3,529 research outputs found

    Electrochemical Model-Based Fast Charging: Physical Constraint-Triggered PI Control

    Get PDF
    This paper proposes a new fast charging strategy for lithium-ion (Li-ion) batteries. The approach relies on an experimentally validated high-fidelity model describing battery electrochemical and thermal dynamics that determine the fast charging capability. Such a high-dimensional nonlinear dynamic model can be intractable to compute in real-time if it is fused with the extended Kalman filter or the unscented Kalman filter that is commonly used in the community of battery management. To significantly save computational efforts and achieve rapid convergence, the ensemble transform Kalman filter (ETKF) is selected and tailored to estimate the nonuniform Li-ion battery states. Then, a health- and safety-aware charging protocol is proposed based on successively applied proportional-integral (PI) control actions. The controller regulates charging rates using online battery state information and the imposed constraints, in which each PI control action automatically comes into play when its corresponding constraint is triggered. The proposed physical constraint-triggered PI charging control strategy with the ETKF is evaluated and compared with several prevalent alternatives. It shows that the derived controller can achieve close to the optimal solution in terms of charging time and trajectory, as determined by a nonlinear model predictive controller, but at a drastically reduced computational cost

    Model Predictive Control Strategies for Advanced Battery Management Systems

    Get PDF
    Consumer electronics, wearable and personal health devices, power networks, microgrids, and hybrid electric vehicles (HEVs) are some of the many applications where Lithium-ion (Li-ion) batteries are employed. From a manufacturer point of view, the optimal design and management of such electrochemical accumulators are important aspects for ensuring safe and profitable operations. The adoption of mathematical models can support the achievement of the best performance, while saving time and money. In the literature, all the models used to describe the behavior of a Li-ion battery belong to one of the two following families: (i) Equivalent Circuit Models (ECMs), and (ii) Electrochemical Models (EMs). While the former family represents the battery dynamics by means of electrical circuits, the latter resorts to first principles laws of modeling. As a first contribution, this Thesis provides a thorough investigation of the pseudo-two-dimensional (P2D) Li-ion battery EM. In particular, the objectives are to provide: (i) a detailed description of the model formulation, (ii) the Li-ION SIMulation BAttery (LIONSIMBA) toolbox as a finite volume Matlab implementation of the P2D model, for design, simulation, and control of Li-ion cells or battery packs, (iii) a validation of the proposed tool with respect to the COMSOL MultiPhysics commercial software and the Newman's DUALFOIL code, and (iv) some demonstrative simulations involving thermal dynamics, a hybrid charge-discharge cycle emulating the throttle of an HEV, and a battery pack of series connected cells. The second contribution is related to the development of several charging strategies for Advanced Battery Management Systems (ABMSs), where predictive approaches are employed to attain optimal control. Model Predictive Control (MPC) refers to a particular family of control algorithms that, according to a mathematical model, predicts the future behavior of a plant, while considering inputs and outputs constraints. According to this paradigm, in this Thesis different ABMSs strategies have been developed, and their effectiveness shown through simulations. Due to the complexity of the P2D model, its inclusion within an MPC context could prevent the online application of the control algorithm. For this reason, different approximations of the P2D dynamics are proposed and their MPC formulations carefully explained. In particular, finite step response, autoregressive exogenous, piecewise affine, and linear time varying approximations are presented. For all the aforementioned reformulations, the closed-loop performance are evaluated considering the P2D implementation of LIONSIMBA as the real plant. The closed-loop simulations highlight the suitability of the MPC paradigm to be employed for the development of the future ABMSs. In fact, its ability to predict the future behavior of the cell while considering operating constraints can help in preventing possible safety issues and improving the charging performance. Finally, the reliability and efficiency of the proposed Matlab toolbox in simulating the P2D dynamics, support the idea that LIONSIMBA can significantly contribute in the advance of the battery field.Consumer electronics, wearable and personal health devices, power networks, microgrids, and hybrid electric vehicles (HEVs) are some of the many applications where Lithium-ion (Li-ion) batteries are employed. From a manufacturer point of view, the optimal design and management of such electrochemical accumulators are important aspects for ensuring safe and profitable operations. The adoption of mathematical models can support the achievement of the best performance, while saving time and money. In the literature, all the models used to describe the behavior of a Li-ion battery belong to one of the two following families: (i) Equivalent Circuit Models (ECMs), and (ii) Electrochemical Models (EMs). While the former family represents the battery dynamics by means of electrical circuits, the latter resorts to first principles laws of modeling. As a first contribution, this Thesis provides a thorough investigation of the pseudo-two-dimensional (P2D) Li-ion battery EM. In particular, the objectives are to provide: (i) a detailed description of the model formulation, (ii) the Li-ION SIMulation BAttery (LIONSIMBA) toolbox as a finite volume Matlab implementation of the P2D model, for design, simulation, and control of Li-ion cells or battery packs, (iii) a validation of the proposed tool with respect to the COMSOL MultiPhysics commercial software and the Newman's DUALFOIL code, and (iv) some demonstrative simulations involving thermal dynamics, a hybrid charge-discharge cycle emulating the throttle of an HEV, and a battery pack of series connected cells. The second contribution is related to the development of several charging strategies for Advanced Battery Management Systems (ABMSs), where predictive approaches are employed to attain optimal control. Model Predictive Control (MPC) refers to a particular family of control algorithms that, according to a mathematical model, predicts the future behavior of a plant, while considering inputs and outputs constraints. According to this paradigm, in this Thesis different ABMSs strategies have been developed, and their effectiveness shown through simulations. Due to the complexity of the P2D model, its inclusion within an MPC context could prevent the online application of the control algorithm. For this reason, different approximations of the P2D dynamics are proposed and their MPC formulations carefully explained. In particular, finite step response, autoregressive exogenous, piecewise affine, and linear time varying approximations are presented. For all the aforementioned reformulations, the closed-loop performance are evaluated considering the P2D implementation of LIONSIMBA as the real plant. The closed-loop simulations highlight the suitability of the MPC paradigm to be employed for the development of the future ABMSs. In fact, its ability to predict the future behavior of the cell while considering operating constraints can help in preventing possible safety issues and improving the charging performance. Finally, the reliability and efficiency of the proposed Matlab toolbox in simulating the P2D dynamics, support the idea that LIONSIMBA can significantly contribute in the advance of the battery field

    Bi-directional coordination of plug-in electric vehicles with economic model predictive control

    Get PDF
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. The emergence of plug-in electric vehicles (PEVs) is unveiling new opportunities to de-carbonise the vehicle parcs and promote sustainability in different parts of the globe. As battery technologies and PEV efficiency continue to improve, the use of electric cars as distributed energy resources is fast becoming a reality. While the distribution network operators (DNOs) strive to ensure grid balancing and reliability, the PEV owners primarily aim at maximising their economic benefits. However, given that the PEV batteries have limited capacities and the distribution network is constrained, smart techniques are required to coordinate the charging/discharging of the PEVs. Using the economic model predictive control (EMPC) technique, this paper proposes a decentralised optimisation algorithm for PEVs during the grid-To-vehicle (G2V) and vehicle-To-grid (V2G) operations. To capture the operational dynamics of the batteries, it considers the state-of-charge (SoC) at a given time as a discrete state space and investigates PEVs performance in V2G and G2V operations. In particular, this study exploits the variability in the energy tariff across different periods of the day to schedule V2G/G2V cycles using real data from the university's PEV infrastructure. The results show that by charging/discharging the vehicles during optimal time partitions, prosumers can take advantage of the price elasticity of supply to achieve net savings of about 63%

    Factoring the Cycle Aging Cost of Batteries Participating in Electricity Markets

    Full text link
    When participating in electricity markets, owners of battery energy storage systems must bid in such a way that their revenues will at least cover their true cost of operation. Since cycle aging of battery cells represents a substantial part of this operating cost, the cost of battery degradation must be factored in these bids. However, existing models of battery degradation either do not fit market clearing software or do not reflect the actual battery aging mechanism. In this paper we model battery cycle aging using a piecewise linear cost function, an approach that provides a close approximation of the cycle aging mechanism of electrochemical batteries and can be incorporated easily into existing market dispatch programs. By defining the marginal aging cost of each battery cycle, we can assess the actual operating profitability of batteries. A case study demonstrates the effectiveness of the proposed model in maximizing the operating profit of a battery energy storage system taking part in the ISO New England energy and reserve markets
    corecore