1,819 research outputs found

    Framework for integrated oil pipeline monitoring and incident mitigation systems

    Get PDF
    Wireless Sensor Nodes (motes) have witnessed rapid development in the last two decades. Though the design considerations for Wireless Sensor Networks (WSNs) have been widely discussed in the literature, limited investigation has been done for their application in pipeline surveillance. Given the increasing number of pipeline incidents across the globe, there is an urgent need for innovative and effective solutions for deterring the incessant pipeline incidents and attacks. WSN pose as a suitable candidate for such solutions, since they can be used to measure, detect and provide actionable information on pipeline physical characteristics such as temperature, pressure, video, oil and gas motion and environmental parameters. This paper presents specifications of motes for pipeline surveillance based on integrated systems architecture. The proposed architecture utilizes a Multi-Agent System (MAS) for the realization of an Integrated Oil Pipeline Monitoring and Incident Mitigation System (IOPMIMS) that can effectively monitor and provide actionable information for pipelines. The requirements and components of motes, different threats to pipelines and ways of detecting such threats presented in this paper will enable better deployment of pipeline surveillance systems for incident mitigation. It was identified that the shortcomings of the existing wireless sensor nodes as regards their application to pipeline surveillance are not effective for surveillance systems. The resulting specifications provide a framework for designing a cost-effective system, cognizant of the design considerations for wireless sensor motes used in pipeline surveillance

    Real Time Gas Monitoring System Using Wireless Sensor Network

    Get PDF
    Miner’s safety is the main issue in the present era. Miner’s health is affected by many means which includes unstable and cumbersome underground activities and awkward loads, heavy tools and equipment, exposure to toxic dust and chemicals, gas or dust explosions, improper use of explosives, gas intoxications, collapsing of mine structures, electrical burn, fires, flooding, rock falls from roofs and side walls workers stumbling/slipping/falling, or errors from malfunctioning or improperly used mining equipment. In earlier days for detection of gases canary and small animals are used but they didn’t provide the exact condition of the mines so safety in the mine in not guaranteed. Hence, there is a need of monitoring system which utilised the ZigBee wireless sensor network technology. There are two units of the monitoring system Sensor unit and Monitoring unit. Sensor unit will be placed in the underground section and Monitoring unit will be placed in the above the mines from where monitoring is done. Firstly, the Sensor unit is placed in the underground section of the mine. Where input is taken from the sensors in terms of Methane (CH4) i.e. MQ-2 sensor, Hydrogen Sulphide (H2S) i.e. MQ-136 sensor, and Natural Gases i.e. MQ-5 sensor. Then they are compared with their threshold value by the Microcontroller Module and if the value is above the threshold value, the Buzzer starts ringing meanwhile data is displayed in the Display module and sent to the Wireless Communication Module of the Monitor unit i.e. ends device or coordinator through the Wireless Communication Module of the Sensor unit i.e. router. In this way, the study can help the miners get relief from any casualty and ultimately save their lives. The device encompasses a large range of networking. The data can also be stored for future investigation. The device is also durable and costs effective with a price of approx. Rs. 6,500 to 7,000/-

    Odor Recognition and Localization Using Sensor Networks

    Get PDF

    Wireless Mote Based Explosive Detection Land Rover using EC Sensor (WEDLRE)

    Get PDF
    As continues attacks in the world from terrorists countries warning us to be aware of those attacks like Explosive attacks, hijacks etc., which will cause huge damage to the life and property in all over the world. Among these explosive attacks is most effective to life and wealth of a country. To overcome such attacks and to save the life an intense research has done to know the characterization of the explosives, Detection Methods are also improvised. To save our next generation and escape from threats a new detection methodology has been implemented to detect the explosives at all places and the proposed system is called “Wireless Explosive detection Land Rover using ECS”. In this system chemical sensors, Quartz sensors etc., are used on the motes. By using the RF Camera a continuous surveillance can be done throughout the places like malls, rooms, houses, streets, etc., if any explosive is detected then without any delay the explosive location and timeout to explode and area that effect if explode details will be sent to the Police control room to diffuse the explode device with in time. A message will also be sent to the nearby hospitals to rescue the people

    QoS Challenges in wireless sensor networked robotics

    Get PDF
    Wireless sensor networks and mobile robotics are two hot research topics. Integrating them leads to a wide range of new applications in many different environments such as terrestrial, underwater, underground and aerial. Where sensor networks are mainly used for large-scale monitoring and control, mobile robotics are used for performing fine-scale actions and automation. Network heterogeneity together with stringent Quality of Service (QoS) demands from applications such as voice and video make QoS support very challenging. Therefore, this paper investigates the QoS challenges in wireless sensor networked robotics and presents a novel QoS framework as solution to cope with these challenges

    Performance of the SABAT neutron-based explosives detector integrated with an unmanned ground vehicle : a simulation study

    Get PDF
    The effective and safe detection of illicit materials, explosives in particular, is currently of growing importance taking into account the geopolitical situation and increasing risk of a terrorist attack. The commonly used methods of detection are based predominantly on metal detectors and georadars, which show only the shapes of the possible dangerous objects and do not allow for exact identification and risk assessment. A supplementary or even alternative method may be based on neutron activation analysis, which provides the possibility of a stoichiometric analysis of the suspected object and its non-invasive identification. One such sensor is developed by the SABAT collaboration, with its primary application being underwater threat detection. In this article, we present performance studies of this sensor, integrated with a mobile robot, in terms of the minimal detectable quantity of commonly used explosives in different environmental conditions. The paper describes the functionality of the used platform considering electronics, sensors, onboard computing power, and communication system to carry out manual operation and remote control. Robotics solutions based on modularized structures allow the extension of sensors and effectors that can significantly improve the safety of personnel as well as work efficiency, productivity, and flexibility
    corecore