furthermore, the best possible BER will always be reached
by setting the dispersion compensator to its corresponding state. However,
implementing a channel monitor means extra effort.
Without such a monitoring device, the optimal compensator state has to be
found iteratively. Taking into account extra system information will make this
procedure faster and more reliable. However, wrong assumptions can turn this
advantage into a penalty. Yet, a simple stepwise testing for the best compensator
state is always possible.
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Method Adaptation
speed

Convergence Complexity

Iterative,
fixed step
size

depends on
step size: huge
step size →
faster

depends on
step size: huge
step size →
worse

low: current
BER, last
BER, last
step

Iterative,
adaptive
step size

high very good:
small steps in
the vicinity
of the opti-
mum under
the precondi-
tion that the
correct reach-
able BER is
known; stable
maintaining of
the optimum
under known
operating
conditions

moderate:
current BER,
reachable
BER, last
BER, last
step

deter-
ministic

maximum
(only limited
by hardware
speed), inde-
pendent from
initial state

guaranteed
finding and
maintaining of
the optimum

high: moni-
tor for chan-
nel estimation
needed

Table 5.1: Properties of control algorithm classes
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Figure 5.5: Iterative control behavior with an adaptive step size of maximal
50◦ and maximal 100◦ compared with 10◦ fixed step size

Figure 5.6: Deterministic vs. iterative control at residual dispersion step
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5.2 Example implementations

On a control PC, the filter control algorithms were implemented. Information
was retrieved from the monitor ports of the filter introduced in chapter 3.4.1.
Implementation aspects of the filter will be discussed in chapter 6. For this task,
the speed of the GPIB bus was sufficient to set the phase shifters in the filter.
In the following, two implemented filter control algorithms will be explained:
The most basic task is to center the filter transfer function on the signal. On
this basis, the centered filter is set to a defined state which can be used for
autonomous dispersion compensation.

5.2.1 Wavelength centering

The amplitude transfer functions of the optical delay line filter’s monitor ports
(chapter 3.4.1) can be used for wavelength centering.

Figure 5.7: Measured passband (10 ps/nm dispersion, 50 GHz FSR), monitor
1 and monitor 2 transfer function and 10 Gbit/s NRZ spectrum

Figure 5.7 shows the measured filter ports and an uncentered 10 Gbit/s NRZ
signal. The filter state used for the measurement compensates for 10 ps/nm
dispersion. For this measurement, the prototype with 50 GHz FSR was used.
The figure illustrates the basic idea behind the wavelength centering algorithm:
Ideally, the transfer functions of the monitor ports are perfectly symmetrical to
each other with the channel center as symmetry axis. That was derived and
discussed in chapter 3.4.1. However, the couplers used to realize the filter are
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Figure 5.8: Monitor 1 and monitor 2 output power with respect to spectral
position of the signal (normalized to channel bandwidth)

Figure 5.9: Flow chart of wavelength centering algorithm
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not 100% equal (which was assumed in the mathematical description) and they
also have small imbalances in their coupling coefficients so that they do not
follow perfectly the coupler model from 2.4.3. This leads to slight unbalances
of the transfer functions (passband, monitor 1 and monitor 2) with respect to
the channel center. Chapter 6 discusses the realization of the filter and effects
of imperfections more detailed.
Depending on the spectral location of the signal, the power at the symmetrical
monitor ports varies because the ports work as spectral filters. Figure 5.8 shows
that power variation. The amount of power measured at the ports indicates
the spectral position of the signal. Due to the symmetry of the monitor ports
with respect to the passband port both monitor ports should have the same
power when the signal is centered in the passband port. Centered this way, the
passband has minimal attenuation and distortion. The power difference between
the monitor ports indicates the misalignment of the signal enabling the filter to
be tuned deterministically to its right center wavelength

∆λ ∼ Pmon1 − Pmon2 . (5.3)

Approximating the power difference Pmon1 − Pmon2 in dB (see Figure 5.8)
linearly around the channel center, the wavelength set value can be calculated
with the power slope (that depends mainly on the filter transfer functions) ∆P

∆λ
.

Typically, the power slope ∆P
∆λ

varies from 40 dB/nm to 90 dB/nm depending
on the filter transfer function. For the wavelength setting, a medium value is
taken. The adaptive loop that keeps the filter centered corrects any inaccurate
power slope value during its iterations as long as the sign of the slope is correct.
In the experiments, the convergence of the algorithm was very good.
Introducing a threshold for the power difference stabilizes the algorithm because
not every small power change leads to an action. Figure 5.9 shows a flow chart
of this deterministic wavelength centering algorithm using the monitor ports.

It is worth mentioning that the wavelength centering algorithm not only works
for one channel but also in WDM operation. In that case, the powers of the
different WDM channels weighted by the monitor ports are detected by the
monitor diodes where the sum of all channels forms the powers Pmon1 and
Pmon2. This approach will only lead to suboptimal results when the grid of the
signals and of the filter does not match.

5.2.2 Autonomous dispersion compensation

For autonomous dispersion compensation, the following tasks have to be solved:
centering the filter, measuring the signal dispersion and tuning the filter to a
state that compensates this dispersion. The wavelength centering algorithm
from the previous chapter will be used for filter centering. Nonlinear detection
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using a Si avalanche photo diode (chapter 4.2) will be used for dispersion moni-
toring. Finally, setting the filter to a certain state requires the knowledge of the
current filter state.

Taking into account that the signal power Pin is split into the monitor ports
Pmon1, Pmon2 and the passband port Pout and that the filter insertion loss L is
constant it can be written

Pin − L = Pout + Pmon1 + Pmon2 . (5.4)

Assuming a centered filter, the monitor port powers are equal Pmon1 = Pmon2 =
Pmon. The passband port power depends on the filter state, i. e. the filter state
determines the power split ratio between the passband port and the monitor
ports. Thus, knowing the input power, the filter current state can be observed
by measuring the monitor port power Pmon.

Figure 5.10: Setup for autonomous dispersion compensator using monitor
ports

The algorithm depicted in Figure 5.11 is realized using the setup shown in
Figure 5.10: The optical delay line filter provides the passband port and the
monitor ports. The passband port outputs the compensated signal and the
monitor ports provide the signals for the control algorithm. The monitor ports
are connected to a switch so that one linear detector (power meter) and one
nonlinear detector are enough for both ports. When the power of monitor port 1
is measured, at the same time the nonlinear signal of monitor port 2 is measured
and vice versa. Finally, the control algorithm sets the filter to its right state
depending on these values.
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Figure 5.11: Flow chart of autonomous dispersion compensation algorithm
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Experiments

The filter state for the experiments was controlled by the power of the monitor
ports using equation (5.4). The goal filter state that shall be set can be de-
termined analytically using a dispersion monitor or iteratively by the algorithms
mentioned before. Here, the aim was to set the filter to a state where the out-
put port has a low attenuation. Reaching this state can be verified very easily
measuring the power at the passband port. In the experiments the monitor ports
were forced by the algorithm to stay below -15 dBm. The filter states and the
center wavelength of the filter were controlled by the phases ϕ1 and ϕ2 (see
Figure 3.5) that were set using the temperatures T1 and T2. As only two vari-
ables are needed to adjust filter state and center frequency (see chapter 3.4.1),
the phase shifter ϕ3 is held constant. Hence, in Figure 5.12 the temperature T3

controlling ϕ3 is not shown.
The goal of the algorithm is to prevent the filter from drifting once it settled on
the desired filter state. Here, that means to maintain a stable power at the filter
output port. The measurements were performed in an air-conditioned lab where
the environmental temperature is constant within 1◦. Additionally, the filter
was isolated from environmental influences. The drift that can be observed and
that has to be compensated originates mainly in coupling between the different
temperature control elements (described in chapter 6.1.3) for the filter tuning.
Figure 5.12 shows over a time of one hour the behavior of the filter under the
control of that algorithm. In the upper part, the powers of the filter ports (mo-
nitor 1, monitor 2 and output) are shown. In the lower part, the corresponding
temperatures T1 and T2 controlling the phases inside the filter structure are
plotted.
At 1O, the filter is set to the state where the condition that the powers of the
monitor ports are below -15 dBm is fulfilled. At 2O, 3O and 4O the filter has
drifted so far that a control action is required: The power at the monitor port 1
was bigger than the threshold of -15 dBm. Monitor port 2 stays on a low power
level. That means, the filter has to be slightly recentered. Only one temperature
step is necessary to set the filter again at its correct position. The blue curve
showing the measured power of the output signal stays within this time at a
stable power of -6.15 dBm ± 0.15 dBm. However, at 5O, monitor 1 and moni-
tor 2 were above the limit. That means the transfer function changed and had
to be re-adjusted to ensure a low insertion loss of the filter output function (or
a certain dispersion at another scenario). Therefore, the filter transfer function
also had to be adjusted bringing the dispersion compensator back to its point
of operation.

The filter is stable without interaction in a timerange in the tens of min-
utes. After that time, the algorithm ensures a one-step recentering of the filter
without any influence on the output port power or a few-step readjustment of
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Figure 5.12: Filter output powers and values of the temperature controllers
setting ϕ1 and ϕ2 with respect to time in an air-conditioned
environment

the filter transfer function. This was enabled by the analytical description and
deterministic setting of the temperature values controlling the phase shifters of
the structure.
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monitor

The location of an autonomous WDM-capable dispersion compensator in the
network is not restricted to the receiver. Generating its own control signal for the
dispersion compensator, it may be also placed in the links after static dispersion
compensation or at ROADM sites.
Thus, the device consists of two parts: the compensator part and the monitor
part. It is realized as a fiber optic delay line filter. This ensures a low insertion
loss and considerably low polarization dependency. However, a fiber optical
solution limits the compensator to filter order N = 2. Multi-stage architectures
can not be fabricated in fiber optics1. Second order dispersion compensation
filters can be described analytically (see chapter 3.4.1).

6.1 Filter elements

The elements of an optical delay line filter are couplers, delay lines and phase
shifters. These elements can be realized in different technologies. To ensure a
low insertion loss, fiber optic couplers were used. The delay lines are realized as
fiber length differences in the paths. Additionally, parts of the fiber were heated
to produce a phase shift. Although this fiber optic phase shifter is comparably
slow, it is a proven technology in our lab suitable for prototype measurements.

6.1.1 Fiber optic couplers

The fiber optic couplers can be manufactured in our lab with arbitrary coupling
ratios. These couplers have a low insertion loss (i. e. they can be treated as
lossless couplers in the analytical model in section 3.4.1) and a low polarization
dependency2. The in-depth description of the couplers and the manufacturing

1In a one-stage-filter, the delay is realized as a length difference between the arms. In
multi-stage-filters, absolute lengths have to be considered [26]. Thereby, the tolerances
are too tight to be reached with fiber optics.

2This includes polarization dependent loss as well as the polarization dependent
coupling ratio leading to a polarization dependent transfer function.
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process can be found in [13]. In this work, these couplers are used as a building
block that was characterized and modeled by its idealized S parameter matrix3

S =















0 0 0 κ κ′ κ′

0 0 0 κ′ κ κ′

0 0 0 κ′ κ′ κ
κ κ′ κ′ 0 0 0
κ′ κ κ′ 0 0 0
κ′ κ′ κ 0 0 0















. (6.1)

The influence of the frequency dependency κ(f) is small enough to be neglected
here.

6.1.2 Fiber delay lines

The purpose of the delay lines is to realize the temporal delays for the delay line
filters mentioned earlier in chapter 2.4.1. A fiber of length L leads to a unity
delay

T =
1

FSR
(6.2)

that determines the free spectral range FSR of the filter structure. Taking into
account the propagation speed inside the medium, the length can be calculated

L =
c

FSR neff
(6.3)

neglecting the chromatic dispersion of the fiber (that leads to only small changes
in length which can’t be realized, anyway). For a typical free spectral range of
FSR = 100 GHz and with an effective refractive index neff = 1.44625 the
length of the delay line computes to L = 2.0729 mm. This length of the delay
line is realized as a path length difference between the different paths of the
filter structure.

6.1.3 Phase shifters

Phase shifters can be realized using many different physical principles. The fiber
can be stretched using a piezo. It is also possible to take advantage of the
Pockels effect in Lithium Niobate. For the demonstrator it was decided to use
a heating element to locally change the temperature of the fiber.

3This matrix is a special case of the coupler matrix (2.48) in chapter 2.4.3. It
was researched in chapter 3.4.1 when the dispersion compensation filter was described
analytically.
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Heating or cooling of the fiber over the length LH causes two effects: The
fiber becomes longer (∆LH) and changes its refractive index (∆n). Both effects
influence the optical path LH,opt by ∆LH,opt

LH,opt + ∆LH,opt = (neff + ∆n)(LH + ∆LH) . (6.4)

The phase depending on the temperature at the optical frequency ω0 is

ϕ+ ∆ϕ =
ω0

c
(LH,opt + ∆LH,opt) (6.5)

where c is the speed of light. It can be regarded as independent from frequency
assuming small changes around ω0. Thus, the temperature dependent optical
path difference is

∆LH,opt(∆T ) =
(

dNeff
dT

L+Neff
dLH
dT

)

∆T (6.6)

with the group refractive index Neff , the temperature dependency of the group

refractive index
dNeff

dT
and the temperature dependency of the length dLH

dT
.

This dependency is nearly linear which can also be seen in Figure 6.1. These
phases were measured by comparing the transfer functions of the different filter
states with the transfer functions calculated using the theoretical model. The
measurements were carried out using the phase shifter that is included in the
dispersion compensator prototype (chapter 6.1.3). This phase shifter influences
a fiber length of about 3 mm. This leads to a temperature difference of 10 K
being enough to provide all phases from 0-360◦ to address all filter states.

There is a trade-off between the length of the fiber that is influenced and the
temperature difference needed for a phase change of 360◦. Longer fiber sections
require a smaller temperature difference which can be set faster. However, this
smaller temperature difference has to be adjusted more exactly. The time to
set the phase depends on the requirements inherited from the network: Is the
chromatic dispersion varying slowly or are there abrupt changes (e.g. due to
optical switching).

6.2 Dispersion compensator and Monitor

The two parts of the device - dispersion compensator and monitor - are linked
with each other by the shared filter elements (couplers, phase shifters, delay
lines). The monitor part is flexible with respect to the resulting transfer func-
tion of the monitor ports. It can be described using the equations derived in
chapter 3.4.1. However, for the compensator it is important to realize a maxi-
mum tuning range. Thus, the design of the compensator and monitor shall be
optimized for the compensation part.
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Figure 6.1: Dependency of the phase on the temperature of the fiber heating
element

The dispersion compensator can be tuned using its phase shifters. The 3x3-
couplers determine the tuning range where the constraints are optical bandwidth
and group delay ripple of the filter. To achieve the maximum tuning range,
the coupling coefficients of the 3x3-couplers can be optimized for a specific
modulation format and bit rate. Here, this will be performed for a promising
candidate for 100 Gbit/s transmission. The residual dispersion compensator will
be optimized for a 112 Gbit/s polarization multiplexed RZ-DQPSK signal.

6.2.1 Analysis and Optimization

Figure 6.2: Simulation setup for optical bandwidth and group delay ripple
border conditions

The dispersion compensator has an amplitude transfer function and a phase
transfer function. The imperfections of the filter transfer function that affect the
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signal are the optical bandwidth and the group delay ripple. System simulations
using VPI TransmissionMaker were performed to find the critical conditions
for the optical bandwidth and the group delay ripple. Figure 6.2 shows the
simulation setup to determine the border conditions for the evaluated 112 Gbit/s
polarization multiplexed RZ-DQPSK signal. To determine the filter properties,
only a single polarization was simulated (56 Gbit/s). The benchmark is the bit
error rate depending on the received optical power.

Optical bandwidth

Figure 6.3: Influence of the 3 dB bandwidth on the bit error rate

The optical bandpass filter was modeled by a gaussian shaped band pass filter.
The center frequency of that filter equals the carrier frequency of the optical
signal. Varying the 3 dB bandwidth showed that the bandwidth should not drop
below 30 GHz to provide a good performance. This result matches very well the
results measured with a similar format [14].

Group delay ripple

The group delay ripple of the optical delay line filter was modeled by a sinusoidal
function. Within 10 GHz, the ripple amplitude forms half a period of a sinus
function. The amplitude transfer function of the filter is an allpass. Figure 6.4
shows the influence of a sinusoidal ripple that is present over the full FSR of
the filter. It can be seen that a ripple of less than 10 ps is acceptable for this
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Figure 6.4: Bit error rate with respect to ripple amplitude, sinusoidal ripple
is present over the full FSR

Figure 6.5: Bit error rate with respect to spectral position of the ripple (10 ps
sinusoidal ripple with 10 GHz bandwidth shifted inside the spec-
trum, FSR of 100 GHz with the carrier located at 50 GHz)
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modulation format.
In a second step, the dependency on the spectral position of the ripple was
investigated. A ripple of 10 GHz spectral width was inserted at different fre-
quencies (Figure 6.5). Ripples near the carrier have a bigger influence because
they affect a bigger amount of spectral power. However, the ripple simulated
before over the full FSR can be regarded as the worst case. Thus, taking the
values from Figure 6.4 provides an extra margin when the actual ripple is away
from the carrier.

Optimization

Figure 6.6: Coupling ratio with respect to dispersion tuning range for a filter
with 100 GHz FSR, an optical bandwidth of 35 GHz and a group
delay ripple of 10 ps

Using the equations for the optical bandwidth and the mean dispersion de-
rived in chapter 3.4.1 the coupling coefficient of the 3x3 fiber coupler can be
optimized for a maximum continuous tuning range. The border conditions are
taken from the system simulations. The optical bandwidth was identified to be
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critical for the system performance. Some margin was added for manufacturing
and implementation inaccuracies to ensure a bandwidth of more than 30 GHz
for the final prototype. The optimization process is run for an optical bandwidth
of 35 GHz. The maximal group delay ripple was set to 10 ps. The free spectral
range is set to 100 GHz to comply with the ITU grid. The computations show
that for decreasing coupling coefficients the mean dispersion increases but the
optical bandwidth decreases. Thus, the optical bandwidth is the limiting pa-
rameter in this scenario (Figure 6.6) leading to the optimal coupling coefficient
κopt = 0.69. This leads to dispersion tuning range of about 120 ps/nm which
is enough for residual dispersion compensation. Therefore, the 3x3 couplers will
be manufactured with a design power coupling ratio of 48%/26%/26%. Fi-
gure 6.7 shows the tuning behavior of that optimized filter including the filter
states where the compensator complies with the bandwidth and with the group
delay ripple condition. The mean dispersion versus phase dϕ1 is nearly linear.

Figure 6.7: Tuning behavior of the optimized dispersion compensator using
the coupling coefficient κopt = 0.69
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6.2.2 Realization

Realizing the delay line filter introduces a number of imperfections to be con-
sidered for the fiber couplers, the fiber delay lines and the phase shifters.

Fiber couplers

Polarization dependent coupling ratios of the fiber couplers lead to a small
frequency shift of the filter transfer function. At the minima of the filter transfer
functions, these small frequency shifts cause a considerably high relative shift
of power. That power difference can be treated as a polarization dependent
loss of the filter at these points (according to the definition of PDL). This
behavior could be measured. However, for the performance of the filter it is not
important due to the fact that the dispersion compensator is always operated
at its passband. There, the small frequency shifts lead only to a small amount
of PDL (0.5 dB).

Filter delay lines

The exact identity of the different unity path length differences is of importance
for the WDM capability of the delay line filters. The general transfer function
of a second order delay line filter is given by

H(ω) = b0 + b1e
jωT1ejϕ + b2e

jωT2 (6.7)

where bi are the weighting factors due to the coupling ratios of the two 3x3 cou-
plers, T1 and T2 are the relative delays in the paths two and three, respectively,
caused by the path length differences ∆L1 and ∆L2 and ϕ is the phase set to
tune the filter transfer function. Using the fundamental delay T = 1

FSR
, it can

be defined
T2 = 2T (6.8)

and
T1 = T + τ (6.9)

where for optical delay line filters the difference between the delays is small
compared to the fundamental delay

τ ≪ T . (6.10)

In the ideal case, τ equals zero. Thus, the transfer function can be written as

H(ω) = b0 + b1e
jωT ejϕejωτ + b2e

jω2T . (6.11)
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This means that the resulting phase in the path with the delay T is frequency
dependent

Φ = ϕ+ ωτ . (6.12)

The phase difference between two frequencies separated by ∆f is

Φ(ω1)− Φ(ω0) = ϕ+ ω1τ − ϕ− ω0τ = 2π∆fτ . (6.13)

Therefore, between two channels separated by 100 GHz4 the phase changes by
1.8◦ when the free spectral range (the delay) between two paths differs by 1 GHz
(τ =100 fs). For 100 channels (80 nm), this relates to a phase change of 180◦.
Hence, the filter states of the different channels change within the wavelength
(due to the delay difference τ ) in a way a single wavelength channel changes with
temperature (due to the phase ϕ). The phase change of the example (180◦)
means an inversion of the filter characteristic over the wavelength band and is
therefore unacceptable.
An early filter prototype with a FSR difference of about 5 GHz between the paths
was measured. Over 80 nm, this FSR difference equals a phase change of 900◦.
In the measurements of the filter transfer functions over the full wavelength
range 2.5 tuning cycles of the filter transfer functions could be observed which
fits well with the calculated 900◦.

It is worth mentioning that this effect can be used for dispersion slope compen-
sation: The FSR mismatch leads to a wavelength-dependent filter state. When
the filter states in adjacent channels differ due to a controlled FSR mismatch the
generated dispersion changes and therefore the filter can also compensate for
dispersion slope. Tuning the dispersion leaves the dispersion difference between
the channels unchanged. Thus, only a fixed slope can be compensated. Further-
more, this approach limits the dispersion tuning range. The channel with the
highest wavelength and the channel with the lowest wavelength both have to be
in valid states when tuned to the limits. Hence, the tuning range is reduced by
two times the dispersion change due to the generated dispersion slope between
the upper and the lower channel.

6.3 Device characterization

Characterizing a fiber optic dispersion compensator has to be carried out for
the amplitude and the phase transfer function. The tuning behavior has to
be assessed. This kind of evaluation can be performed using an optical vec-
tor analyzer (OVA). An OVA provides frequency-resolved phase, amplitude and
polarization information for the device under test. In the lab, an optical vector
analyzer built by Luna Technologies was used. The Luna OVA EL provides up to

4typical when the channels are placed in the ITU grid
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1.6 pm resolution, a dynamic range of 60 dB and an accuracy of the chromatic
dispersion measurement5 of 5 ps/nm.

Using a control PC, the measurements were automatized. The control PC
sets the temperature controller to the respective values for tuning the dispersion
compensator. The optical vector analyzer is also controlled so that measure-
ments can be started automatically when the filter is set to a new state. Finally,
the output ports of the filter can be switched so that all three output ports can
be evaluated for a given filter state without changing the wiring. Figure 6.8a)
shows that setup. The complete characterization procedure starts with the cali-
bration of the optical network analyzer. After the calibration, the losses induced
by the switch and the connections as well as the internal frequency character-
istic of the OVA are canceled out. Then, for all filter states the temperature
controller is programmed to the respective values and the characteristics are
measured and saved for further processing (Figure 6.8b)).

Figure 6.8: a) Setup for measuring dispersion compensator characteristics b)
Algorithm for automatic measurement

The final processing is performed in a MATLAB program. This program
automatically detects the filter properties such as free spectral range, optical
bandwidth, mean dispersion, group delay ripple etc. There is a compensation
for drifts during the measurements, noise impacts are taken into account and the

5The chromatic dispersion is calculated internally as the second derivative from the
phase response. A time-domain filter suppressing noise was applied.
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data is graphically represented. More details on this software that was created
to support an efficient characterization of the optical filters can be found in [28].

6.3.1 Single channel characterization

The filter designed and realized in chapter 6.2 was measured. The FSR was
100 GHz, the couplers were chosen to provide a coupling coefficient of κ ≈ 0.69
for an optical bandwidth of 35 GHz. The estimated dispersion tuning range
fulfilling ripple and bandwidth demands was simulated to be -60...60 ps/nm.

Using the evaluation software, the optical 3 dB-bandwidth was estimated to
be at least 35 GHz leading to a tuning range of -55...60 ps/nm at a tempera-
ture resolution of the temperature controller of 0.5 K. The group delay ripple
was well below 1.5 ps. The insertion loss increases slightly with the produced
dispersion due to the amplitude transfer function of the filter. Finally, this limits
the maximum dispersion by lowering the filter bandwidth as expected from the
simulations. Figure 6.9 summarizes the measurement results for a temperature
tuning range of 26-33 ◦C with a dispersion tuning range (valid filter states) of
27.5-31 ◦C. The estimated free spectral range was 98.8 GHz. The PMD was
measured to be maximal 5 ps inside the channel and below 2 ps at the channel
center. The PDL was below 2.5 dB in the whole channel and below 1.5 dB in the
channel center. PMD and PDL are caused by a polarization dependent transfer
function that mainly shifts the whole filter characteristic in the frequency range
due to polarization dependent coupling ratios of the couplers. The dispersion
compensator was not optimized for PMD and PDL. For an optimization the
manufacturing of the 3x3 fiber couplers has to be improved which is out of
scope of this work. Currently, the coupling coefficient changes less than 2%
with polarization whereas less than 0.5% would be appreciated for low PDL and
PMD values. However, the actual impact of the polarization dependent coupling
ratio is hard to simulate as it depends on the polarization orientation of the two
couplers and therefore on the polarization rotation in the fiber network.

The transfer function for the measured filter was estimated to

HF (z) = 0.3631(0.124 + 0.613z−1ejϕ + 0.1623z−2) . (6.14)

From theory (section 3.4.1) the filter coefficients b0 and b2 should be equal.
However, the 3x3 couplers have coupling coefficients that do not perfectly match
the 3x3 coupler model causing the imbalance b0 = 0.124 vs. b2 = 0.1623. This
imbalances introduces an asymmetry of the transfer function with respect to the
channel center. Using the estimated transfer function, theoretical values from
the simulation and measured values for the transfer function match very well.
These measured and simulated filter characteristics of the channel centered at
193.1 THz are shown in Figure 6.10. The different filter characteristics were
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Figure 6.9: Single channel measurement results for a 100 GHz FSR disper-
sion compensation filter
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adjusted by varying the phase ϕ in the transfer function (6.14) (28 ◦C, 29 ◦C
and 30 ◦C for the temperature controller).

6.3.2 Multi channel characterization

Using the full scan range of the OVA (83.5 nm), 104 channels of 100 GHz
bandwidth could be measured. Figure 6.11 shows the measurement results of
all filter channels when the filter produced about 15 ps/nm chromatic disper-
sion (temperature controller set value: 29 ◦C). Over that huge bandwidth, the
channel bandwidth increased by 2.5 GHz. That is less than 10% of the nominal
bandwidth. There was also a small decline of the mean dispersion with increas-
ing wavelength. Over all 104 channels, the dispersion stayed within a range of
±10 ps/nm. The majority of the channels shows the dispersion value with a
deviation of ±5 ps/nm. Both effects are caused by the slight mismatch between
the delays in the two arms. This effect was discussed in 6.2.2 and can be avoided
by an improved manufacturing process. For the measured dispersion compen-
sation filter, a FSR mismatch of only about 100 MHz could be estimated. The
FSR of the filter is 98.8 GHz, i. e. the delays were produced with an absolute
accuracy of 1% and a relative accuracy of 1�.

The channel ripples were even below 1 ps in all channels for that filter state.
There was no significant change in the filter insertion loss: The channel center
insertion loss showed a deviation of only about 0.1 dB over the whole band-
width. Figure 6.12 shows the superimposed amplitude transfer functions of all
104 dispersion compensator WDM 100 GHz channels that could be measured.
It can be seen that all the channels have a nearly identical behavior.

The device characterization showed the results expected from the theoretical
investigations and simulations. Thus, the device model can be regarded as valid
for that type of filter. The overall results are satisfying. Now, the device can be
tested for its system performance.

6.4 System characterization

To verify the filter performance in a real WDM environment and to assess the
compatibility with system components, the dispersion compensator was tested
in the Deutsche Telekom OCTET testbed [5] in Berlin. Aspects of these ex-
periments were the interaction of the compensator with multiplexing and de-
multiplexing filters and the compatibility with existing transmission systems and
transmission formats. The dispersion compensation itself was not focused here
because of the comparably low used data rates. Impacts of the dispersion com-
pensator due to the produced dispersion were too small to be observed. However,
the tuning was observed using the amplitude transfer function that changes pro-
portionally to the produced dispersion with the filter state as known from the
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Figure 6.10: Simulation results and measurement for dispersion compensator
for different filter states
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Figure 6.11: Multi channel measurement results for a 100 GHz FSR disper-
sion compensation filter: Filter state 29◦ C
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Figure 6.12: 104 superimposed channels (83.2 nm) of a 100 GHz FSR dis-
persion compensation filter: Filter state 29◦ C

analytical model and the device characterization.
Thus, in a multi channel environment it was investigated:� Wavelength tuning of the filter (center frequency setting)� Wavelength stability of the filter� Amplitude transfer function (insertion loss) for different WDM channels.

For a single channel, bit error rate and eye diagrams were measured in the WDM
environment and in the lab.

6.4.1 Multi channel measurements

The multi channel measurements were performed using a Pirelli 8 channel
DWDM system with a 200 GHz channel grid. This system operates on the WDM
link Berlin-Hannover-Darmstadt. The test signal for the dispersion compensator
is the Berlin transmitter monitor port signal amplified by a Photonetics Fiber-
amp BT-1400 EDFA. Table 6.1 provides the nominal wavelengths, the measured
powers and the data rates of the channels of this WDM system. The spectra
and powers were measured with an HP optical spectrum analyzer (resolution
0.1 nm).

Except for channel 8, the measured wavelengths (see Figure 6.13) of the
channels match with the nominal wavelength in Table 6.1. Channel 8 has a
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chan-
nel

nominal wave-
length / nm

power /
dBm

data rate

1 1547.72 N/A inactive
2 1549.32 -8.55 STM-4 (622.08 MBit/s)
3 1550.92 N/A inactive
4 1552.52 -5.48 STM-16 (2488.32 MBit/s)
5 1554.13 -4.85 STM-64 (9953.28 MBit/s)
6 1555.75 -6.35 STM-16 (2488.32 MBit/s)
7 1557.36 -6.02 STM-16 (2488.32 MBit/s)
8 1558.98 -5.26 STM-16 (2488.32 MBit/s)

Table 6.1: Channels in WDM link Berlin-Hannover-Darmstadt at Berlin Tx

deviation of about 0.2 nm, i. e. channel 8 is outside the WDM grid. Due to
the fact that the compensator is fixed to the WDM grid by its FSR (see chapter
2.4.1 and 6.1.2), either the filter can be tuned to match channels 1-7 (where
channels 1 and 3 are inactive) or it can be tuned to optimize it for channel 8.
Figure 6.13 shows the spectra after the dispersion compensation filter when it
is tuned manually to match channel 2, to match channel 8 or when it is tuned
by the wavelength centering algorithm (from chapter 5.2.1). The respective
channel powers are shown in Figure 6.14. Optimizing manually for channel
two leads to an overall power of -2.52 dBm. The filter state achieved by the
wavelength centering algorithm is also nearly identical (-2.84 dBm). The slightly
worse performance can be explained by channel 8 being outside the grid. When
manually tuned, this channel can be “ignored”. This is not possible for the
algorithm. Thus, channel 8 results in slightly higher powers where all the other
channels are slightly worse. Adjusting the filter manually for channel 8 leads to
a much higher power for this one channel. Yet, all other channels are attenuated
more so that the overall power is only -6.4 dBm.

Out of this, the insertion loss for the compensator (including all connectors
and adapters) could be calculated (Figure 6.15). Optimizing the center fre-
quency to channel 2 leads to a mean insertion loss of 3.63 dB with a variance of
0.26 dB (neglecting channel 8). The wavelength centering algorithm introduces
a higher insertion loss in the channels 1-7, 4.13 dB±0.375 dB. However, these
results match very well. The manual setting is about 0.5 dB better for the
channels 1-7 but it attenuates channel 8 stronger. Optimizing the filter cen-
ter frequency for channel 8 does not lead to useful results. The values for the
channels 1-7 have a huge variance with unacceptable attenuations of more than
10 dB for most of the channels. However, the attenuation value for channel 8
(3.58 dB) is comparable to the values measured for the other channels when
optimized to these channels.
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Figure 6.13: Spectra after the dispersion compensator: Center frequency op-
timized for channel 2, out-of-grid channel 8 and automatically
wavelength-centered

One important requirement for the compensator is that the same transfer
function is provided for adjacent WDM channels for all filter states. By setting
the free spectral range of the filter (the frequency periodicity) to an integer
fraction of the channel grid this can be achieved. The filter states are set by
adjusting the phase shifter of the filter (chapter 2.4.1 and 6.1.3). Tuning this
phase from 0-360◦ addresses all possible filter states. Characterizing the filter in
the lab (chapter 6.3) showed that the adjacent channels have the same transfer
function. This could also be shown inside the testbed. The insertion loss of
the filter was the benchmark for the filter state dependent transfer function.
Figure 6.16 shows that additional insertion loss when tuning the filter6. Except
for the out-of-grid channel 8 (1559.15 nm), the expected behavior is shown:
identical additional insertion losses for channels 2 and 4-7.

6In normal operation, the filter is only tuned to states with low insertion loss.
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Figure 6.14: Channel powers after the dispersion compensator: Center fre-
quency optimized for channel 2, out-of-grid channel 8 and au-
tomatically wavelength-centered

Figure 6.15: Channel insertion loss due to the dispersion compensator: Cen-
ter frequency optimized for channel 2, out-of-grid channel 8 and
automatically wavelength-centered
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Figure 6.16: Additional insertion loss per channel when tuning the filter
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6.4.2 Single channel measurements

Figure 6.17: Setup for single channel eye diagram measurements

Single channel measurements were performed in the system testbed using a
SDH tester operating at a data rate of 2.5 Gbit/s with a WDM system built by
ADVA Optical Networks AG (FSP II). The impact of the interaction between the
dispersion compensator and the existing multiplexing and demultiplexing chan-
nel filters was investigated replacing the link with the dispersion compensator
as shown in Figure 6.17 and measuring the eye diagrams. Hence, the signal
generated by the SDH tester is passed through the mux, demux and the filter.

Before starting the measurements, the dispersion compensation filter was cen-
tered on the channel using the method described in chapter 5.2.2. Thus, no
penalty induced by the filter is expected. This is confirmed by the eye diagram
measurements shown in Figure 6.18. The eye diagrams of the 2.5 Gbit/s SDH
test signal (Tx), in the ADVA FSP II system before the channel multiplexer
(Mux) and after the channel demultiplexer with the compensator (Rx+Filter)
and without the compensator (Rx) are plotted. A degradation of the eye diagram
due to the filter can not be seen.

Figure 6.19 a) shows the spectra of the MUX and DEMUX filtered test signal
with and without dispersion compensator. The resolution of the optical spectrum
analyzer (HP) was 0.1 nm. The optical output signal of the ADVA FSP II has
some chirp which leads usually to an asymmetric spectrum. That chirp remains
after the filtering by the dispersion compensator. Only the insertion loss of the
filter can be seen. Hence, the compatibility with the examined system can be
confirmed.
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Figure 6.18: Eye diagrams: 2.5 Gbit/s test signal, in ADVA FSP II before
multiplexing filter, after demultiplexing filter (with and without
dispersion compensator)

Figure 6.19: Spectra with and without dispersion compensator:
a) 2.5 Gbit/s NRZ (ADVA FSP II) after demultiplexing
filter, b) 10 Gbit/s NRZ (Anritsu MP1570A)
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An Anritsu MP1570A SDH tester at 9.953 Gbit/s (STM-64) was used to
asses the influence of the filter on the bit error rate. Figure 6.19 b) shows that
the Anritsu transmitter has chirp, too, that is also not affected by the filter
transfer function (except insertion loss). Therefore, for the 10 Gbit/s signal no
degradation due to the filter is expected as well. The spectrum was measured
with a Yokogawa OSA with 0.02 nm resolution.

Figure 6.20: Setup for single channel bit error rate measurements

Figure 6.20 shows the setup for the bit error rate measurement. As before,
the algorithm explained in chapter 5.2.2 was used to center the filter and set
it to a valid state (low insertion loss). Then, the bit error rate was measured
with respect to the received optical power. In Figure 6.21, no penalty between
the back-to-back case and the measurements with the dispersion compensator
can be seen. It is worth mentioning that any dispersion that can be generated
with the dispersion compensator is too small to affect a 10 Gbit/s signal as it
is inside the modulation format’s dispersion tolerance.

6.5 Dispersion slope compensator

In chapter 3.4.3, dispersion slope compensating filters were discussed. This
type of filter can be realized using a Mach Zehnder interferometer with 2x2
couplers. As pointed out there, the phase shifter would only be needed for
center frequency adjustment. For the practical investigations carried out here,
this is not of importance. Consequently, the phase shifter will not be regarded
and the filter consists of two identical 2x2 couplers.

Taking the values for the maximum slope that can be produced with a single
stage filter from Figure 3.9, the couplers were produced with a power coupling
ratio of 0.29 to achieve the maximum slope. The measured dispersion slope
compensator built with a FSR of 100 GHz and measured at 1550 nm in Fi-
gure 6.22 has the same properties as simulated (see Figure 3.9): The simulated
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Figure 6.21: Bit error rate with respect to received optical power (with and
without dispersion compensator)

bandwidth of 57% and the slope of 117 ps/nm2 match. This device could com-
pensate for about 2000 km of single mode fiber dispersion slope.
A second prototype was built to achieve the maximum bandwidth (coupling ra-
tio 18.5%). The measurement results for this device are shown in Figure 6.23.
Also here, the simulated bandwidth of 73 GHz (RBWU=73% of 100 GHz FSR)
matches the measured one. In that case, the bandwidth of the dispersion func-
tion and the bandwidth of the amplitude transfer function should be the same
(see Figure 3.9). That is nearly the case for the prototype (here, the dispersion
function has a slightly narrower bandwidth than the amplitude transfer func-
tion).
The group delay ripple of both demonstrators is very low: smaller than 0.55 ps
for the maximum slope prototype and <0.1 ps for the maximum bandwidth
prototype.
It is worth mentioning again that these devices are not tunable. Adding tunabil-
ity would require tunable couplers.
Table 6.2 summarizes the key properties of the realized demonstrators.
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Figure 6.22: Measured dispersion slope compensator with maximum slope
and FSR=100 GHz
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Figure 6.23: Measured dispersion slope compensator with maximum band-
width and FSR=100 GHz
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1st order delay line

filter:

Dispersion slope

compensator

2nd order delay line

filter:

Dispersion

compensator

(max.
slope)

(max.
bandwidth)

(50 GHz
FSR)

(100 GHz
FSR)

Free spectral
range

100 GHz 100 GHz 50 GHz 100 GHz

Bandwidth 57 GHz 73 GHz >16 GHz >35 GHz

Transfer
function
independent
insertion loss
@ channel
center

typ. 1-2 dB

Group delay
ripple in
channel

<0.55 ps <0.1 ps <6 ps <1.5 ps

Tuning range - - -90 ps/nm
..100 ps/nm

-55 ps/nm
..60 ps/nm

PDL @
channel
center

<0.1 dB <0.1 dB <1.5 dB <1.5 dB

Table 6.2: Key properties of the realized demonstrators
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The scientific development combined with the demand of carriers and system
vendors show the tendency to compensate dispersion at the receiver. Coherent
receivers will be used to enable higher spectral efficiencies. As a result, disper-
sion compensating fibers could become obsolete especially considering the fact
that nonlinearities would become the system limit when all linear impairments
are compensated. Electronic signal processing used in conjunction with coher-
ent detection can theoretically provide all filter characteristics that can also be
realized in optics because the whole optical field is mapped into the electric
domain.
Despite this, however, the actual implementation of a complete electronic dis-
persion compensation for each channel at the receiver still leaves unresolved
questions at the time of writing in 2009: Besides ADC/DAC speed, I/O capa-
bility of the chips (FPGA or ASIC), power consumption and other technological
issues, parallelization of the known algorithms is also fundamentally limited by
signal cross dependencies and delays caused by signal processing1.

Once again, there may be a chance for optical dispersion compensators at
the receiver. Additional steps in uniting the mathematical description of optical
delay line filters and digital filters (as started in chapter 2.4) can pave the way
for hybrid filters: optical filters may compensate a great deal of dispersion for
many channels at once while digital filters with a limited number of taps will
compensate for quick time-varying effects and optical filter instabilities. The
common mathematical description that pays special attention to the differences
between the optical and electronic implementation will enable a common control
at one location for both electronic and optical filters. This common control will
lead to an easier and highly effective adjustment of the optical and electronic
filter coefficients. Filter design methods from the optical domain as well as
general analytical methods can be used for the electronic filter part, too. Con-
sequently, the advantages of both optics and electronics in conjunction with one
joint control processor can improve the overall system performance.

Due to the limitations of pure fiber optics, higher order filters must be imple-
mented in planar optics. With an analytical description of the respective filter
structure, the performance of different types of structures can be assessed. This

1That means increasing the hardware effort by the factor of two (parallelization)
lowers the clock rate by the factor of two increasing the minimum delay (one clock
cycle) by the factor of two.
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performance assessment opens the door for the optimization for different appli-
cations including dispersion compensation to minimize the number of control
variables in the structure easing the control of the filter. The phase shifters
and the coupling coefficients of the couplers can be designed in such a way to
achieve maximum performance (bandwidth, tuning range) for the desired appli-
cation. Furthermore, the monitoring capabilities of the unused output ports of
these structures can be evaluated using an analytical approach.

The setup for monitoring with the use of nonlinear and linear detection can
be improved. Generally, a high filter insertion loss on the monitoring ports is
desirable because it means a low insertion loss on the compensation port. As a
result, the nonlinear setup has to be upgraded to work with lower input powers.
This would enable a joint demonstration of filter tuning and monitoring which
is impossible with the current setup. The influence of the filter transfer func-
tion during tuning has to be included. This enables real-time autonomous filter
adjustment.
Nonlinear and linear detection can also be used for other monitoring purposes.
The side-effects (e.g. dependency on OSNR) of the dispersion estimation ex-
periments can be studied in more detail and a possible application of linear and
nonlinear detection in the case of constant dispersion should be investigated.

Finally, the availability of tunable couplers allows the realization of tunable
(first order) dispersion slope compensators to be possible. Higher order disper-
sion slope compensators can be realized in integrated optics.
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Optical delay line filters can be used for various applications: the compensation
of chromatic dispersion and dispersion slope as well as dispersion monitoring.
The analytical description of delay line filters opens the way for an efficient filter
design and a convenient optimization for the corresponding application. This
description can be used for various implementations. The connection between
optical filters and digital FIR filters with complex coefficients that are used in
conjunction with coherent detection and optical filters could be shown.

In this thesis, the analytical description was used for the design and opti-
mization of tunable dispersion compensating and dispersion slope compensating
filters. Iterative approaches were also implemented to synthesize higher order
filters. The performance of all these filters was assessed.
Starting from the analytical description of the filter elements (couplers, phase
shifters and delay lines), the system parameters, such as optical bandwidth or
mean dispersion, could be derived and optimized. These special fiber optical
filters were produced. A very good match between the measured filter charac-
teristics and the expected model characteristics could be observed. In system
experiments, the filter effects on high-level quantities like bit error rate were
investigated.

Using the analytical description of the filter, dispersion monitoring approaches
were also researched. An optical delay line filter can provide the vestigial side-
bands of a signal while simultaneously providing a passband port with low atten-
uation. The group delay difference between the upper side band and the lower
side band can be used as a measure to estimate chromatic dispersion. When
dealing with data rates up to 10 Gbit/s, cost-effective electronic components
(such as mixers and amplifiers) are available to provide an electronic estimation.
In numerical simulations, the effects of different filter properties (e.g. extinction
of the filter) were analyzed.
When dealing with higher line rates, nonlinear detection is useful because the
effort of this approach does not increase with the data rate. As a consequence,
low-speed (and therefore low-power and cost-effective) electronics can be used.
In simulations, it was observed and noted that nonlinear detection can be used
not only for amplitude modulated signals but also for phase modulated formats
which are currently being considered for future transmission systems.
Both types of monitoring approaches were verified via experiments. The con-
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cepts could be successfully verified. In addition, the results analyzed demonstrate
a good match between the calculations, the simulations and the measurements.

Finally, any filter must be controlled and tuned to improve the system perfor-
mance. By using the information provided by dispersion monitoring while also
keeping in mind the analytical description, a deterministic setting can be im-
plemented. This kind of deterministic setting was demonstrated for the task of
tuning the filter center wavelength automatically to the signal carrier wavelength.
Tuning the filter to a specific state was also implemented and demonstrated. In
simulations, various control strategies were evaluated. The deterministic setting
is indeed the favorable strategy. However, depending on the available knowledge
concerning the system in question iterative approaches may also lead to good
performance.

In summary, the research in this thesis is focused on the signal processing ca-
pabilities of optical delay line filters. The compensation of chromatic dispersion
and dispersion slope was shown both theoretically and in experiments. Monitor-
ing concepts involving optical delay line filters were also proposed and tested.
Where possible, an analytical filter description and filter design were used to
enable a deterministic filter adjustment. The mathematical description used is
independent from the physical realization. Consequently, an adaptation of the
algorithms to a realization e.g. as digital filters is easily possible, when needed.
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Prof. Schäffer, I have really appreciated the supervision and support you pro-
vided throughout the entire process, as well as the opportunities you created for
my research.
Micha, thank you very much for all those insightful discussions, hints and food
for thought.
Maik, without your help in the lab, where you spent hours producing the cou-
plers and assisting me with the interferometers, producing the demonstrators
measured for this thesis would not have been possible.
Angela, your help saved me a lot of paperwork and allowed me to focus on my
research. Thank you.
Finally, I am indebted to Karen who struggled through my text helping me to
improve the language.

143


