4 research outputs found

    Real-time object detection in agricultural/remote environments using the multiple-expert colour feature extreme learning machine (MEC-ELM)

    No full text
    It is necessary for autonomous robotics in agriculture to provide real time feedback, but due to a diverse array of objects and lack of landscape uniformity this objective is inherently complex. The current study presents two implementations of the multiple-expert colour feature extreme learning machine (MECELM). The MEC-ELM is a cascading algorithm that has been implemented along side a summed area table (SAT) for fast feature extraction and object classification, for a fully functioning object detection algorithm. The MEC-ELM is an implementation of the colour feature extreme learning machine (CF-ELM), which is an extreme learning machine (ELM) with a partially connected hidden layer; taking three colour bands as inputs. The colour implementation used with the SAT enable the MEC-ELM to find and classify objects quickly, with 84% precision and 91% recall in weed detection in the Y'UV colour space and in 0.5s per frame. The colour implementation is however limited to low resolution images and for this reason a colour level co-occurrence matrix (CLCM) variant of the MEC-ELM is proposed. This variant uses the SAT to produce a CLCM and texture analyses, with texture values processed as an input to the MEC-ELM. This enabled the MEC-ELM to achieve 78–85% precision and 81-93% recall in cattle, weed and quad bike detection and in times between 1 and 2s per frame. Both implementations were benchmarked on a standard i7 mobile processor. Thus the results presented in this paper demonstrated that the MEC-ELM with SAT grid and CLCM makes an ideal candidate for fast object detection in complex and/or agricultural landscapes

    Advancing sustainability in the food and nutrition system: a review of artificial intelligence applications

    Get PDF
    Promoting sustainability in food and nutrition systems is essential to address the various challenges and trade-offs within the current food system. This imperative is guided by key principles and actionable steps, including enhancing productivity and efficiency, reducing waste, adopting sustainable agricultural practices, improving economic growth and livelihoods, and enhancing resilience at various levels. However, in order to change the current food consumption patterns of the world and move toward sustainable diets, as well as increase productivity in the food production chain, it is necessary to employ the findings and achievements of other sciences. These include the use of artificial intelligence-based technologies. Presented here is a narrative review of possible applications of artificial intelligence in the food production chain that could increase productivity and sustainability. In this study, the most significant roles that artificial intelligence can play in enhancing the productivity and sustainability of the food and nutrition system have been examined in terms of production, processing, distribution, and food consumption. The research revealed that artificial intelligence, a branch of computer science that uses intelligent machines to perform tasks that require human intelligence, can significantly contribute to sustainable food security. Patterns of production, transportation, supply chain, marketing, and food-related applications can all benefit from artificial intelligence. As this review of successful experiences indicates, artificial intelligence, machine learning, and big data are a boon to the goal of sustainable food security as they enable us to achieve our goals more efficiently

    Disruptive Technologies in Agricultural Operations: A Systematic Review of AI-driven AgriTech Research

    Get PDF
    YesThe evolving field of disruptive technologies has recently gained significant interest in various industries, including agriculture. The fourth industrial revolution has reshaped the context of Agricultural Technology (AgriTech) with applications of Artificial Intelligence (AI) and a strong focus on data-driven analytical techniques. Motivated by the advances in AgriTech for agrarian operations, the study presents a state-of-the-art review of the research advances which are, evolving in a fast pace over the last decades (due to the disruptive potential of the technological context). Following a systematic literature approach, we develop a categorisation of the various types of AgriTech, as well as the associated AI-driven techniques which form the continuously shifting definition of AgriTech. The contribution primarily draws on the conceptualisation and awareness about AI-driven AgriTech context relevant to the agricultural operations for smart, efficient, and sustainable farming. The study provides a single normative reference for the definition, context and future directions of the field for further research towards the operational context of AgriTech. Our findings indicate that AgriTech research and the disruptive potential of AI in the agricultural sector are still in infancy in Operations Research. Through the systematic review, we also intend to inform a wide range of agricultural stakeholders (farmers, agripreneurs, scholars and practitioners) and to provide research agenda for a growing field with multiple potentialities for the future of the agricultural operations

    A systematic literature review on machine learning applications for sustainable agriculture supply chain performance

    Get PDF
    Agriculture plays an important role in sustaining all human activities. Major challenges such as overpopulation, competition for resources poses a threat to the food security of the planet. In order to tackle the ever-increasing complex problems in agricultural production systems, advancements in smart farming and precision agriculture offers important tools to address agricultural sustainability challenges. Data analytics hold the key to ensure future food security, food safety, and ecological sustainability. Disruptive information and communication technologies such as machine learning, big data analytics, cloud computing, and blockchain can address several problems such as productivity and yield improvement, water conservation, ensuring soil and plant health, and enhance environmental stewardship. The current study presents a systematic review of machine learning (ML) applications in agricultural supply chains (ASCs). Ninety three research papers were reviewed based on the applications of different ML algorithms in different phases of the ASCs. The study highlights how ASCs can benefit from ML techniques and lead to ASC sustainability. Based on the study findings an ML applications framework for sustainable ASC is proposed. The framework identifies the role of ML algorithms in providing real-time analytic insights for pro-active data-driven decision-making in the ASCs and provides the researchers, practitioners, and policymakers with guidelines on the successful management of ASCs for improved agricultural productivity and sustainability
    corecore