26 research outputs found

    Characterization of multiphase flows integrating X-ray imaging and virtual reality

    Get PDF
    Multiphase flows are used in a wide variety of industries, from energy production to pharmaceutical manufacturing. However, because of the complexity of the flows and difficulty measuring them, it is challenging to characterize the phenomena inside a multiphase flow. To help overcome this challenge, researchers have used numerous types of noninvasive measurement techniques to record the phenomena that occur inside the flow. One technique that has shown much success is X-ray imaging. While capable of high spatial resolutions, X-ray imaging generally has poor temporal resolution. This research improves the characterization of multiphase flows in three ways. First, an X-ray image intensifier is modified to use a high-speed camera to push the temporal limits of what is possible with current tube source X-ray imaging technology. Using this system, sample flows were imaged at 1000 frames per second without a reduction in spatial resolution. Next, the sensitivity of X-ray computed tomography (CT) measurements to changes in acquisition parameters is analyzed. While in theory CT measurements should be stable over a range of acquisition parameters, previous research has indicated otherwise. The analysis of this sensitivity shows that, while raw CT values are strongly affected by changes to acquisition parameters, if proper calibration techniques are used, acquisition parameters do not significantly influence the results for multiphase flow imaging. Finally, two algorithms are analyzed for their suitability to reconstruct an approximate tomographic slice from only two X-ray projections. These algorithms increase the spatial error in the measurement, as compared to traditional CT; however, they allow for very high temporal resolutions for 3D imaging. The only limit on the speed of this measurement technique is the image intensifier-camera setup, which was shown to be capable of imaging at a rate of at least 1000 FPS. While advances in measurement techniques for multiphase flows are one part of improving multiphase flow characterization, the challenge extends beyond measurement techniques. For improved measurement techniques to be useful, the data must be accessible to scientists in a way that maximizes the comprehension of the phenomena. To this end, this work also presents a system for using the Microsoft Kinect sensor to provide natural, non-contact interaction with multiphase flow data. Furthermore, this system is constructed so that it is trivial to add natural, non-contact interaction to immersive visualization applications. Therefore, multiple visualization applications can be built that are optimized to specific types of data, but all leverage the same natural interaction. Finally, the research is concluded by proposing a system that integrates the improved X-ray measurements, with the Kinect interaction system, and a CAVE automatic virtual environment (CAVE) to present scientists with the multiphase flow measurements in an intuitive and inherently three-dimensional manner

    GPS-MIV: The General Purpose System for Multi-display Interactive Visualization

    Get PDF
    The new age of information has created opportunities for inventions like the internet. These inventions allow us access to tremendous quantities of data. But, with the increase in information there is need to make sense of such vast quantities of information by manipulating that information to reveal hidden patterns to aid in making sense of it. Data visualization systems provide the tools to reveal patterns and filter information, aiding the processes of insight and decision making. The purpose of this thesis is to develop and test a data visualization system, The General Purpose System for Multi-display Interactive Visualization (GPS-MIV). GPS-MIV is a software system allowing the user to visualize data graphically and interact with it. At the core of the system is a graphics system that displays different computer generated scenes from multiple perspectives and with multiple views. Additionally, GSP-MIV provides interaction for the user to explore the scene

    Mental vision:a computer graphics platform for virtual reality, science and education

    Get PDF
    Despite the wide amount of computer graphics frameworks and solutions available for virtual reality, it is still difficult to find a perfect one fitting at the same time the many constraints of research and educational contexts. Advanced functionalities and user-friendliness, rendering speed and portability, or scalability and image quality are opposite characteristics rarely found into a same approach. Furthermore, fruition of virtual reality specific devices like CAVEs or wearable systems is limited by their costs and accessibility, being most of these innovations reserved to institutions and specialists able to afford and manage them through strong background knowledge in programming. Finally, computer graphics and virtual reality are a complex and difficult matter to learn, due to the heterogeneity of notions a developer needs to practice with before attempting to implement a full virtual environment. In this thesis we describe our contributions to these topics, assembled in what we called the Mental Vision platform. Mental Vision is a framework composed of three main entities. First, a teaching/research oriented graphics engine, simplifying access to 2D/3D real-time rendering on mobile devices, personal computers and CAVE systems. Second, a series of pedagogical modules to introduce and practice computer graphics and virtual reality techniques. Third, two advanced VR systems: a wearable, lightweight and handsfree mixed reality setup, and a four sides CAVE designed through off the shelf hardware. In this dissertation we explain our conceptual, architectural and technical approach, pointing out how we managed to create a robust and coherent solution reducing complexity related to cross-platform and multi-device 3D rendering, and answering simultaneously to contradictory common needs of computer graphics and virtual reality for researchers and students. A series of case studies evaluates how Mental Vision concretely satisfies these needs and achieves its goals on in vitro benchmarks and in vivo scientific and educational projects

    Offshore marine visualization

    Get PDF
    In 85 B.C. a Greek philosopher called Posidonius set sail to answer an age-old question: how deep is the ocean? By lowering a large rock tied to a very long length of rope he determined that the ocean was 2km deep. These line and sinker methods were used until the 1920s when oceanographers developed the first echo sounders that could measure the water's depth by reflecting sound waves off the seafloor. The subsequent increase in sonar depth soundings resulted in oceanologists finally being able to view the alien underwater landscape. Paper printouts and records dominated the industry for decades until the mid 1980s when new digital sonar systems enabled computers to process and render the captured data streams.In the last five years, the offshore industry has been particularly slow to take advantage of the significant advancements made in computer and graphics technologies. Contemporary marine visualization systems still use outdated 2D representations of vessels positioned on digital charts and the potential for using 3D computer graphics for interacting with multidimensional marine data has not been fully investigated.This thesis is concerned with the issues surrounding the visualization of offshore activities and data using interactive 3D computer graphics. It describes the development of a novel 3D marine visualization system and subsequent study of marine visualization techniques through a number of offshore case studies that typify the marine industry. The results of this research demonstrate that presenting the offshore engineer or office based manager with a more intuitive and natural 3D computer generated viewing environment enables complex offshore tasks, activities and procedures to be more readily monitored and understood. The marine visualizations presented in this thesis take advantage of recent advancements in computer graphics technology and our extraordinary ability to interpret 3D data. These visual enhancements have improved offshore staffs' spatial and temporal understanding of marine data resulting in improved planning, decision making and real-time situation awareness of complex offshore data and activities

    I-Light Symposium 2005 Proceedings

    Get PDF
    I-Light was made possible by a special appropriation by the State of Indiana. The research described at the I-Light Symposium has been supported by numerous grants from several sources. Any opinions, findings and conclusions, or recommendations expressed in the 2005 I-Light Symposium Proceedings are those of the researchers and authors and do not necessarily reflect the views of the granting agencies.Indiana University Office of the Vice President for Research and Information Technology, Purdue University Office of the Vice President for Information Technology and CI

    Study, Modelling and Implementation of the Level Set Method Used in Micromachining Processes

    Full text link
    [EN] The main topic of the present thesis is the improvement of fabrication processes simulation by means of the Level Set (LS) method. The LS is a mathematical approach used for evolving fronts according to a motion defined by certain laws. The main advantage of this method is that the front is embedded inside a higher dimensional function such that updating this function instead of directly the front itself enables a trivial handling of complex situations like the splitting or coalescing of multiple fronts. In particular, this document is focused on wet and dry etching processes, which are widely used in the micromachining process of Micro-Electro-Mechanical Systems (MEMS). A MEMS is a system formed by mechanical elements, sensors, actuators, and electronics. These devices have gained a lot of popularity in last decades and are employed in several industry fields such as automotive security, motion sensors, and smartphones. Wet etching process consists in removing selectively substrate material (e.g. silicon or quartz) with a liquid solution in order to form a certain structure. This is a complex process since the result of a particular experiment depends on many factors, such as crystallographic structure of the material, etchant solution or its temperature. Similarly, dry etching processes are used for removing substrate material, however, gaseous substances are employed in the etching stage. In both cases, the usage of a simulator capable of predicting accurately the result of a certain experiment would imply a significant reduction of design time and costs. There exist a few LS-based wet etching simulators but they have many limitations and they have never been validated with real experiments. On the other hand, atomistic models are currently considered the most advanced simulators. Nevertheless, atomistic simulators present some drawbacks like the requirement of a prior calibration process in order to use the experimental data. Additionally, a lot of effort must be invested to create an atomistic model for simulating the etching process of substrate materials with different atomistic structures. Furthermore, the final result is always formed by unconnected atoms, which makes difficult a proper visualization and understanding of complex structures, thus, usually an additional visualization technique must be employed. For its part, dry etching simulators usually employ an explicit representation technique to evolve the surface being etched according to etching models. This strategy can produce unrealistic results, specially in complex situations like the interaction of multiple surfaces. Despite some models that use implicit representation have been published, they have never been directly compared with real experiments and computational performance of the implementations have not been properly analysed. The commented limitations are addressed in the various chapters of the present thesis, producing the following contributions: - An efficient LS implementation in order to improve the visual representation of atomistic wet etching simulators. This implementation produces continuous surfaces from atomistic results. - Definition of a new LS-based model which can directly use experimental data of many etchant solutions (such as KOH, TMAH, NH4HF2, and IPA and Triton additives) to simulate wet etching processes of various substrate materials (e.g. silicon and quartz). - Validation of the developed wet etching simulator by comparing it to experimental and atomistic simulator results. - Implementation of a LS-based tool which evolves the surface being etched according to dry etching models in order to enable the simulation of complex processes. This implementation is also validated experimentally. - Acceleration of the developed wet and dry etching simulators by using Graphics Processing Units (GPUs).[ES] El tema principal de la presente tesis consiste en mejorar la simulación de los procesos de fabricación utilizando el método Level Set (LS). El LS es una técnica matemática utilizada para la evolución de frentes según un movimiento definido por unas leyes. La principal ventaja de este método es que el frente está embebido dentro de una función definida en una dimensión superior. Actualizar dicha función en lugar del propio frente permite tratar de forma trivial situaciones complejas como la separación o la colisión de diversos frentes. En concreto, este documento se centra en los procesos de atacado húmedo y seco, los cuales son ampliamente utilizados en el proceso de fabricación de Sistemas Micro-Electro-Mecánicos (MEMS, de sus siglas en inglés). Un MEMS es un sistema formado por elementos mecánicos, sensores, actuadores y electrónica. Estos dispositivos hoy en día son utilizados en muchos campos de la industria como la seguridad automovilística, sensores de movimiento y teléfonos inteligentes. El proceso de atacado húmedo consiste en eliminar de forma selectiva el material del sustrato (por ejemplo, silicio o cuarzo) con una solución líquida con el fin de formar una estructura específica. Éste es un proceso complejo pues el resultado depende de muchos factores, tales como la estructura cristalográfica del material, la solución atacante o su temperatura. De forma similar, los procesos de atacado seco son utilizados para eliminar el material del sustrato, sin embargo, se utilizan sustancias gaseosas en la fase de atacado. En ambos casos, la utilización de un simulador capaz de predecir de forma precisa el resultado de un experimento concreto implicaría una reducción significativa del tiempo de diseño y de los costes. Existen unos pocos simuladores del proceso de atacado húmedo basados en el método LS, no obstante tienen muchas limitaciones y nunca han sido validados con experimentos reales. Por otro lado, los simuladores atomísticos son hoy en día considerados los simuladores más avanzados pero tienen algunos inconvenientes como la necesidad de un proceso de calibración previo para poder utilizar los datos experimentales. Además, debe invertirse mucho esfuerzo para crear un modelo atomístico para la simulación de materiales de sustrato con distintas estructuras atomísticas. Asimismo, el resultado final siempre está formado por átomos inconexos que dificultan una correcta visualización y un correcto entendimiento de aquellas estructuras complejas, por tanto, normalmente debe emplearse una técnica adicional para la visualización de dichos resultados. Por su parte, los simuladores del proceso de atacado seco normalmente utilizan técnicas de representación explícita para evolucionar, según los modelos de atacado, la superficie que está siendo atacada. Esta técnica puede producir resultados poco realistas, sobre todo en situaciones complejas como la interacción de múltiples superficies. A pesar de que unos pocos modelos son capaces de solventar estos problemas, nunca han sido comparados con experimentos reales ni el rendimiento computacional de las correspondientes implementaciones ha sido adecuadamente analizado. Las expuestas limitaciones son abordadas en la presente tesis y se han producido las siguientes contribuciones: - Implementación eficiente del método LS para mejorar la representación visual de los simuladores atomísticos del proceso de atacado húmedo. - Definición de un nuevo modelo basado en el LS que pueda usar directamente los datos experimentales de muchos atacantes para simular el proceso de atacado húmedo de diversos materiales de sustrato. - Validación del simulador comparándolo con resultados experimentales y con los de simuladores atomísticos. - Implementación de una herramienta basada en el método LS que evolucione la superficie que está siendo atacada según los modelos de atacado seco para habilitar la simulación de procesos comple[CA] El tema principal de la present tesi consisteix en millorar la simulació de processos de fabricació mitjançant el mètode Level Set (LS). El LS és una tècnica matemàtica utilitzada per a l'evolució de fronts segons un moviment definit per unes lleis en concret. El principal avantatge d'aquest mètode és que el front està embegut dins d'una funció definida en una dimensió superior. D'aquesta forma, actualitzar la dita funció en lloc del propi front, permet tractar de forma trivial situacions complexes com la separació o la col·lisió de diversos fronts. En concret, aquest document es centra en els processos d'atacat humit i sec, els quals són àmpliament utilitzats en el procés de fabricació de Sistemes Micro-Electro-Mecànics (MEMS, de les sigles en anglès). Un MEMS és un sistema format per elements mecànics, sensors, actuadors i electrònica. Aquests dispositius han guanyat molta popularitat en les últimes dècades i són utilitzats en molts camps de la indústria, com la seguretat automobilística, sensors de moviment i telèfons intel·ligents. El procés d'atacat humit consisteix en eliminar de forma selectiva el material del substrat (per exemple, silici o quars) amb una solució líquida, amb la finalitat de formar una estructura específica. Aquest és un procés complex ja que el resultat de un determinat experiment depèn de molts factors, com l'estructura cristal·logràfica del material, la solució atacant o la seva temperatura. De manera similar, els processos d'atacat sec son utilitzats per a eliminar el material del substrat, no obstant, s'utilitzen substàncies gasoses en la fase d'atacat. En ambdós casos, la utilització d'un simulador capaç de predir de forma precisa el resultat d'un experiment en concret implicaria una reducció significativa del temps de disseny i dels costos. Existeixen uns pocs simuladors del procés d'atacat humit basats en el mètode LS, no obstant tenen moltes limitacions i mai han sigut validats amb experiments reals. Per la seva part, els simuladors atomístics tenen alguns inconvenients com la necessitat d'un procés de calibratge previ per a poder utilitzar les dades experimentals. A més, deu invertir-se molt d'esforç per crear un model atomístic per a la simulació de materials de substrat amb diferents estructures atomístiques. Així mateix, el resultat final sempre està format per àtoms inconnexos que dificulten una correcta visualització i un correcte enteniment d'aquelles estructures complexes, per tant, normalment deu emprar-se una tècnica addicional per a la visualització d'aquests resultats. D'altra banda, els simuladors del procés d'atacat sec normalment utilitzen tècniques de representació explícita per evolucionar, segons els models d'atacat, la superfície que està sent atacada. Aquesta tècnica pot introduir resultats poc realistes, sobretot en situacions complexes com per exemple la interacció de múltiples superfícies. A pesar que uns pocs models son capaços de resoldre aquests problemes, mai han sigut comparats amb experiments reals ni tampoc el rendiment computacional de les corresponents implementacions ha sigut adequadament analitzat. Les exposades limitacions son abordades en els diferents capítols de la present tesi i s'han produït les següents contribucions: - Implementació eficient del mètode LS per millorar la representació visual dels simuladors atomístics del procés d'atacat humit. - Definició d'un nou model basat en el mètode LS que puga utilitzar directament les dades experimentals de molts atacants per a simular el procés d'atacat humit de diversos materials de substrat. - Validació del simulador d'atacat humit desenvolupat comparant-lo amb resultats experimentals i amb els de simuladors atomístics. - Implementació d'una ferramenta basada en el mètode LS que evolucione la superfície que està sent atacada segons els models d'atacat sec per, d'aquesta forma, habilitar la simulació de processoMontoliu Álvaro, C. (2015). Study, Modelling and Implementation of the Level Set Method Used in Micromachining Processes [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58609TESI

    Towards Interactive Photorealistic Rendering

    Get PDF

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies
    corecore