7,878 research outputs found

    Real-Time Power-Efficient Integration of Multi-Sensor Occupancy Grid on Many-Core

    Get PDF
    International audienceSafe Autonomous Vehicles (AVs) will emerge when comprehensive perception systems will be successfully integrated into vehicles. Advanced perception algorithms, estimating the position and speed of every obstacle in the environment by using data fusion from multiple sensors, were developed for AV prototypes. Computational requirements of such application prevent their integration into AVs on current low-power embedded hardware. However, recent emerging many-core architectures offer opportunities to fulfill the automotive market constraints and efficiently support advanced perception applications. This paper, explores the integration of the occupancy grid multi-sensor fusion algorithm into low power many-core architectures. The parallel properties of this function are used to achieve real-time performance at low-power consumption. The proposed implementation achieves an execution time of 6.26ms, 6× faster than typical sensor output rates and 9× faster than previous embedded prototypes

    SkiMap: An Efficient Mapping Framework for Robot Navigation

    Full text link
    We present a novel mapping framework for robot navigation which features a multi-level querying system capable to obtain rapidly representations as diverse as a 3D voxel grid, a 2.5D height map and a 2D occupancy grid. These are inherently embedded into a memory and time efficient core data structure organized as a Tree of SkipLists. Compared to the well-known Octree representation, our approach exhibits a better time efficiency, thanks to its simple and highly parallelizable computational structure, and a similar memory footprint when mapping large workspaces. Peculiarly within the realm of mapping for robot navigation, our framework supports realtime erosion and re-integration of measurements upon reception of optimized poses from the sensor tracker, so as to improve continuously the accuracy of the map.Comment: Accepted by International Conference on Robotics and Automation (ICRA) 2017. This is the submitted version. The final published version may be slightly differen

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Full text link
    Visual robot navigation within large-scale, semi-structured environments deals with various challenges such as computation intensive path planning algorithms or insufficient knowledge about traversable spaces. Moreover, many state-of-the-art navigation approaches only operate locally instead of gaining a more conceptual understanding of the planning objective. This limits the complexity of tasks a robot can accomplish and makes it harder to deal with uncertainties that are present in the context of real-time robotics applications. In this work, we present Topomap, a framework which simplifies the navigation task by providing a map to the robot which is tailored for path planning use. This novel approach transforms a sparse feature-based map from a visual Simultaneous Localization And Mapping (SLAM) system into a three-dimensional topological map. This is done in two steps. First, we extract occupancy information directly from the noisy sparse point cloud. Then, we create a set of convex free-space clusters, which are the vertices of the topological map. We show that this representation improves the efficiency of global planning, and we provide a complete derivation of our algorithm. Planning experiments on real world datasets demonstrate that we achieve similar performance as RRT* with significantly lower computation times and storage requirements. Finally, we test our algorithm on a mobile robotic platform to prove its advantages.Comment: 8 page

    An IoT-based solution for monitoring a fleet of educational buildings focusing on energy efficiency

    Get PDF
    Raising awareness among young people and changing their behaviour and habits concerning energy usage iskey to achieving sustained energy saving. Additionally, young people are very sensitive to environmental protection so raising awareness among children is much easier than with any other group of citizens. This work examinesways to create an innovative Information & Communication Technologies (ICT) ecosystem (including web-based, mobile, social and sensing elements) tailored specifically for school environments, taking into account both theusers (faculty, staff, students, parents) and school buildings, thus motivating and supporting young citizenś behavioural change to achieve greater energy efficiency. A mixture of open-source IoT hardware and proprietary platforms on the infrastructure level, are currently being utilized for monitoring a fleet of 18 educational buildings across 3 countries, comprising over 700 IoT monitoring points. Hereon presented is the system's high-level architecture, as well as several aspects of its implementation, related to the application domain of educational building monitoring and energy efficiency. The system is developed based on open-source technologies andservices in order to make it capable of providing open IT-infrastructure and support from different commercial hardware/sensor vendors as well as open-source solutions. The system presented can be used to develop and offer newapp-based solutions that can be used either for educational purposes or for managing the energy efficiency ofthebuilding. The system is replicable and adaptable to settings that may be different than the scenarios envisionedhere (e.g., targeting different climate zones), different IT infrastructures and can be easily extended to accommodate integration with other systems. The overall performance of the system is evaluated in real-world environment in terms of scalability, responsiveness and simplicity
    corecore