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Abstract

Consumer electronics, wearable and personal health devices, power net-

works, microgrids, and hybrid electric vehicles (HEVs) are some of the

many applications where Lithium-ion (Li-ion) batteries are employed. From

a manufacturer point of view, the optimal design and management of such

electrochemical accumulators are important aspects for ensuring safe and

profitable operations. The adoption of mathematical models can support

the achievement of the best performance, while saving time and money.

In the literature, all the models used to describe the behavior of a Li-ion

battery belong to one of the two following families: (i) Equivalent Circuit

Models (ECMs), and (ii) Electrochemical Models (EMs). While the former

family represents the battery dynamics by means of electrical circuits, the

latter resorts to first principles laws of modeling. As a first contribution,

this Thesis provides a thorough investigation of the pseudo-two-dimensional

(P2D) Li-ion battery EM. In particular, the objectives are to provide: (i) a

detailed description of the model formulation, (ii) the Li-ION SIMulation

BAttery (LIONSIMBA) toolbox as a finite volume Matlab implementa-

tion of the P2D model, for design, simulation, and control of Li-ion cells

or battery packs, (iii) a validation of the proposed tool with respect to

the COMSOL MultiPhysics commercial software and the Newman’s DU-

ALFOIL code, and (iv) some demonstrative simulations involving ther-

mal dynamics, a hybrid charge-discharge cycle emulating the throttle of an

HEV, and a battery pack of series connected cells. The second contribution

is related to the development of several charging strategies for Advanced
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Battery Management Systems (ABMSs), where predictive approaches are

employed to attain optimal control. Model Predictive Control (MPC) refers

to a particular family of control algorithms that, according to a mathemat-

ical model, predicts the future behavior of a plant, while considering inputs

and outputs constraints. According to this paradigm, in this Thesis differ-

ent ABMSs strategies have been developed, and their effectiveness shown

through simulations. Due to the complexity of the P2D model, its inclusion

within an MPC context could prevent the online application of the control

algorithm. For this reason, different approximations of the P2D dynamics

are proposed and their MPC formulations carefully explained. In particu-

lar, finite step response, autoregressive exogenous, piecewise affine, and lin-

ear time varying approximations are presented. For all the aforementioned

reformulations, the closed-loop performance are evaluated considering the

P2D implementation of LIONSIMBA as the real plant. The closed-loop

simulations highlight the suitability of the MPC paradigm to be employed

for the development of the future ABMSs. In fact, its ability to predict

the future behavior of the cell while considering operating constraints can

help in preventing possible safety issues and improving the charging perfor-

mance. Finally, the reliability and efficiency of the proposed Matlab toolbox

in simulating the P2D dynamics, support the idea that LIONSIMBA can

significantly contribute in the advance of the battery field.
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Chapter 1

Introduction

The ever-increasing usage of consumer electronics, together with the es-

calating demand of electric cars and storage devices, has driven industry

towards the development of Electrochemical Accumulators (EAs) of in-

creasing performance and reliability. During the many decades of research,

different chemistries of batteries have been developed, such as Nickel Cad-

mium (NiCd), Nickel Metal Hydride (NiMH), Lead Acid, Lithium ion (Li-

ion), Lithium ion Polymer (Li-Poly), and Lithium ion metal (Li-metal) (see

e.g., [Dhar et al., 1997, Linden, 1984, Ruetschi, 1977, Zhang, 2011]). Among

EAs, Li-ion batteries provide one of the best tradeoffs in terms of power

density, low weight, cell voltage, low self-discharge, and wide temperature

operations [Van den Bossche et al., 2006, Besenhard, 2008]. Although the

electrochemical characteristics of Li-ion cells are remarkable, Battery Man-

agement Systems (BMSs) are employed for monitoring and management

purposes with the objective of providing good operating performance, and

prolong the lifetime. Among its tasks, a BMS:

• ensures safety conditions during battery operations;
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• provides proper charging protocols;

• determines the remaining charge of the battery;

• estimates the remaining lifetime;

• balances the charge among several cells;

• monitors and logs the battery history (i.e., stores of the number of

full charges, full discharges, maximum and minimum voltage values,

etc.);

• provides a communication interface for other devices (e.g., provide to

an operating system the information about the battery of a personal

computer).

When charging Li-ion cells, different protocols can be employed by the

BMSs [Shen et al., 2012, Keil and Jossen, 2016]. The most common charg-

ing algorithm used in industrial BMSs rely on the so-called Constant Cur-

rent - Constant Voltage (CC-CV) protocol [Sauer, 2009]. As shown in Fig.

1.1, the approach first applies a galvanostatic charge (CC stage). Once the

cell voltage reaches a threshold value (Vthr), a potentiostatic charge (CV

stage) follows. During this second phase, the current flowing through the

cell decreases exponentially as a function of the governing physics. Usually,

the charging phase stops when the applied current reaches a lower bound

value (e.g., 0.01C), or when a maximum time index (tmax) is reached.
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Figure 1.1: Example of CC-CV charging protocol

Another common algorithm used in industrial BMSs is the so-called Mul-

tistage Constant Current (MCC) protocol [Luo et al., 2009]. According

to this strategy, the following charging algorithm is carried out Therefore,

Algorithm 1 MCC charging algorithm

1: I = Iinit . Initialize the value of the applied current.

2: while I > Ilower do

3: if V ≥ Vthr then I ← α I

4: end if

5: Constant Current (CC) charge by applying I

6: end while

according to the MCC approach, starting from an initial value of current

(Iinit), the cell is charged with a CC strategy. As soon as the voltage of

the cell reaches a threshold value (Vthr), the applied current is reduced

according to the scheme

I ← α I, where 0 < α < 1.

and the charging process continues according to the CC strategy. As soon

as the value of I drops below a given value (Ilower), the charge stops. The
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value of Ilower, when reached, usually corresponds to a fully charged state

of the battery. In Fig. 1.2, an example of the application of the MCC

algorithm in 1 is depicted. Other chargers make use of the so called Pulshe

Figure 1.2: Example of MCC charging protocol

Charging (PC) algorithm [Chen et al., 2010]. As shown in Fig. 1.3, current

pulses of fixed duration and amplitude are applied to the cell. Rest periods

alternate between one pulse and the next. As soon as the cell reaches a

threshold voltage, the charge phase stops. A thorough description of the

Figure 1.3: Example of PC charging protocol

various charging protocols employed in industrial BMSs can be found in
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[Shen et al., 2012, Keil and Jossen, 2016] and the references therein.

While the aforementioned approaches provide reasonable performance,

better results can be achieved by exploiting a mathematical model of the Li-

ion cell [Ramadesigan et al., 2012]. Advanced BMSs (ABMSs) rely on accu-

rate mathematical descriptions to attain effective control, monitoring, and

diagnostics [Chaturvedi et al., 2010]. Different models have been proposed

in the literature over the years. In particular two main families of models

are commonly used in this field: (i) Equivalent Circuit Models (ECMs), and

(ii) Electrochemical Models (EMs). While ECMs are less computationally

expensive, the EMs provide more accurate description of the electrochemi-

cal phenomena occurring inside the cell. One important objective of ABMSs

is to provide fast charging strategies while taking into account safety con-

straints (such as voltage and temperature) as well as aging constraints.

For these reasons, the Model Predictive Control (MPC) paradigm is par-

ticularly suitable for the development of charging strategies for ABMSs.

According to a given cost function, MPC provides a control action by opti-

mizing the future behavior of the controlled plant, while considering inputs

and outputs constraints. Different predictive control algorithms have been

proposed in the literature over the years for the development of ABMSs. In

particular, based on ECMs, in [Yan et al., 2011] the authors suggest a linear

MPC scheme for minimum charging time control which takes into account

the thermal excursion in battery packs, while the approach in [Xavier and

Trimboli, 2015] considers fast charging strategies in the presence of input,

output, and state constraints. Other authors addressed the development of

Nonlinear MPC (NMPC) strategies for ABMSs: in [Samadi and Saif, 2014],

based on an ECM, an optimal charging protocol was proposed to minimize
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the charge unbalancing among series connected cells. Besides the use of the

MPC paradigm for ABMSs, other control approaches have been proposed

in the literature. For instance, in [Suthar et al., 2013, Perez et al., 2016],

Optimal Control Problems (OCPs) were proposed to deal with reformu-

lated versions of an EM to derive control algorithms able to maximize the

transferred charge and minimize the charging time. The authors in [Tsang

and Chan, 2009] and [Tsang and Chan, 2011], proposed the design of tradi-

tional PID control algorithms, while fuzzy logic techniques were considered

in [Huang et al., 2009] and [Hsieh et al., 2001]. Finally, [Moura et al., 2013],

proposed a modified reference governor control algorithm.

Despite the considerable number of control techniques proposed in the

literature, only a few have placed particular emphasis on the aspects re-

lated to the aging of the Li-ion cells. For instance, in [Moura et al., 2009]

an optimal control based approach aims to minimize the Solid Electrolyte

Interface (SEI) film growth for parallel connected cells. An ECM together

with a lookup table were used to account for the SEI dynamics as a function

of the input current and State Of Charge (SOC). In [Klein et al., 2011] an

NMPC strategy based on a EM was proposed, in which constraints over

the anode overpotential were enforced in order to avoid possible lithium

deposition phenomena.

1.1 Thesis contribution

This Thesis provides two main contribution to the field of the simulation

and control of Li-ion batteries.

The first contribution refers to the detailed description of the numer-

ical implementation of the well known theory-based EM named Pseudo
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Two-Dimensional (P2D) model. A thorough dissertation about the numer-

ical issues and the relative loopholes is addressed, and the complete set of

equations, parameters, and the discretization approach used to implement

such model is provided. As a result of this dissertation, the Lithium-ION

SIMulation BAttery (LIONSIMBA) toolbox is presented. Such toolbox,

distributed as a freely available Matlab R© software, is able to simulate the

electrochemical behavior of a Li-ion cell or battery packs composed of series-

connected cells. Moreover, it provides a ready-to-use environment for the

development of control algorithms, assessment of different cell parameteri-

zations, and optimization of the design parameters.

The second contribution of this Thesis is related to the development

of several MPC strategies for ABMSs. Fast charging, health-aware, linear

time varying, and piecewise control strategies are proposed. Differently

from what already presented in the literature, the algorithms developed

in this Thesis exploit reformulated versions of the P2D dynamics in order

to carry out the control action. In fact, due to the complexity of the

P2D equations, linearization and order reduction techniques are employed

to suitably embed the P2D model within an online MPC scheme. The

effectiveness of the control algorithms is then assessed considering the P2D

model as the real plant, simulated using the LIONSIMBA toolbox.

1.2 Structure of the Thesis

The Thesis is structured as follows:

• Chapter 2: This chapter provides an introduction to the batteries

systems where the main acronyms and the common nomenclature are
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presented. Following, a detailed description of a finite volume method

for a pseudo-two-dimensional Li-ion battery model suitable for the de-

velopment of model-based advanced battery management systems is

given. In particular the following issues are addressed: (i) a detailed

description of the model formulation, (ii) a compiled and parameter-

izable Matlab framework for battery design, simulation, and control

of Li-ion cells or battery packs, (iii) a validation of the proposed nu-

merical implementation with respect to the COMSOL MultiPhysics

commercial software and the Newman’s DUALFOIL code, and (iv)

some demonstrative simulations involving thermal dynamics, a hybrid

charge-discharge cycle emulating the throttle of an Hybrid Electric

Vehicle (HEV), and a battery pack simulation.

The material presented in this chapter has appeared in:

– [Torchio et al., 2016c] - Torchio, M., Magni, L., Gopaluni, R. B.,

Braatz, R. D., and Raimondo, D. M. (2016c). LIONSIMBA: A

Matlab framework based on a finite volume model suitable for

Li-ion battery design, simulation, and control. Journal of The

Electrochemical Society, 163(7):A1192–A1205

• Chapter 3: This chapter presents the Model Predictive Control

paradigm together with the linearization and order reduction tech-

niques used in this Thesis for developing the different ABMSs. Finally,

the identification approaches adopted in this Thesis are discussed. In

particular, two novel identification techniques are proposed for the

development of piecewise affine models.

• Chapter 4: This chapter presents the main results obtained by us-
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ing the MPC paradigm for ABMSs. In particular, different predic-

tion models and control objectives are evaluated. The methodology

introduced in chapter 3 is used for developing the proposed control

strategies. A quadratic dynamic matrix control approach is used to

minimize the charge time, while taking temperature and voltage con-

straints into account. A reduced input-output model, constructed

from the P2D dynamics, is used for control purposes. To further em-

phasize the power of predictive algorithms, a health-aware charging

protocol is presented for reducing the damages induced to the cell

during charging operations. With the aim of improving the control

performance, piecewise affine approximations of the cell dynamics are

presented to better capture the plant nonlinearities during prediction

phases. Finally, linear time varying models are used for the develop-

ment of MPC-based ABMSs with the aim of reducing the computa-

tional burden while still guaranteeing good control performance.

Some preliminary results shown in this chapter have been presented

in:

– [Torchio et al., 2016a] - Torchio, M., Magni, L., Braatz, R. D.,

and Raimondo, D. M. (2016a). Optimal charging of a Li-ion cell:

A hybrid model predictive control approach. In Proceedings of

the IEEE Conference on Decision and Control, pages 4053–4058

– [Torchio et al., 2016b] - Torchio, M., Magni, L., Braatz, R. D.,

and Raimondo, D. M. (2016b). Optimal health-aware charg-

ing protocol for Lithium-ion batteries: A fast model predictive
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control approach. In Proceedings of the 11th International Sym-

posium on Dynamics and Control of Process Systems, including

Biosystems, pages 827–832

– [Torchio et al., 2015] - Torchio, M., Wolff, N. A., Raimondo,

D. M., Magni, L., Krewer, U., Gopaluni, R. B., Paulson, J. A.,

and Braatz, R. D. (2015). Real-time model predictive control for

the optimal charging of a lithium-ion battery. In Proceedings of

the American Control Conference, pages 4536–4541
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Chapter 2

Batteries

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . 19

2.2 Primary and secondary batteries . . . . . . . . . 22

2.3 Mathematical models for Li-ion batteries . . . . 28

2.4 Pseudo two-dimensional model . . . . . . . . . . 33

2.5 Numerical implementation . . . . . . . . . . . . . 45

2.6 LIONSIMBA: the Li-ION SIMulation BAttery

toolbox . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 LIONSIMBA capabilities . . . . . . . . . . . . . . 70

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . 84

2.1 Introduction

Electrochemical accumulators, better known as batteries, are particular de-

vices that can be used both for storing energy and for delivering it when

necessary. Even though nowadays such devices are employed to provide
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suitable power supplies to a wide range of applications, their discovery dates

back to ancient times. Indeed, the history of batteries goes back to 250 BC

when terracotta containers, used together with an iron bar and a copper

cylinder immersed within an organic acid solution, were used as a galvanic

cell (see Fig. 2.1) [Scrosati, 2011, Rolison and Nazar, 2011]. In modern

Figure 2.1: Example of the so-called Baghdad battery.

times, the first scientist who built an actual battery was Alessandro Volta.

Starting from Luigi Galvani experiments, in 1800 Volta demonstrated that

the electrical current can flow between two metals having an electrolyte in

between. These experiments gave birth to the first pile (see Fig. 2.2) [New-

man and Thomas-Alyea, 2012]. In the following years, based on Volta’s

works, other experiments have been performed in order to investigate the

influence of different materials compositions over the pile performance. In

fact, the main limitations related to the Volta’s pile were related to its

inability to provide current for long periods of time. In 1836 the British

researcher John Frederich Daniell, through a particular arrangement of ma-

20



Figure 2.2: Volta’s pile. Courtesy of Wikimedia

terials used to build the Daniell Cell, was able to overcome such limitations.

The French Gaston Planté, in 1859, produced the first lead-acid recharge-

able battery by using thin lead layers and diluted sulfuric acid [Kurzweil,

2010]. Later on, between 1895 and 1905, the Swedish Waldemar Jungner

and the American Thomas Edison proposed new chemistries for recharge-

able batteries based on alkaline electrolyte solutions [Nakahara, 2006]. Be-

cause of their alkaline composition, a wide range of materials were suitable

to build nickel-cadmium (NiCd) and nickel-iron batteries as opposed to the

lead-acid ones. In the recent years, with the advances in the development

of portable electronics and their employment in a wide range of industrial

applications, new batteries chemistries have been developed. In particular,

in 1990 nickel-metalhydride (NiMh) and in 1991 Lithium-ion (Li-ion) bat-

teries were commercialized with the aim of supporting the emerging market

of portable devices. Through the years, such chemistries have been found

suitable also for providing power in the automotive field. Indeed, even

though the idea of equipping cars with electric powered engines goes back
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to the early 1900, the lack of reliable and efficient EAs has de facto post-

poned their large scale commercialization [Kirsch, 2000]. With the arrival

of Li-ion and NiMh batteries, the market shares of Electric Vehicle (EV)

and HEV has significantly increased, with growth prospects for the next

years [Randall, 2016]. Nowadays, the research in the development of new

chemistries is moving towards the direction of organic batteries whose objec-

tive is to minimize the environmental impact, while still providing efficient

and reliable devices [Chen et al., 2008, Lee et al., 2016, Yao, 2016].

2.2 Primary and secondary batteries

Among the different specifications of a battery, a key feature is related to

its capability to be recharged or not. This property makes that battery

belonging to one of these two categories: primary or secondary batteries.

In particular, primary batteries are non-rechargeable devices, as opposed to

the secondary batteries that can be discharged and charged multiple times.

Examples of primary batteries are the zinc-carbon, zinc-alkaline and some

Li-ion batteries, while examples of secondary batteries are the lead-acid,

some Li-ion, Li-ion-polymer, and NiMh EAs [Linden, 1984].

2.2.1 Batteries keywords

In the following paragraph, a brief explanation of the most common terms

used when working with batteries is given. The same terms will be used

throughout the Thesis.

• Cell: a cell is the elementary unit of a battery, which is composed of

two electrodes, an electrolyte solution and the current collectors (see
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Fig. 2.3a). From a cell it is possible to convert chemical energy into

electrical one and viceversa (only if secondary). Sometimes the term

battery is also used to refer to a single cell.

• Battery pack: a battery pack refers to a set of connected cells (see

Fig. 2.3b). The series or parallel interconnection of cells provides a

battery pack with an higher voltage or capacity. A battery pack is

usually entirely composed of primary or secondary cells, and not a

mixture of them.

• Anode: the anode is the electrode which is subject to oxidation

reaction (electrons flows out from the electrode to an external circuit)

during the cell operating conditions. Commonly the anode is used to

identify the negative electrode.

• Cathode: the cathode is the electrode which is subject to reduction

reaction (electrons flows into the electrode taken from an external

circuit) during the cell operating conditions. Commonly the cathode

is used to identify the positive electrode.

• Electrolyte: the electrolyte is a transport medium which allows ions

to flow between the two electrodes. It can be both liquid or a solid.

• Separator: the separator is an insulating porous layer which avoids

possible short-circuits between the electrodes, while allowing ions to

flow through it.

• C-rate: the C-rate is a relative value which represents the amount of

current needed to fully discharge a cell (starting from a fully charged

condition) within an hour. It equalizes the rated capacity (usually
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expressed in Ah) in terms of Ampere. For example, a 600 mAh cell

has a C-rate (1C) of 600 mA.

• Cell voltage: the cell voltage measures the difference between the

electrodes potential under generic load conditions.

• Open Circuit Voltage: the Open Circuit Voltage (OCV) represents

the voltage drop between the electrodes of a cell that is not under load

conditions.

• Cutoff Voltage: when the OCV equals the cutoff voltage, the cell is

fully discharged. This value varies according to the battery composi-

tion.

• State Of Health: the State Of Health (SOH) is an index used to

represent the ability of a battery to deliver specified performance,

compared to the ones coming from a fresh battery of the same type.

Given that several phenomena can concur to degrade the battery per-

formance, an index able to account for such losses can be useful in

monitoring operating conditions and diagnosing possible faulty situ-

ations.

• Usage cycles: the usage cycles count the number of times that a

battery can be charged and discharged, before the SOH index drops

below or above a threshold value. Usually the exceeding of such a

value determines the inability of the battery to provide suitable op-

erating performance.

• State of Charge: the SOC index quantifies the amount of charge

available inside an electrode. It is usually represented by means of

24



the ratio between the actual concentration of ions and the maximum

allowed capacity inside an electrode. This index is commonly used to

account for the remaining charge of a cell.

(a) A cylindrical 18650 cell. (b) A battery pack

Figure 2.3: Li-ion batteries configurations

2.2.2 Li-ion batteries

Li-ion based batteries were commercialized in 1991 by the Japanese com-

pany Sony [Nishi, 2001]. With respect to the other available chemistries,

Li-ion based cells exhibit an higher operating voltage (around 3.6 V), a

higher specific energy (expressed in Wh/kg), a lower self-discharge, and a

higher number of operating cycles (see Fig. 2.4) [Linden, 1984]. The elec-

trodes used to build a Li-ion cell have a lattice structure. Such structure

supports multiple insertion and extraction of ions, without being signifi-

cantly degraded or compromised. The basic working principle of a Li-ion

cell is described according to the so-called “rocking chair” rule [Guyomard

and Tarascon, 1994]. In charging conditions, the ions will deintercalate from

the cathode, and flowing within the electrolyte solution, will intercalate in-

side the anode. The opposite process occurs during discharging conditions.

The materials used for the positive electrode are usually lithium cobalt ox-
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Figure 2.4: Comparison of different EAs chemistries

ide (LiCoO2), lithium nickel oxide (LiNiO2) or lithium manganese oxide

(LiMn2O4). For the anode side, a carbon electrode made from graphite

or petroleum coke is usually adopted. The combination of two different

materials composing the cathode and anode gives birth to chemistries hav-

ing different capacities, discharge curves shapes, cutoff voltages etc. The

electrolyte is usually composed of non-aqueous solutions, where salts are

dissolved within organic or inorganic solvents. The choice of the partic-

ular solvent is made according to the anodic material (coke or graphite),

while a common choice for the salt falls on the lithium hexafluorophosphate

(LiPF6).

Li-ion-Polymer (Li-Poly – LiPo) batteries have also been proposed in

1997. The main difference with respect to the Li-ion batteries lies in the

adoption of a solid-state electrolyte instead of a liquid [Meyer, 1998]. In

this case, the polymer electrolyte replaces also the separator layer which

is usually present in liquid-based Li-ion batteries. The main benefit of
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adopting a solid-state electrolyte is related to a higher safety of the battery

during operating conditions. Nevertheless, such increased safety is gained

at the cost of a lower ionic conductivity which prevents the Li-Poly cells to

perform as well as the Li-ion batteries [Linden, 1984].

Another development in Li-ion batteries is represented by the Li-ion

metal (Li-metal) cells. In this case the anode is replaced by a metal-

lic lithium electrode. The main advantages by making use of a metallic

lithium anode is that both the energy density and specific energy are sig-

nificantly increased. However, Li-metal cells are more susceptible to the

loss of cyclable lithium due to the formation of a passivation layer after

each charge/discharge cycle. This phenomenon is mainly due to the high

reactivity of the Li-metal anode with any liquid electrolyte [Tarascon and

Armand, 2001]. In order to reduce such loss, polymer electrolytes have

been employed. However, even though the adoption of polymer electrolytes

reduces the loss of cyclable lithium, the formation of surface irregularities

(called dendrites) has been demonstrated to lead to unwanted short-circuits,

thus compromising safety.

2.2.3 Batteries working principle

Secondary batteries are able to convert chemical energy into electrical en-

ergy during discharging operations, and viceversa during charging condi-

tions. The conversion takes place with the occurrence of two main electro-

chemical phenomena at the electrodes-electrolyte interfaces: the reduction-

oxidation (redox ) reactions. The oxidation reaction extracts electrons from

the electrode and yields them to an external circuit, while the reduction

reaction takes electrons from the external circuit and feed them into the
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electrode. It is worth noticing that these two reactions can involve both

the positive and negative electrodes of a cell. Indeed, when discharging a

cell, the negative electrode will be subject to oxidation, while the positive

one to reduction. The opposite situation takes place when charging the

cell. Therefore, according to the definition of anode and cathode given in

Section 2.2.1, during charging conditions the anode would be the positive

electrode (oxidation) of the cell whereas the cathode would be the negative

one (reduction). Viceversa, in discharging conditions, the anode would be

the negative electrode (oxidation), while the cathode would be the positive

one (reduction). Conventionally, however, the anode refers to the negative

pole, while the cathode to the positive one according to the discharging

operating condition of the cell.

2.3 Mathematical models for Li-ion batteries

Mathematical models can be exploited in order to improve the manufac-

turing and management processes of Li-ion batteries. The optimal design

of a battery plays a fundamental role in providing ever more reliable and

efficient Li-ion accumulators for industrial applications. This process gener-

ally requires a large amount of time and involves the execution of numerous

experimental tests. The adoption of a mathematical model can signifi-

cantly reduce time and substantial savings of money. Such models can be

also exploited for the development of ABMSs with the aim of improving

the operating performance and to prolong the lifetime of Li-ion cells [San-

thanagopalan et al., 2006, Ramadesigan et al., 2012, Torchio et al., 2015].

In the literature, models have been developed for describing the behavior

of a Li-ion battery. All of these models belong to one of these two families:
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(i) the equivalent circuit models, and (ii) the electrochemical models. In

the following a brief overview of the models available in literature is given.

2.3.1 Equivalent circuit models

ECMs make use only of electrical components and circuits to model the

dynamic behavior of a battery. Usually, resistances, capacitors, and induc-

tances are used for these purposes. The Rint model (shown in Fig. 2.5)

implements an ideal voltage source UOCP in series with a resistance (called

internal resistance) Rint. The current provided by the battery is ibatt, while

Vbatt represents the cell voltage. An improvement of the Rint was proposed

UOCP

Rint ibatt

Vbatt

Figure 2.5: The Rint model

by the company SAFT [Johnson et al., 2001]. The RC model (as it was

named), besides considering the presence of resistors, makes use also of

capacitors. As shown in Fig. 2.6, two capacitors (Cb and Cc) with three

resistors (Re, Rt, and RC) are used to define the overall model. In par-

ticular the capacitor Cc has a small capacitance and it is mainly used to

model the surface effects of the battery (it takes the name of surface ca-

pacitor). On the other hand, the capacitor Cb is used to account for the

battery capacity (it takes the name of bulk capacitor). The indices Ub and
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Uc are used to represent the potential of the bulk and surface capacitors

respectively. A further extension of the Rint model is given by the Thevenin

Cb Ub

Re Rt ibatt

RC

CcUc

Vbatt

+

− +

−

Figure 2.6: The RC model

model, where a parallel RC network is connected in series to the internal

resistance as shown in Fig. 2.7. The presence of the capacitance CTh is

UOCP

Rint ibatt

RTh

CTh

Vbatt

Figure 2.7: The Thevenin model

used to describe the transient behavior of the cell during operating condi-
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tions. Other extensions of the Rint model are the Partnership for a New

Generation of Vehicles (PNGV) and Dual Polarization (DP) models (see

[He et al., 2011, Hu et al., 2012] and the references therein for a thorough

description). Other ECMs try to reproduce in more details the behavior

of a Li-ion cell by modeling separately the dynamics of the electrodes and

the electrolyte by means of resistors, capacitors and inductances as shown

in [Bergveld et al., 2002].

2.3.2 Electrochemical models

In contrast to ECMs, EMs explicitly represent in detail the electrochemical

phenomena occurring inside a cell [Rahimian et al., 2011]. The most widely

used EM in the literature is the porous electrodes theory-based pseudo

two-dimensional model [Doyle, 1995]. The P2D model is represented by

means of Partial Differential and Algebraic Equations (PDAEs), derived

from first-principles laws of modeling. Such equations are used to describe

the conservation of mass and charge in the different sections of the battery.

Despite the high accuracy provided by the P2D model in predicting the

electrochemical dynamics, the numerical resolution of the PDAEs requires a

significant computational effort. This aspect represents the main drawback

of this EM. For this reason, several approximations have been proposed

in literature. Some of them aim to reduce the computational burden by

approximating the electrodes kinetics with polynomials or Ordinary Differ-

ential Equations (ODEs) [Ramadesigan et al., 2010], while other approaches

make simplifying assumptions related to the electrodes kinetics and the liq-

uid phase dynamics. The Single Particle Model (SPM), for instance, is a

simplified version of the P2D model, which has been demonstrated to be
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accurate for simulating low to medium current densities [Santhanagopalan

et al., 2006].

In the remainder of this chapter, the P2D model is considered and its

numerical implementation carefully treated. In order to exploit the model

for simulation and design purposes, the set of PDAEs are reformulated as

a set of ordinary Differential-Algebraic Equations (DAEs). The model re-

formulation is very challenging to carry out in a way that is simultaneously

computationally efficient and numerically stable for a wide range of battery

parameters and operating conditions. A detailed description of a compu-

tationally efficient and numerically stable finite volume DAE formulation

is presented, while also addressing potential pitfalls and relative loopholes.

In particular boundary conditions used to enforce physical meaningfulness

of the system are thoroughly discussed and their numerical implementation

is explained. Particular attention is directed to the handling of interface

boundary conditions in the three primary sections of the battery - positive

and negative electrodes and the separator. Due to possible discontinuities

between adjacent sections, a mishandling of such conditions may lead to

physically inconsistent solutions. Due to its intrinsic properties, the Finite

Volume Method (FVM) has been chosen to easily deal with these partic-

ular interface conditions. Finally, based on the proposed FVM discretiza-

tion, the LIONSIMBA toolbox is provided, which is a fully customizable

Matlab R© framework suitable for simulating the dynamic behavior of Li-ion

batteries. These functions are freely downloadable from the website

http://sisdin.unipv.it/labsisdin/lionsimba.php

The reader can implement his/her own custom-defined control algo-

rithm to test different ABMS strategies, simulate cell behavior, optimize
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manufacturing parameters or test battery packs composed of series-connected

cells. The package also allows the ready implementation of algorithms to es-

timate indices such as the SOC and the SOH. The package comes with the

experimental parameters of the battery reported in [Northrop et al., 2011].

An initialization file allows changes in battery and simulator parameters.

The simulator works under Matlab R© using IDA [Hindmarsh et al., 2005] to

solve the set of resulting DAEs with a good tradeoff between accuracy and

computational time.

2.4 Pseudo two-dimensional model

The P2D model consists of coupled nonlinear PDAEs for the conserva-

tion of mass and charge in the three sections of the battery – cathode,

separator, and anode – denoted respectively by the indices p, s, and n.

The positive and negative current collectors are denoted by a and z. A

cross sectional representation of a Li-ion cell is depicted in Fig. 2.8. The

electrodes-separator structure is immersed within an electrolyte solution

which is used as a transport medium from the lithium ions. In the follow-

ing, the index i ∈ S is used to refer to a particular section of the battery,

where S := {a, p, s, n, z}. Each section of the battery has a thickness rep-

resented by li, while the overall thickness is obtained by L =
∑

i li, and the

notation x̂0 = la, x̂p = la + lp, x̂s = la + lp + ls, and x̂n = la + lp + ls + ln is

used. In order to take into account the properties of different materials used

in the battery, effective diffusion and conductivity coefficients are evaluated

according to the Bruggeman’s theory, with “eff” suffixes representing effec-

tive values of such coefficients. Moreover, with the aim of providing a more

detailed description of the conductivity and diffusion phenomena inside the
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electrolyte, all the related coefficients are determined as a function of ce

and T , as discussed in [Valøen and Reimers, 2005]. For a clearer compre-

hension, bold is used in tables for coefficients whose dependence on other

variables is made explicit in other equations. The complete set of equations

are summarized in the Tables 2.2 and 2.3, while the nomenclature of the

variables is reported in Table 2.1.

Figure 2.8: Schematic cross sectional view of a Li-ion cell

The flow of ions inside the electrolyte solution is modeled by the diffusion

equation

εi
∂

∂t
ce(x, t) =

∂

∂x

[
Deff ,i

∂ce(x, t)

∂x

]
+ ai(1− t+)j(x, t), i ∈ {p, s, n}

(2.1)

where x ∈ R is the one-dimensional spatial direction along which the ions

are transported, t ∈ R+ represents the time, ce(x, t) accounts for the elec-

trolyte concentration of ions, the function j(x, t) is the ionic flux, t+ defines

the transference number, while in the ith section ai is the particle surface

area to volume ratio, Deff ,i accounts for the effective diffusion coefficients of

the electrolyte, and εi represents the material porosity. Given that ions do
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not flow outside the electrodes, zero-flux boundary conditions are enforced

∂ce(x, t)

∂x

∣∣∣∣
x=x̂0

= 0,
∂ce(x, t)

∂x

∣∣∣∣
x=x̂n

= 0,

while continuity conditions are considered across the different sections of

the battery

−Deff ,p
∂ce(x, t)

∂x

∣∣∣∣
x=x̂−p

= −Deff ,s
∂ce(x, t)

∂x

∣∣∣∣
x=x̂+

p

,

−Deff ,s
∂ce(x, t)

∂x

∣∣∣∣
x=x̂−s

= −Deff ,n
∂ce(x, t)

∂x

∣∣∣∣
x=x̂+

s

.

To model the intercalation and deintercalation processes inside the solid

spherical particles with radius Rp,i, the Fick’s law of diffusion is used

∂cs(r, t)

∂t
=

1

r2

∂

∂r

[
r2Ds

eff ,i

∂cs(r, t)

∂r

]
, i ∈ {p, n} (2.2)

with boundary conditions

∂cs(r, t)

∂r

∣∣∣∣
r=0

= 0,
∂cs(r, t)

∂r

∣∣∣∣
r=Rp,i

= −j(x, t)
Ds

eff ,i

,

where r ∈ R is the radial direction along which ions diffuse within the

solid particles, cs(r, t) is the solid phase ions concentration, while Ds
eff ,i

accounts for the effective diffusion coefficients of the solid phases. This

model introduces a pseudo-second dimension (r). To reduce complexity

and computational burden, [Subramanian et al., 2005] and [Ramadesigan

et al., 2010] proposed different efficient reformulations for the solid-phase

diffusion equation. As discussed in [Zhang and White, 2007], according to

the particular application, different model reformulations can be employed

while maintaining good accuracy. For low to medium C rates, the diffusion

length method [Wang et al., 1998] or the two-term polynomial approxi-

mation method are accurate. At high C rates, higher-order polynomial
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approximations or the Pseudo Steady State (PSS) [Liu, 2006] approxima-

tion can be employed. For more details, refer to [Zhang and White, 2007]

and the references therein.

In the two-term polynomial approximation, concentration profiles inside

the particle are assumed to be quadratic in r and (2.2) is approximated by

means of average cavg
s (x, t) and surface c∗s(x, t) concentration of the solid

particles,

∂cavg
s (x, t)

∂t
= −3

j(x, t)

Rp,i
, (2.3)

c∗s(x, t)− cavg
s (x, t) = − Rp,i

Ds
eff ,i

j(x, t)

5
, i ∈ {p, n}. (2.4)

This reformulation leads to a one-dimensional problem in x by removing

the pseudo-second dimension r. Despite the reduced computational burden,

such approximation could lead to a decrease of the prediction accuracy

for high rates, short time responses or pulse currents [Zhang and White,

2007]. For these applications, higher-order polynomials or Fick’s law are

recommended, as discussed in Section 2.6.2.

According to Ohm’s law, the conservation of charge in the electrodes can

be defined as

∂

∂x

[
σeff ,i

∂

∂x
Φs(x, t)

]
= aiFj(x, t), i ∈ {p, n} (2.5)

where Φs(x, t) is the solid potential, σeff ,i is the electrodes effective conduc-

tivity, while F is the Faraday’s constant. In order to relate the solid phase

potential with the applied current density Iapp(t), the following boundary
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conditions are enforced

σeff ,i
∂Φs(x, t)

∂x

∣∣∣∣
x=x̂0,x̂n

= −Iapp(t),

σeff ,i
∂Φs(x, t)

∂x

∣∣∣∣
x=x̂p,x̂s

= 0.

The potential of the Li-ion cell is obtained as

Vout(t) := Φs(x̂p, t)− Φs(x̂n, t).

Similarly, a modified Ohm’s law is used to represent the charge conservation

within the electrolyte:

aiFj(x, t) =− ∂

∂x

[
κeff ,i

∂

∂x
Φe(x, t)

]
(2.6)

+
∂

∂x

[
2κeff ,iRT (x, t)

F
(1− t+)

∂

∂x
ln ce(x, t)

]
, i ∈ {p, s, n}

where Φe(x, t) is the electrolyte potential, T (x, t) represents the tempera-

ture, R defines the universal gas constant, and κeff ,i is the effective con-

ductivity coefficient of the liquid phase in the ith section. Without loss

of generality, given that only potential differences can be measured, the

following boundary condition is enforced at the anode side

Φe(x, t)

∣∣∣∣
x=x̂n

= 0,

while null flux conditions are enforced at the cathode side

∂Φe(x, t)

∂x

∣∣∣∣
x=x̂0

= 0.

Excessive heat generation may lead to performance degradation and, in ex-

treme cases, thermal runaway of the cell [Bernardi et al., 1985, Bandhauer

et al., 2011]. In order to address these possible safety issues, thermal dy-

namics are included with the set of conservation equations describing the
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system in each section of the battery

ρiCp,i
∂

∂t
T (x, t) =

∂

∂x

[
λi
∂

∂x
T (x, t)

]
+Qohm,i(x, t) +Qrxn,i(x, t) +Qrev,i(x, t),

(2.7)

where ρi is the material density, Cp,i is the specific heat, λi is the heat

diffusion coefficient. The ohmic generation rate takes into account heat

generated as a consequence of the motion of Li-ions in the solid/liquid

phase, and it varies according to the particular section of the battery. Inside

the electrodes it is defined as

Qohm,i(x, t) =σeff ,i

(
∂Φs(x, t)

∂x

)2

+ κeff ,i

(
∂Φe(x, t)

∂x

)2

+
2κeff ,iRT (x, t)

F
(1− t+)

∂ ln ce(x, t)

∂x

∂Φe(x, t)

∂x
, i ∈ {p, n}.

In the liquid phase, due to the absence of the solid potential, its formulation

is stated as follows

Qohm,i(x, t) =κeff ,i

(
∂Φe(x, t)

∂x

)2

+
2κeff ,iRT (x, t)

F
(1− t+)

∂ ln ce(x, t)

∂x

∂Φe(x, t)

∂x
, i ∈ {s},

while in the current collectors, only Joule’s effect is considered

Qohm,i(x, t) =
I2

app(t)

σeff ,i
i ∈ {a, z}.

The reaction generation rate, present only inside the electrodes, is defined

as

Qrxn,i(x, t) = F ai j(x, t) ηi(x, t), i ∈ {p, n}

and accounts for heat generated due to ionic flux and electrodes overpoten-

tial

ηi(x, t) = Φs(x, t)− Φe(x, t)−U i(x, t), i ∈ {p, n}
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where U i(x, t) represents the OCV. Finally, the reversible generation rate

Qrev,i(x, t) = F ai j(x, t)T (x, t)
∂U i

∂T

∣∣∣∣
Tref

, i ∈ {p, n}

takes into account the heat generated by the entropy change in the elec-

trodes structure [Kumaresan et al., 2008], where ∂U i
∂T

∣∣
Tref

accounts for the

entropic variation of the OCV evaluated with respect to a reference tem-

perature Tref. Boundary conditions for the thermal dynamics are needed in

order to: (i) guarantee continuity across the different sections of the battery

−λa
∂T (x, t)

∂x

∣∣∣∣
x=x̂−0

= −λp
∂T (x, t)

∂x

∣∣∣∣
x=x̂+

0

,

−λp
∂T (x, t)

∂x

∣∣∣∣
x=x̂−p

= −λs
∂T (x, t)

∂x

∣∣∣∣
x=x̂+

p

,

−λs
∂T (x, t)

∂x

∣∣∣∣
x=x̂−s

= −λn
∂T (x, t)

∂x

∣∣∣∣
x=x̂+

s

,

−λn
∂T (x, t)

∂x

∣∣∣∣
x=x̂−n

= −λz
∂T (x, t)

∂x

∣∣∣∣
x=x̂+

n

,

and (ii) enforce the Newton’s law of cooling for heat dissipation with the

surroundings

−λa
∂T (x, t)

∂x

∣∣∣∣
x=0

= h(Tenv − T (x, t)),

−λz
∂T (x, t)

∂x

∣∣∣∣
x=L

= h(T (x, t)− Tenv).

The term h represents the heat exchange coefficient, while Tenv represents

the environmental temperature.

The above equations are coupled by means of the ionic flux, which is defined

as

j(x, t) =2
i0
F

sinh

[
0.5F

RT (x, t)
ηi(x, t)

]
, i ∈ {p, n} (2.8)
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where cmax
s,i is the maximum concentration of the solid phase, while the

exchange current density is given by

i0 =Fkeff ,i

√
ce(x, t)(cmax

s,i − cs(Rp,i, t))cs(Rp,i, t).

The ionic flux j(x, t) is zero inside the separator. The model equations

are from [Doyle, 1995], where for convenience the electrolyte potential is

related to the ionic flux j(x, t) rather than to the applied current density

[Smith and Wang, 2006, Bernardi and Go, 2011]. The thermal model is

taken from [Kumaresan et al., 2008] while all of the parameters describing

the particular chemistry are taken from [Northrop et al., 2011].
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Iapp(t) Applied current density [A/m2]

ce(x, t) Electrolyte salt concentration [mol/m3]

cs(r, t) Solid-phase concentration [mol/m3]

cavg
s (x, t) Solid-phase average concentration [mol/m3]

c∗s(x, t) Solid-phase surface concentration [mol/m3]

j(x, t) Ionic flux [mol/(m2s)]

Φe(x, t) Electrolyte potential [V]

Φs(x, t) Solid potential [V]

η(x, t) Electrode overpotential [V]

U(x, t) Open circuit voltage [V]

T (x, t) Temperature [K]

Ds
eff Effective solid-phase diffusion coefficient [m2/s]

Deff Effective electrolyte diffusion coefficient [m2/s]

σeff Effective solid-phase conductivity [S/m]

κeff Effective electrolyte conductivity [S/m]

keff Effective reaction rate

Qohm Ohmic heat source term [W/m3]

Qrev Reversible heat source term [W/m3]

Qrxn Reaction heat source term [W/m3]

U ref Open Circuit Voltage [V]

∂U

∂T

∣∣∣∣
Tref

Open Circuit Voltage Entropic Variation [V/K]

l Thickness [m]

Rp Particles radius [m]

ρ Density [kg/m3]

Cp Specific Heat [J/(kg K)]
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h Heat diffusion coefficient [W/(m2 K)]

λ Thermal conductivity [W/(m K)]

ε Porosity

t+ Transference number

ED
s

a Solid-phase diffusion activation energy [J/mol]

Eka Reaction constant activation energy [J/mol]

a Particle surface area to volume [m2/m3]

F Faraday’s constant [C/mol]

R Gas universal constant [J/(mol K)]

εf Filler fraction

Table 2.1: Nomenclature
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Current Collectors, i ∈ {a, z} Boundary Conditions

ρiCp,i
∂T (x, t)

∂t
=

∂

∂x

[
λi
∂T (x, t)

∂x

]
+
I2
app(t)

σeff ,i

−λa
∂T (x, t)

∂x

∣∣∣∣
x=0

= h(Tenv − T (x, t))

−λz
∂T (x, t)

∂x

∣∣∣∣
x=L

= h(T (x, t)− Tenv)

Positive and Negative Electrodes, i ∈ {p, n}

εi
∂ce(x, t)

∂t
=

∂

∂x

[
Deff ,i

∂ce(x, t)

∂x

]
+ ai(1− t+)j(x, t)

∂ce(x, t)

∂x

∣∣∣∣
x=x̂0,x̂n

= 0

∂cavg
s (x, t)

∂t
= −3

j(x, t)

Rp,i

c∗s(x, t)− cavg
s (x, t) = − Rp,i

Ds
eff ,i

j(x, t)

5

∂

∂x

[
σeff ,i

∂Φs(x, t)

∂x

]
= ai F j(x, t) σeff ,i

∂Φs(x, t)

∂x

∣∣∣∣
x=x̂0,x̂n

= −Iapp(t)

σeff ,i
∂Φs(x, t)

∂x

∣∣∣∣
x=x̂p,x̂s

= 0

ai F j(x, t) = − ∂

∂x

[
κeff ,i

∂Φe(x, t)

∂x

]
+

∂

∂x

[
κeff ,iΥT (x, t)

∂ ln ce(x, t)

∂x

] ∂Φe(x, t)

∂x

∣∣∣∣
x=x̂0

= 0

Φe(x, t)

∣∣∣∣
x=x̂n

= 0

ρiCp,i
∂T (x, t)

∂t
=

∂

∂x

[
λi
∂T (x, t)

∂x

]
+Qohm,i(x, t) +Qrxn,i(x, t) +Qrev,i(x, t)

−λz
∂T (x, t)

∂x

∣∣∣∣
x=x̂−

0

= −λp
∂T (x, t)

∂x

∣∣∣∣
x=x̂+

0

−λn
∂T (x, t)

∂x

∣∣∣∣
x=x̂−

n

= −λz
∂T (x, t)

∂x

∣∣∣∣
x=x̂+

n

j(x, t) = 2keff ,i

√
ce(x, t)(cmax

s,i − c∗s(x, t))c∗s(x, t) sinh
[

0.5R
FT (x,t)ηi(x, t)

]
ηi(x, t) = Φs(x, t)− Φe(x, t)−Ui(x, t)

Separator, i = s

εi
∂ce(x, t)

∂t
=

∂

∂x

[
Deff ,i

∂ce(x, t)

∂x

] −Deff ,p
∂ce(x, t)

∂x

∣∣∣∣
x=x̂−

p

= −Deff ,s
∂ce(x, t)

∂x

∣∣∣∣
x=x̂+

p

−Deff ,s
∂ce(x, t)

∂x

∣∣∣∣
x=x̂−

s

= −Deff ,n
∂ce(x, t)

∂x

∣∣∣∣
x=x̂+

s

0 = − ∂

∂x

[
κeff ,i

∂Φe(x, t)

∂x

]
+

∂

∂x

[
κeff ,iT (x, t)Υ

∂ ln ce(x, t)

∂x

] −κeff ,p
∂Φe(x, t)

∂x

∣∣∣∣
x=x̂−

p

= −κeff ,s
∂Φe(x, t)

∂x

∣∣∣∣
x=x̂+

p

−κeff ,s
∂Φe(x, t)

∂x

∣∣∣∣
x=x̂−

s

= −κeff,n
∂Φe(x, t)

∂x

∣∣∣∣
x=x̂+

s

ρiCp,i
∂T (x, t)

∂t
=

∂

∂x

[
λi
∂T (x, t)

∂x

]
+Qohm,i(x, t)

−λp
∂T (x, t)

∂x

∣∣∣∣
x=x̂−

p

= −λs
∂T (x, t)

∂x

∣∣∣∣
x=x̂+

p

−λs
∂T (x, t)

∂x

∣∣∣∣
x=x̂−

s

= −λn
∂T (x, t)

∂x

∣∣∣∣
x=x̂+

s

Table 2.2: Li-ion P2D model governing equations
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Open Circuit Voltage (Thermal dependence)

Up(x, t) = Up,ref + (T (x, t)− Tref)
∂Up

∂T

∣∣∣∣
Tref

Un(x, t) = Un,ref + (T (x, t)− Tref)
∂Un

∂T

∣∣∣∣
Tref

Entropy change

∂Up

∂T

∣∣∣∣
Tref

= −0.001

(
0.199521039− 0.928373822θp + 1.364550689000003θ2

p − 0.6115448939999998θ3
p

1− 5.661479886999997θp + 11.47636191θ2
p − 9.82431213599998θ3

p + 3.048755063θ4
p

)

∂Un

∂T

∣∣∣∣
Tref

=

0.001

(
0.005269056 + 3.299265709θn − 91.79325798θ2

n + 1004.911008θ3
n − 5812.278127θ4

n+

19329.7549θ5
n − 37147.8947θ6

n + 38379.18127θ7
n − 16515.05308θ8

n

)
(

1− 48.09287227θn + 1017.234804θ2
n − 10481.80419θ3

n + 59431.3θ4
n−

195881.6488θ5
n + 374577.3152θ6

n − 385821.1607θ7
n + 165705.8597θ8

n

)

Open Circuit Voltage (Reference value)

Up,ref =
−4.656 + 88.669θ2

p − 401.119θ4
p + 342.909θ6

p − 462.471θ8
p + 433.434θ10

p

−1 + 18.933θ2
p − 79.532θ4

p + 37.311θ6
p − 73.083θ8

p + 95.96θ10
p

Un,ref = 0.7222 + 0.1387θn + 0.029θ0.5
n − 0.0172

θn
+ 0.0019

θ1.5
n

+ 0.2808e0.9−15θn − 0.7984e0.4465θn−0.4108

θp =
c∗s,p(x, t)

cmax
s,p

θn =
c∗s,n(x, t)

cmax
s,n

Heat source terms (Anode and Cathode)

Qohm,i(x, t) = σeff ,i

(
∂Φs(x, t)

∂x

)2

+ κeff ,i

(
∂Φe(x, t)

∂x

)2

+
2κeff ,iRT (x, t)

F
(1− t+)

∂ ln ce(x, t)

∂x

∂Φe(x, t)

∂x
, i ∈ {p, n}

Qrxn,i(x, t) = F ai j(x, t) ηi(x, t), i ∈ {p, n}

Qrev,i(x, t) = F ai j(x, t)T (x, t)
∂U i

∂T

∣∣∣∣
Tref

, i ∈ {p, n}

Heat Source terms (Separator)

Qohm,i(x, t) = κeff ,i

(
∂Φe(x, t)

∂x

)2

+
2κeff ,iRT (x, t)

F
(1− t+)

∂ ln ce(x, t)

∂x

∂Φe(x, t)

∂x
, i = s

Various Coefficients

Deff ,i = ε
bruggi
i × 10−4 × 10

−4.43− 54
T (x,t)−229−5×10−3ce(x,t)

−0.22×10−3ce(x,t)

κeff ,i = ε
bruggi
i × 10−4 × ce(x, t)

 − 10.5 + 0.668 · 10−3 · ce(x, t) + 0.494 · 10−6c2
e(x, t)+

(0.074− 1.78× 10−5ce(x, t)− 8.86× 10−10c2
e(x, t))T (x, t)+

(−6.96× 10−5 + 2.8× 10−8ce(x, t))T
2(x, t)


2

keff ,i = ki e
−E

ki
a
R

(
1

T (x,t)
− 1
Tenv

)
Υ :=

2(1− t+)R

F

Ds
eff ,i = Ds

i e
−E

Dsi
a
R

(
1

T (x,t)
− 1
Tenv

)
σeff ,i = σi(1− εi − εf,i)

Table 2.3: Additional equations
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2.5 Numerical implementation

Most numerical methods for model-based estimation and control algorithms

require the model to be formulated in terms of Algebraic Equations (AEs)

or DAEs rather than PDAEs. Different numerical methods can be used to

achieve this objective. The reformulation process from PDAEs to AEs or

DAEs is carried out by discretizing the domains of the independent variables

(e.g., the time domain t and the N -dimensional spatial domain x ∈ RN ).

The discretization can involve both time and space, to produce AEs, or

only space, to produce DAEs. An example of discretization in time and

space is given by the Forward-Time Central-Space (FTCS) approach [Stoer

and Bulirsch, 2013]. Other techniques, like the Method Of Lines (MOLs)

[Schiesser, 1991], discretize only the space domain and leave the time as

a continuous variable. When this latter approach is used, finite volume,

finite difference, or finite element methods can be employed to obtain the

set of DAEs. Alternative approaches can be used. For example, orthogonal

collocation can be used with an efficient coordinate transformation to solve

the set of resulting DAEs [Northrop et al., 2011]. In this section, in order

to exploit the properties of variable-step solvers, MOLs is used to refor-

mulate the original set of PDAEs. In particular, the finite volume method

is employed. Due to its ability to conserve properties with high accuracy

(within numerical roundoff errors), the FVM has been used in literature

to discretize models in a wide range of applications, such as heat transfer

problems [Chai and Patankar, 2000], flow and transport in porous media

[Jenny et al., 2005], or more general applications for hyperbolic problems

as discussed in [LeVeque, 2002]. In particular, the FVM together with the

Harmonic Mean (HM) have been used to deal with possible discontinu-
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ities across different sections of the cell. In the following, all the numerical

details are addressed.

2.5.1 Finite volume formulation

Consider a general diffusion-convection equation defined on a domain in

RN of the form

∂φ

∂t
+∇(ηφ) = ∇(Γ∇φ) + s (2.9)

where φ is the unknown variable, η is the velocity, Γ is a diffusion coefficient

and s a source term. Both the unknown φ and the source term s depend

on time t and space x ∈ RN . For convenience define f(φ) := ηφ − Γ∇φ.

Integrating (2.9) over a spatial domain Ω ⊂ RN and applying the divergence

theorem produces the integral form of the conservation law:∫
Ω

∂φ

∂t
dV +

∮
dΩ

(f(φ) · n) dS =

∫
Ω
sdV (2.10)

where dΩ is the boundary of the domain Ω, n is the outward pointing

unit normal on the boundary of the domain, and dV and dS represent the

infinitesimal volume of Ω and the infinitesimal surface of the boundary dΩ

respectively. Alternatively, this integral equation could be written directly

as an exact conservation equation over any prescribed spatial domain.

According to the FVM, the spatial domain Ω is divided into a set of

disjoint Control Volumes (CVs) Ωk centered in xk ∈ RN , such that Ω =

∪kΩk and Ωi ∩Ωj = ∅ , ∀i 6= j. The average value of the unknown variables

for each CV is

φ̄k(t) =
1

Gk

∫
Ωk

φ(x, t) dV
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Figure 2.9: Example of a 2D FVM mesh where the set of neighbor cells Ck
is represented by the green cells.

where Gk represents the volume of Ωk. Using this equation, the integrals

in (2.10) can be reformulated as

˙̄φk(t) +
∑
j∈Ck

(F (φ̄) · n)k,j ≈ s̄k(t) (2.11)

where Ck is the set of the neighbor cells to the kth CV and (F (φ̄) · n)k,j is

the normal component of the numerical approximation of f(φ) ·n, directed

toward xj starting from xk. An illustrative example of the set Ck is given in

Fig. 2.9. Suitable numerical approximations need to be employed for the

term F (φ̄); given that the average values of the unknown variables φ̄ are

computed in the FVM, interpolation techniques are employed to recover

the value of such unknowns at the edges of the CVs [ten Thije Boonkkamp

and Anthonissen, 2011]. The approximation of F (φ̄) is discussed in the

next section.
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Figure 2.10: One-dimensional finite volume mesh

2.5.2 Discretization of the governing equations

The discretization method introduced in Section 2.5.1 is exploited to re-

formulate the set of governing equations summarized in Table 2.2. Given

that all the unknowns of the Li-ion cell model are functions of the variables

t ∈ R+ and x ∈ R, the development of a 1D FVM model is addressed. In

order to correctly carry out the discretization process, a mesh structure of

the spatial domain is defined by subdividing it into Na+Np+Ns+Nn+Nz

non-overlapping volumes with geometrically centered nodes (as depicted in

Fig. 2.10). Every CV is associated with a center xk and spans the interval

[xk− 1
2
;xk+ 1

2
]. To facilitate the treatment of boundary and interface condi-

tions, the edges of each CV are aligned with the domain boundaries and

internal interfaces. The width of every CV is defined as ∆xi = li/Ni, where

i represents a particular section of the battery.

Once the discretization mesh is structured, the governing equations are

discretized as summarized in Table 2.4. All the interface conditions used

to enforce continuity between adjacent materials are discussed in Section

2.5.3.

Particular attention is required for the thermal dynamics. The re-
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versible and reactive heat sources can be discretized as

Q̄rev,k = Fai j̄k(t) T̄k(t)
∂Ui,k

∂T

Q̄rxn,k = Fai j̄k(t) η̄i,k(t)

whereas the derivatives present in the ohmic source are numerically approx-

imated as

∂Φs(x, t)

∂x

∣∣∣∣
xk

≈
Φ̄s,k+1(t)− Φ̄s,k−1(t)

2∆xi

∂Φe(x, t)

∂x

∣∣∣∣
xk

≈
Φ̄e,k+1(t)− Φ̄e,k−1(t)

2∆xi

∂ ln ce(x, t)

∂x

∣∣∣∣
xk

≈
c̄e,k+1(t)− c̄e,k−1(t)

2∆xi c̄e,k(t)

using a central differencing scheme. Finally the term Q̄source,k := Q̄ohm,k +

Q̄rev,k + Q̄rxn,k.

As discussed in Section 2.5.1, a suitable numerical approximation for

F (φ̄) is needed. Given that no convective terms are present in the set of

governing equations, numerical approximation is only required for the diffu-

sive terms (e.g., −Γ∇φ). In this work, all the diffusive terms are numerically

approximated with a first-order scheme:

∂φ(x, t)

∂x

∣∣∣∣
x
k+ 1

2

≈ φ̄k+1(t)− φ̄k(t)
∆x

∂φ(x, t)

∂x

∣∣∣∣
x
k− 1

2

≈ φ̄k(t)− φ̄k−1(t)

∆x

All the values coming from the additional equations in Table 2.3 are ob-

tained as a function of the average values of the unknowns. Equation (T) is

used to obtain the values of T , while the equations (M1), (M2), and (M3)

are used to obtain the values of ce, c
avg
s , and c∗s respectively. The values of
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Φs are obtained from (C1) while the values of Φe are calculated through

(C2).

2.5.3 Implementation of boundary and interface conditions

Boundary conditions must be enforced to have a physically meaningful

solution. As shown in Table 2.2, null-flux boundary conditions on the elec-

trolyte diffusion equation ce can be straightforwardly enforced by imposing

∂ce
∂x = 0 at x = x̂0 and x = x̂n. The same procedure can be used to enforce

∂Φe
∂x = 0 at x = x̂0, while Φe = 0 at x = x̂n is enforced by setting to zero

the value of Φe at the last CV of the anode. Solid-phase potential bound-

aries are enforced by substituting ∂Φs
∂x at x = x̂0 and x = x̂n the value of

−Iapp(t)/σeff ,i. Similarly, at x = x̂p and x = x̂s,
∂Φs
∂x is replaced by the

value 0. To enforce heat exchange with the surrounding environment, the

terms ∂T
∂x evaluated at x = 0 and x = L are substituted with the terms

h(Tenv − T̄1) and −h(T̄end − Tenv) respectively. The suffixes 1 and end refer

to the first and last CV of the entire mesh. All these conditions have been

formulated also for the FVM discretization as shown in Table 2.4.

Due to changes in material properties along the length of the battery,

interface conditions are required to enforce continuity of the solution. For

this reason, the values of different coefficients (e.g., Deff ,i, κeff ,i, λi) need

to be evaluated at the interface between two different materials. The eas-

iest way would be to use an arithmetic mean (or a linear interpolation of

adjacent values); however, in some cases, this approach cannot accurately

handle the abrupt changes of coefficients that may occur. Instead, the HM

is employed to evaluate the value at the edges of the CVs of such coeffi-

cients. The HM of two generic coefficients (k1 and k2) can be expressed
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as

k1k2

βk2 + (1− β)k1

where β represents a weight to account for the difference between the dif-

ferent CV widths. A common value for β is β = ∆x1
∆x2+∆x1

, where ∆x1 and

∆x2 represent the CV widths. This formulation produces results that are

more robust in presence of the abrupt changes of the coefficients, without

requiring an excessively fine grid in the vicinity of the interface [Patankar,

1980].

Figure 2.11: Electrolyte diffusion process: interface across the cathode and

separator.

Consider Fig. 2.11 where the interface across the last volume of the cath-

ode and the first volume of the separator is depicted. Remember that, as

discussed in Section 2.5.2, the mesh structure has been chosen in order to

align the CV edges with the interfaces or physical boundaries of the battery.

The value of Deff ,k+1
2

can be obtained using the HM as

Deff ,k+1
2

=
Deff ,kDeff ,k+1

βDeff ,k+1 + (1− β)Deff ,k

where β =
∆xp

∆xp+∆xs
. The electrolyte diffusion in the last volume of the
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cathode is

εp
∂c̄e,k(t)

∂t
= Deff ,k+1

2

(c̄e,k+1(t)− c̄e,k(t))
∆xp(∆x̃)

−Deff ,k−1
2

(c̄e,k(t)− c̄e,k−1(t))

∆x2
p

+ ap (1− t+) j̄k(t)

whereas

εs
∂c̄e,k+1(t)

∂t
= Deff ,k+3

2

(c̄e,k+2(t)− c̄e,k+1(t))

∆x2
s

−Deff ,k+1
2

(c̄e,k+1(t)− c̄e,k(t))
∆xs(∆x̃)

in the first volume of the separator, with ∆x̃ =
∆xs+∆xp

2 . Note that when

evaluating for instance the value of Deff ,k, the polynomial function stated

in Table 2.3 is considered, in which the averaged values c̄e,k(t) and T̄k(t)

are used. The same procedure applies for evaluating all the other bolds

values.

Besides being used for equation (M1), the HM has also been used in

equation (T) and (C2) (Table 2.4) to enforce continuity across the different

sections of the cell for the temperature T (x, t) and the electrolyte potential

Φe(x, t). Moreover, according to its FVM formulation, the second term of

the left hand side of (C2) requires the evaluation of T (x, t), ce(x, t), and κeff

at the edges of the CVs. Since in this case the evaluation of such quantities

does not involve the enforcement of continuity across the different sections

of the cell, their edges values can be recovered using linear interpolation

techniques as illustrated in Fig. 2.12.

When dealing with battery packs, in particular with series-connected cells,

all the aforementioned numerical schemes have to be replicated for each
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Figure 2.12: Interpolation technique to recover edge values of the unknowns.

cell. Moreover, when temperature dynamics are considered, the numerical

scheme has to be adapted in order to account for continuity fluxes across

the cells. Indeed, if two cells are connected in series,

−λz,1
∂Tcell 1(x, t)

∂x

∣∣∣∣
x=x∗

= −λa,2
∂Tcell 2(x, t)

∂x

∣∣∣∣
x=x∗

must hold at the interface of the current collectors across the two cells (e.g.,

at x = x∗). Finally, Newton’s law of cooling has to be enforced respectively

at the positive current collector of the first cell and at negative current

collector of the second cell.

2.6 LIONSIMBA: the Li-ION SIMulation BAt-

tery toolbox

Different implementations of Li-ion cell simulation have been reported in

the literature written in such languages as Maple and Fortran (DUALFOIL

[Doyle, 1998]), and in commercial software such as COMSOL Multiphysics

[Cai and White, 2011] and Modelica [Tiller, 2012] which provide a variety

of models to simulate the behavior of a Li-ion cell. Matlab R© , however, is

the software language most commonly used by researchers for the devel-
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opment and evaluation of different identification, estimation, and control

algorithms, as Matlab R© has by far the largest number of toolboxes that

implement the widest variety of such algorithms. Combined with its In-

strument Control Toolbox that has a very extensive suite of protocols for

directly communicating and controlling laboratory equipment, Matlab R©

has the maximum flexibility for evaluation of control algorithms through

simulations and experiments.

This work provides a freely available Matlab-based software for the sim-

ulation of Li-ion cells, the LIONSIMBA toolbox, to serve as a reference

simulation environment for: (i) the facile development of different ABMSs

strategies, (ii) the evaluation of identification algorithms for the estima-

tion of indices like the SOC and SOH, and (iii) the optimization of the

manufacturing parameters. LIONSIMBA is freely downloadable at:

http://sisdin.unipv.it/labsisdin/lionsimba.php

The package comes with Matlab R© editable .m scripts:1

• electrolyteDiffusionCoefficients.m: computes the electrolyte dif-

fusion coefficients.

• electrolyteConductivity.m: computes the electrolyte conductivity

coefficients.

• openCircuitPotential.m: used to compute the open circuit voltage.

• reactionRates.m: computes the reaction rate coefficients for the

ionic flux.

1This set of scripts refer to version 1.022 of the software; modifications or other scripts

can be added in future releases of the software.
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• solidPhaseDiffusionCoefficients.m: computes the solid phase dif-

fusion coefficients.

All the parameters related to the simulator and to the battery are man-

aged through the script Parameters init.m. The customization of this

script allows the user to disable features such as the thermal dynamics,

change the number of CVs of the mesh, enable real-time display of results,

and change the battery section lengths, thermal conductivities, porosities,

and so on. The user can define the operating mode of the charge/discharge

cycle by selecting between galvanostatic, potentiostatic, or variable current

profile operations.

The script getInputCurrent.m contains an example for the definition

of the variable current profile, and can be used to apply a customized cur-

rent profile during the simulation of the Li-ion battery. A generic nonlinear

function can be used for this purpose; extra parameters can be used inside

this function: current time instant t, initial integration time t0, final inte-

gration time tf , and a structure-containing extra user data. For example,

a possible implementation is

I(t) = α
t− t0
tf − t0

+ ξ, [α, ξ] ∈ R

An additional degree of freedom is set by the possibility of defining a cus-

tom algorithm for the estimation of SOC and SOH. Within the Parame-

ters init.m script, the user can set custom functions to be externally called

after each integration step; these functions will receive all the integration

data of the battery and an extra structure-containing user-defined data.

A simulation can be initiated by calling from the Matlab R© command

line:
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out = s ta r tS i mu l a t i on ( t0 , t f , i n i t i a l S t a t e s , I , param )

where

• t0: represents the initial integration time.

• tf: represents the final integration time.

• initialStates: represents the structure of initial states.

• I: represents the value of the applied input current.

• param: represents the cell array of parameters structures to be used

in simulation.

The structure initialStates can be used as initial state from which to start

a simulation. If left empty, LIONSIMBA will automatically compute a set

of Consistent Initial Conditions (CICs) starting from which the simulation

will run. If initialStates is used as a parameter, it has to be a set of CICs

for the battery model in Table 2.4. In case it is not a set of CICs, the nu-

merical integrator will fail to converge and no results will be provided. The

param array, if passed, is used as the set of parameters for the simulation.

If empty, the software will use a set of parameters according to the settings

defined by the user in the script Parameters init.m. When designing

ABMSs for battery packs with series-connected cells, a cell-wise balanc-

ing must be ensured during charging [Moore and Schneider, 2001, Bentley,

1997]. LIONSIMBA can support the user in this task by providing a full

independent parametrization of each cell of the series. If the param array

contains a multiple parameters structure, the software will perform a sim-

ulation of a battery pack composed of several cells connected in series as

shown in Section 2.7.4. Each element of the pack can be parameterized
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individually, leading to independent simulations of each cell. Finally, the

out structure will contain the values of all the dependent variables and pa-

rameters used in the simulations. The package requires the SUNDIALS

[Hindmarsh et al., 2005] suite to be installed and correctly configured with

Matlab R© ; in particular, the solver IDA is used.

To obtain further help on any single script, the user can type

help <scriptname>

from the Matlab R© command line or refer to the software manual.

The numerical implementation of the LIONSIMBA has been carried

out according to the rules outlined in Section 2.5 and the cell considered

is a LiCoO2 and LiC6 system. All the parameter values have been taken

from the real battery data in [Northrop et al., 2011], and are summarized

in Table 2.5.
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Current Collectors, i ∈ {a, z} Boundary Conditions

(T) ρiCp,i
∂T̄k(t)

∂t
=

1

∆xi

[
λi
∂T (x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+
I2
app(t)

σeff ,i

[
λi
∂T (x, t)

∂x

] ∣∣∣∣
0

= h(Tenv − T̄1(t))[
λi
∂T (x, t)

∂x

] ∣∣∣∣
L

= h(T̄end(t)− Tenv)

Positive and Negative Electrodes, i ∈ {p, n}

(M1) εi
∂ce,k(t)

∂t
=

1

∆xi

[
Deff ,k

∂ce(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+ ai(1− t+)j̄k(t)
∂ce(x, t)

∂x

∣∣∣∣
x̂0

= 0

∂ce(x, t)

∂x

∣∣∣∣
x̂n

= 0

(M2)
∂c̄avg

s (t)

∂t
= −3

j̄k(t)

Rp,i

(M3) c̄∗s(t)− c̄avg
s (t) = − Rp,i

Ds
eff ,k

j̄k(t)

5

(C1)

[
σeff ,k

∂Φs(x, t)

∂x
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2

x
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2
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[
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∂Φs

∂x
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x̂0,x̂n
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∂Φs(x, t)

∂x

∣∣∣∣
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= 0
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∂Φe(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+

[
κeff ,kT (x, t)Υ

∂ ln ce(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

=

∆xi ai F j̄k(t)

∂Φe(x, t)

∂x

∣∣∣∣
x̂0

= 0

Φ̄e,end = 0

(T) ρiCp,i
∂T̄k(t)

∂t
=

1

∆xi

[
λi
∂T (x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+ Q̄source,k

j̄i,k(t) = 2keff ,k

√
c̄e,k(t)(cmax

s,i − c̄∗s,k(t))c̄∗s,k(t) sinh
[

0.5R
FT̄k(t)

η̄i,k(t)
]

η̄i,k(t) = Φ̄s,k(t)− Φ̄e,k(t)−Ui,k(t)

Separator, i = s

(M1) εi
∂ce,k(t)

∂t
=

1

∆xi

[
Deff ,k

∂ce(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

(C2) −
[
κeff ,k

∂Φe(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+

[
κeff ,kT (x, t)Υ

∂ ln ce(x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

= 0

(T) ρiCp,i
∂T̄k(t)

∂t
=

1

∆xi

[
λi
∂T (x, t)

∂x

] ∣∣∣∣xk+1
2

x
k− 1

2

+ Q̄ohm,k

Table 2.4: P2D model FVM discretized formulation
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2.6.1 LIONSIMBA validation

The P2D model has been experimentally validated numerous times since

[Doyle, 1995], this section addresses the numerical validation of LIONSIMBA

by comparing the results coming from the proposed framework with COM-

SOL MultiPhysics and DUALFOIL. While COMSOL has been supplied

with the same model used in our framework, where a heat diffusion Par-

tial Differential Equation (PDE) is used to describe the thermal dynamics,

DUALFOIL neglects the spatial distribution of the temperature and aver-

ages the heat generation rates over the cell [Rao and Newman, 1997]. For

this reason, the comparison among the three different codes is carried out

considering isothermal conditions. The thermal model is included in the

comparison with COMSOL. For isothermal and thermal enabled scenarios,

a 1C discharge cycle is performed, while the same set of parameters are

maintained across the different codes.

The cell potentials Vout(t), electrolyte concentrations ce(x, t), potentials

φe(x, t), and surface solid-phase concentrations c∗s(x, t) for the isothermal

battery are nearly identical for LIONSIMBA, COMSOL, and DUALFOIL

(see Fig. 2.13). For the thermal enabled scenario, the cell potentials, tem-

perature, and other internal states for LIONSIMBA are nearly identical to

COMSOL (see Fig. 2.14).
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(a) Cell potential

(b) Electrolyte Li-ion concentration
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(c) Solid phase Li-ion concentration

(d) Electrolyte potential

Figure 2.13: Validation of the LIONSIMBA numerical implementation in

isothermal conditions, with the legend given in part a
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(a) Cell potential

(b) Electrolyte Li-ions concentration
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(c) Solid phase Li-ions concentration

(d) Electrolyte potential

64



(e) Temperature

Figure 2.14: Validation of the LIONSIMBA numerical implementation with

thermal dynamics, with the legend given in part a
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2.6.2 Solid-phase diffusion models

As introduced in Section 2.4, according to the P2D model developed in

[Doyle, 1995], diffusion inside the solid particles is described using Fick’s

law, where the presence of a second-pseudo dimension (r) can significantly

increase the computational burden. According to the particular application

under study, different approximations of (2.2) can be employed without

significant loss of accuracy. The choice of the solid-phase diffusion model

should be cautious, as approximate models can have poor accuracy in sce-

narios comprising high rate of charge/discharge, short time simulations, or

pulse currents [Zhang and White, 2007].

For this reason, LIONSIMBA allows the user to chose among three

different models for solid-phase diffusion:

• Fick’s law (including the pseudo-second dimension r):

∂cs(r, t)

∂t
=

1

r2

∂

∂r

[
r2Ds

eff

∂cs(r, t)

∂r

]

with boundary conditions

∂cs(r, t)

∂r

∣∣∣∣
r=0

= 0
∂cs(r, t)

∂r

∣∣∣∣
r=Rp

= −j(x, t)
Ds

eff ,i

• two-parameter polynomial approximation [Ramadesigan et al., 2010]:

∂cavg
s (x, t)

∂t
= −3

j(x, t)

Rp

c∗s(x, t)− cavg
s (x, t) = − Rp

Ds
eff ,i

j(x, t)

5
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• higher-order polynomial approximation [Ramadesigan et al., 2010]:

∂cavg
s (x, t)

∂t
= −3

j(x, t)

Rp

∂q(x, t)

∂t
= −30

Ds
eff ,i

R2
p

q(x, t)− 45

2

j(x, t)

R2
p

c∗s(x, t)− cavg
s (x, t) = −j(x, t)Rp

35Ds
eff ,i

+ 8Rpq(x, t)

The prediction accuracy of each approximate model is assessed by compar-

ison of the cell potential vs. time profiles for different C rates for Fick’s law

with the two approximate models (see Fig. 7). The two-parameter approx-

imation accurately describes the cell potential for low to medium C rates

(1C to 2C, Figs. 7ab) and the higher order polynomial approximation is

accurate up to the 5C rate (Fig. 7c), with increased error at the 10C rate

typical of HEV applications (Fig. 7d).

The performance of each approximate model are quantified by Root-

Mean-Square Error (RMSE) and Normalized Time Index (NTI) in Table

2.6, where the RMSE is evaluated by comparing an approximate model

solution with respect to the full model, while the normalized time index

is the ratio between the computational time required by an approximate

model and the time required by the full model with Fick’s law to simulate

different scenarios. The two-term polynomial approximation has much less

than 1% error for the 1C and 2C rates, with more than 1% error for higher

rates. In all of the scenarios, this approximate model takes ≈ 80% less time

than the full model to simulate the cell.

The higher-order polynomial approximation has a factor of 4 to 5 lower

RMSE for each scenario than for the two-term model, but an increase in

computational time by a factor of two or more due to the inclusion of
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another set of PDEs. Although the RMSE of 1.87% at 10C could be small

enough for some applications, the reduction in computational time is only

about 37% compared to solving the full Fick’s law model.

(a) 1C rate comparison

(b) 2C rate comparison
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(c) 5C rate comparison

(d) 10C rate comparison

Figure 2.15: Comparison of the three different solid-phase diffusion equa-

tions implemented in LIONSIMBA.
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1C 2C 5C 10C

RMSE NTI RMSE NTI RMSE NTI RMSE NTI

two-parameter 0.082% 20% 0.25% 18% 1.6% 22% 6.6% 24%

higher-order 0.017% 37% 0.053% 44% 0.36% 60% 1.9% 63%

Table 2.6: Comparison of different approximation methods for the diffusion

in the solid particles. Root Mean Square Error (RMSE) and the Normalized

Time Index (NTI) are shown.

2.7 LIONSIMBA capabilities

In order to demonstrate the capabilities of LIONSIMBA, several simula-

tions have been performed. In particular, simulation results were obtained

using Matlab R© R2014b on a Windows 7@3.2GHz PC with 8 GB of RAM

for the experimental battery parameters in [Northrop et al., 2011] with a

cutoff voltage of 2.5 V and environmental temperature of 298.15 K. For the

proposed chemistry, the 1C value is ≈ 30 A/m2. The effectiveness and ease

of use of the proposed framework are shown in a series of simulations.

2.7.1 Thermal dynamics simulations

In the first scenario (Fig. 2.16), 1C discharge simulations are compared for a

very wide range of heat exchange coefficient h, with high h being the most

challenging for retaining numerical stability in dynamic simulations. As

expected, decreasing the value of the parameter h leads to a faster increase

of the cell temperature. Moreover, due to the coupling of all of the governing

equations, it is possible to note the influence of different temperatures on

the cell voltage.
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Figure 2.16: 1C discharge cycle run under different heat exchange param-

eters: blue line h = 0.01W/(m2 K), dashed orange line h = 1 W/(m2 K)

and dot-dashed yellow line h = 100 W/(m2 K).
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In the second scenario (Fig. 2.17), for a fixed value of h = 1 W/(m2K),

different discharge cycles are compared at 0.5C, 1C, and 2C. According to

the different applied currents, the temperature rises in different ways; it is

interesting to note the high slope of the temperature during a 2C discharge,

mainly due to the electrolyte concentration ce being driven to zero in the

positive electrode by the high discharge rate.

72



Figure 2.17: Full discharge cycle run under different C rates: 2C (dot-

dashed yellow), 1C (dashed orange line), and 0.5C (blue line).
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Time (s) C rate Description

0–50 −1 C Moderate speed

50–60 0.5 C Charge

60–210 −0.5C Normal speed

210–410 −1C Moderate speed

410–415 −2C Overtaking

415–615 −1C Moderate speed

615–620 0.5C Charge

Table 2.7: Throttle configuration for hybrid charging-discharging simula-

tion

2.7.2 HEV throttle simulation

In the third scenario, the framework is used to simulate a hybrid charge-

discharge cycle, emulating the throttle of a HEV. During braking, the

battery is charged. Table 2.7 resumes the configuration of the car throttle

during simulations. In Fig. 2.18 it is possible to analyze the response of a

single cell inside an HEV pack under a hybrid charge-discharge cycle. In

this case, the effects of temperature among the different cells have been

neglected. The solid potential behavior is primarily due to the different

applied C rates, with discontinuous changes producing voltage drops. Dif-

ferent slopes of the voltage curve are related to the different C rates applied.

Temperature rise is recorded in the first 50 seconds of simulations, which are

followed by a slight decrease of the temperature mainly due to the exchange

of heat with the surrounding environment (h = 1 W/(m2K)) and due to

the lower current density applied. At around 250 s, the temperature starts

to increase due to the 1C rate applied during moderate speed; the high

slope of increase at around 410 s is due to the higher value of the discharge

current which during an overtake reaches the value of 2C. Returning to
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moderate speed makes the temperature slope more gentle. During the last

10 seconds, temperature decreases due to the significant change in applied

current and due to dissipation of heat with surrounding ambient. A sketch

of the code used for this simulation is presented in Section 2.7.5, algorithm

2.
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Figure 2.18: Hybrid charging-discharging cycle.

76



2.7.3 Isothermal simulations

LIONSIMBA allows to evaluate the dynamics of a Li-ion cell in isothermal

conditions. According to this simulation setup, the thermal dynamics are

neglected and the temperature index is kept fixed to the environmental

value. This particular scenario can be exploited in order to assess the

influence of different constant environmental temperatures at which the

battery can operate. A set of isothermal simulations is depicted in Fig.

2.19, where several discharges at different C rates are presented. When

thermal dynamics are disabled, the user can define custom versions of the

functions used to obtain the values of diffusion end conductivity coefficients.

Figure 2.19: Full discharge cycle in an isothermal environment: blue line

0.5C, dashed orange line 1C, and dot-dashed yellow line 2C.
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All the results of the proposed simulations can be reproduced by running

the example scripts available with LIONSIMBA. To further emphasize the

power of the proposed simulator, in Table 2.8 the times required by the

software to simulate the different scenarios are presented. As it is possible

to see, even in the presence of a wide variety of simulation conditions, the

times required to solve the entire simulation a re under the 100s2

C rate h value Simulation Duration Effective Simulation Time

1C 0.01 3523 s 72 s

1C 1 3523 s 81 s

1C 100 3523 s 77 s

0.5C 1 7050 s 56 s

2C 1 1522 s 85 s

Table 2.8: Timing comparisons of different simulation scenarios

2.7.4 Battery pack of series-connected cells

The results of a battery pack simulation are shown in Figs. 2.20 and 2.21.

To emphasize the ability to independently parameterize each cell, in this

scenario the SOC of cell #1 is set to the 95% of its initial value while the

thickness of the cathode of cell #2 is doubled with respect to its initial

value. All the other parameters are the same for the three cells. The time

responses of the output voltage of the overall pack and the volume of each

cell is plotted in Fig. 2.20. The starting voltage of the pack is around 12.1

V and decreases subjected to a 1C discharge current. In 3346 s, the pack is

completely discharged due to cell #1 first reaching the cutoff voltage (set to

2These results were obtained considering 20 CVs in each battery section, with toler-

ances of 10−7 and neglecting the usage of the Jacobian matrix for the integration process.

In Section 2.7.6 the adoption of an analytical Jacobian of the P2D model is considered

and its contribution to the simulation performance highlighted.
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2.5 V). The lowered starting SOC determined this behavior. The electrolyte

and solid-phase surface concentrations as well as the electrolyte potentials

are compared for the three cells in Fig. 2.21. Cell #2 has a significantly

different behavior mainly due to the presence of a cathode with a thickness

two times that of the other two cells. This variation has effects over the

output voltages, as shown in Fig. 2.20. Besides cell # 1 which is starting

from a different SOC value, the different behaviors of Vout(t) between cell

#2 and cell #3 are driven by the thickness variation.

Figure 2.20: Simulation of a 3-cell pack. The upper curve represents the

overall voltage of the 3 series connected Li-ion cells, while the lower plots

depict the voltage of each cell in the pack. The different parametrization

of each cell determines different behaviors.
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Figure 2.21: Simulation of a 3-cell pack. The profiles of different internal

states inside the three cells. Individual parametrizations lead to different

behaviors.
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2.7.5 Example algorithms

Algorithm 2 Car cycling example code

Input setup:

1: I = {−29.5, 14.75,−14.75,−29.5,−58,−29.5, 14.75} . Simulation current

densities

2: time = {50, 10, 150, 200, 5, 200, 10} . Duration of each element of Iapplied (in

seconds).

3: t0 = 0; . Init all the useful variables

4: tf = 0;

5: initialStates.Y = [ ];

6: initialStates.YP = [ ];

7: Phis tot = [ ];

8: t tot = [ ];

9: T tot = [ ];

Core script:

10: for i = 1:length(I) do

11: tf = tf + time(i);

12: results = startSimulation(t0,tf,initialStates,I(i),[ ]);

13: Phis tot = [Phis tot;results.original.Phis]; . Concatenate results

14: T tot=[T tot;results.original.Temperature];

15: t0 = time(i);

16: initialStates = results.initialStates; . Update initial states for the next

simulation

17: end for
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Algorithm 3 High level control code

Init script:

1: t0 = 0;

2: tf = dt; . Simulations are run over a sampling time periods

3: initialStates.Y = [ ];

4: initialStates.YP = [ ];

5: Condition = 1;

Core script:

6: while Condition do

7: I = ComputeControlLaw(initialStates);

8: results = startSimulation(t0,tf,initialStates,I,[ ]);

9: [...] . Elaborate and concatenate the results and update the time indices

10: initialStates = results.initialStates; . Update initial states for the next

simulation

11: if SOC reached reference value then

12: Condition = 0

13: end if

14: end while
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2.7.6 Automatic differentiation support

LIONSIMBA can significantly speed-up its performance by means of au-

tomatic differentiation tools. In particular, CasADi [Andersson et al.,

2012] is integrated with LIONSIMBA toolbox and provides functionality

to obtain the analytical Jacobian matrix of the implemented P2D model.

Even though the model would be modified by the user, LIONSIMBA will

automatically provide the updated Jacobian for the new model or new

parametrization. Once the Jacobian matrix has been evaluated, the user

can feed it directly to LIONSIMBA avoiding to recompute it every sim-

ulation run. To highlight the potential of exploiting a Jacobian matrix,

several 1C full discharge scenarios have been carried out, and their timings

are reported in Table 2.9. As it is possible to notice, the inclusion of the

knowledge coming from the Jacobian matrix significantly boosts the per-

formance of LIONSIMBA, and in some case (i.e., the 100 cells scenario)

allows to complete the simulation (something that it would not be possible

without providing such information to the numerical integrator)3.

1 cell 3 cells pack 100 cells pack

With Jacobian 2.46 s 6.23 s 1100 s

Without Jacobian 14.8 s 144 s N.A.

Table 2.9: Simulation scenarios run with and without the analytical Jaco-

bian.

3Differently from the comparison carried out in Table 2.8, the presented results were

obtained considering 10 CVs in each section of the cell, with integration tolerances of

10−6
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2.8 Conclusions

This chapter describes a detailed procedure for the numerical implementa-

tion of the P2D model [Doyle, 1995]. Two published approximate models

for the solid-phase diffusion are also implemented, in which the pseudo-

second dimension is removed to reduce the computational complexity. The

treatment of boundary conditions is addressed with particular attention to

the interface conditions across the different sections of the battery. Fol-

lowing the procedures and rules outlined in Section 2.5, the reader can

implement his/her own version of the model in different programming lan-

guages. Moreover, a freely available Matlab R© framework LIONSIMBA is

provided that is suitable for battery design, simulation, and control. The

framework is extended to account for different solid-phase diffusion mod-

els to meet required accuracy. The simulations demonstrate high numerical

stability for different operating scenarios. The effectiveness of LIONSIMBA

is verified considering a heterogeneous sequence of applied current coming

from an HEV.

# of discrete nodes

10 20 30 40 50

COMSOL 96 s 114 s 143 s 189 s 244 s

DUALFOIL 28 s 57 s 97 s 137 s 185 s

LIONSIMBA 28 s 69 s 105 s 134 s 223 s

Table 2.10: Timing comparisons among different P2D model implementa-

tions. The number of discretized nodes has been set equal for each section

of the cell.

A battery pack composed of series-connected cells can be simulated by

considering several independent cells with their own parameters. Due to its

integration with the Matlab R© environment, the framework facilitates the
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development and test of different algorithms such as control algorithms,

identification procedures, or optimization of manufacturing parameters.

The computational times of LIONSIMBA (run without making explicit

use of the Jacobian matrix) are compared to DUALFOIL and COMSOL

in Table 2.10. For each code, average simulation times are reported for

repeated simulations of a 1C discharging cycle in isothermal conditions.

LIONSIMBA and DUALFOIL have very similar computation times for all

discretizations, with COMSOL being significantly slower at lower discretiza-

tions. For the same numerical algorithm, an implementation in a compiled

language such as Fortran is inherently much faster than an interpreted

language such as Matlab R© , indicating that the underlying numerical al-

gorithm used by LIONSIMBA is more efficient but the higher efficiency is

offset by Matlab R© being an interpreted language: the two effects approx-

imately cancel so that the overall simulation times for LIONSIMBA and

DUALFOIL were very similar. Moreover, DUALFOIL runs with a self-

implemented DAE solver which does not exploits all the advantages of the

modern variable-step solvers (as, for instance, the IDA of the SUNDIALS

suite). Finally, the numerical implementation of LIONSIMBA has been

carried out with the objective of optimizing the simulation performance.

This aspect has supported LIONSIMBA in performing as well as (or even

better of) the commercial software COMSOL. Since COMSOL is a suite for

the resolution of a wider variety of numerical problems, it is reasonable to

think that it was not particularly optimized for the resolution of the P2D

dynamics.

The results in this chapter demonstrate the promise of the proposed

framework as a reliable, efficient, and freely available Matlab-based soft-
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ware for the P2D model simulation. Further developments such as code

optimization and distribution of compiled versions can only improve the

current performance. The only inclusion of the Jacobian matrix knowl-

edge resulted in a significant increase in performance. Moreover, as the

proposed simulations were written in standard serial mode, the computa-

tion time could be reduced by at least a factor of ten by using a multicore

CPU using parallel DAE solvers. Modern versions of Matlab R© have easy-

to-implement built-in options for distributing calculations among multiple

cores on a single CPU, and among multiple CPUs.
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Chapter 3

Model Predictive Control

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . 87

3.2 Models for control . . . . . . . . . . . . . . . . . . 91

3.3 Model predictive control formulations . . . . . . 97

3.4 Control models identification . . . . . . . . . . . 115

3.1 Introduction

Model predictive control refers to a particular class of algorithms which

make explicit use of a mathematical model that approximates the dynam-

ics of a process, whose behavior is optimized over a future horizon while

operational constraints on inputs and outputs are taken into account [Ma-

ciejowski, 2002]. In particular, as will be explained in more detail in this

section, the process inputs are optimized over a prediction window and only

the first element of such sequence is applied to the controlled plant. Due to

the mismatch between the process model and the process itself, after the
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application of the control action, the states of the plant are measured and at

the next time instant the problem is solved again with the above procedure

iterated. In Fig. 3.1 an high level control scheme involving a MPC algo-

rithm is depicted. The first idea of MPC algorithms was given by [Propoi,

MPC

Optimizer

Cost Function ConstraintsModel

PlantMeasurements

Figure 3.1: High-level schematic of a MPC algorithm

1963], while a first independent version of this control paradigm was de-

veloped in the early 70s by Shell Oil engineers. Due to the requirement of

solving online optimization problems, together with the poor computational

power at that time, this control paradigm was initially employed in petro-

chemical processes which had slow dynamics. Through the years, however,

the ever increasing computational power has opened new perspectives for

the employment of MPC algorithms into a wider variety of industrial ap-

plications [Qin and Badgwell, 2003, Camacho and Bordons, 2012]. The key

points which made the MPC paradigm a successful control algorithm have

been the following:
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• its ability to handle with generic nonlinear and Multi-Input Multi-

Output (MIMO) processes;

• its capability of taking into account operating constraints, whose ad-

vantage is twofold: (i) it helps to prevent possible safety issues and

damages to the plant, and (ii) it brings the plant to operate in op-

timum conditions, which have been demonstrated to be obtained at

the intersection of operational constraints [Prett and Gillette, 1980];

• it provides a control law that is obtained by optimizing a given cost

function, which can reflect some economical index.

In order to formulate an MPC control algorithm, consider the following

discrete-time nonlinear model used to describe a plant dynamics

ξ(k + 1) = f(ξ(k),u(k), k), (3.1)

y(k) = g(ξ(k),u(k), k),

where f(·) and g(·) are nonlinear algebraic functions used to represent the

evolution of the states ξ ∈ Rnξ and the outputs y ∈ Rny respectively as a

function of the inputs u ∈ Rnu , while k represents the discrete time instant.

Introduce the sequences

ξ̃k+1:k+Hp|k =[ξ(k + 1|k)> · · · ξ(k +Hp|k)>]>,

ũk:k+Hu|k =[u(k|k)> · · ·u(k +Hu|k)>]>,

ỹk:k+Hp|k =[y(k|k)> · · ·y(k +Hp|k)>]>, (3.2)

where Hp and Hu are the prediction and control horizons, respectively, and

x(i|j) denotes the value of x at time instant i starting from time instant j.

At every discrete time instant k, MPC provides an optimal input sequence
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by solving an online optimization problem,

min
ũk:k+Hu|k

J(ũk:k+Hu|k, ξinit) (3.3)

subject to

ξ(j + 1|k) = f(ξ(j|k),u(j|k), j)

y(j|k) = g(ξ(j|k),u(j|k), j)

ξ(k|k) = ξinit

umin ≤ u(j|k) ≤ umax

ξmin ≤ ξ(j|k) ≤ ξmax

ymin ≤ y(j|k) ≤ ymax

where j ∈ [k; k +Hp],

J(ũk:k+Hu|k, ξinit) = ||ũk:k+Hu|k − ũref||2R + ||ỹk:k+Hp|k − ỹref||2Q , (3.4)

while ũref, and ỹref are reference setpoints (or trajectories) for the in-

puts and outputs respectively. The notation ||x||Q = ||Q1/2x||2 denotes

the weighted 2-norm, Q ∈ RHpny×Hpny is a positive semidefinite ma-

trix that weights the deviation of the outputs from their references, and

R ∈ RHunu×Hunu is a positive definite matrix that accounts for the devia-

tion of the inputs with respect to their reference value. The cost function in

(3.4) can be modified in order to consider states rather than outputs, and

account for input differences as will be explained in the next sections. The

solution of the optimization provides an optimal control sequence ũ∗k:k+Hu|k.

Given that ũ∗k:k+Hu|k is obtained based only on the predictions of a mathe-

matical model, its entire application to the plant would not reject unknown

disturbances to the system. For this reason, the so-called Receding Hori-

zon (RH) approach is adopted where, at each time step k, only the first
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element of the optimal control sequence is applied to the plant [Kwon and

Han, 2006, Mattingley et al., 2011],

uRH(k) = u∗(k|k). (3.5)

At the next time instant, the array of the initial states ξinit is updated with

the new measurements and a new optimization is solved. For computational

reasons, it is common to define Hu ≤ Hp in order to reduce the number of

optimization variables. When Hu < Hp, the control moves can be kept fixed

after the k+Hu (i.e., u(k+Hu|k) = u(k+Hu+1|k) = · · · = u(k+Hp|k)).

3.2 Models for control

As discussed in the previous section, MPC algorithms make use of math-

ematical models of the controlled plant in order to carry out the control

action. In particular, the problem (3.3) has been introduced by consider-

ing the model (3.1) as described by means of generic nonlinear algebraic

equations. However, even in the presence of a high computational power,

the online application of MPC can become intractable when high order

systems or strong nonlinear dynamics are considered [Mayne, 2000, Magni

et al., 2009]. Such intractability derives mainly from the need to solve

nonlinear optimization problems at each time step. In order to overcome

these limitations, several strategies can be employed. Among the possible

solutions, linearization and order reduction techniques have been widely

adopted in literature [Kokotovic et al., 1976, Mesbah et al., 2015, Geuss

et al., 2015, Saraswat and Parmar, 2015, Kuhne et al., 2004, Simon et al.,

2013, Deng et al., 2009]. In the following, several approximations of (3.1)

are presented. In particular, such approximations help to reduce the com-
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putational complexity in solving (3.3) while providing good control perfor-

mance.

3.2.1 State-space models

Linear time invariant models

Suppose that the states and outputs of the nonlinear system in (3.1) are

in steady conditions ξss, yss, as a result of the application of the steady

inputs uss. By deriving the first order Taylor approximation of (3.1) around

(uss,ξss), one obtains

ξ(k + 1) ≈ f(ξss,uss) +
∂f

∂ξ

∣∣∣∣
ξss,uss

(ξ(k)− ξss) +
∂f

∂u

∣∣∣∣
ξss,uss

(u(k)− uss),

y(k) ≈ g(ξss,uss) +
∂g

∂x

∣∣∣∣
ξss,uss

(ξ(k)− ξss) +
∂g

∂u

∣∣∣∣
ξss,uss

(u(k)− uss),

which can be rewritten as a Linear Time Invariant (LTI) system of the form

δξlin(k + 1) = Aδξlin(k) +Bδulin(k), (3.6)

δylin(k) = Cδξlin(k) +Dδulin(k).

The dynamical matrices are defined as

A =
∂f

∂ξ

∣∣∣∣
ξss,uss

∈ Rnξ×nξ , B =
∂f

∂u

∣∣∣∣
ξss,uss

∈ Rnξ×nu ,

C =
∂g

∂ξ

∣∣∣∣
ξss,uss

∈ Rny×nξ , D =
∂g

∂u

∣∣∣∣
ξss,uss

∈ Rny×nu ,

while the quantities δξlin(k), δulin(k), and δylin(k) account, respectively,

for the deviation of the states, inputs and outputs with respect to their

equilibrium values. The above formulation approximates the dynamics of

(3.1) in a neighborhood of (uss,ξss)
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Linear time varying models

As previously discussed, the linearized dynamics (3.6) can be used to de-

scribe the dynamical behavior of the nonlinear system (3.1) in a neighbor-

hood of the linearization points (uss,ξss). The accuracy of such approxima-

tion strictly depends on two main factors: (i) the type of the nonlinearities

in (3.1), and (ii) the norm of the deviation with respect to the equilibrium

points. In order to improve the prediction accuracy, another family of linear

models can be adopted. In particular, instead of linearizing (3.1) around

an equilibrium point, the nonlinear dynamics are linearized around a set of

nominal trajectories of the inputs and the states. This approximation leads

to a Linear Time Varying (LTV) formulation.

Consider a nominal input sequence ũn ∈ Rnu Hū , where Hū is the length

of such sequence, which, if fed into the system, results in a set of nominal

states ξ̃
n ∈ Rnξ Hū and outputs ỹn ∈ Rny Hū . By linearizing (3.1) around

the nominal trajectories (ũn, ξ̃
n
), the LTV dynamics

δξn(k + 1) = A(k)δξn(k) +B(k)δun(k), (3.7)

δyn(k) = C(k)δξn(k) +D(k)δun(k),

are obtained, where

A(k) =
df

dξ

∣∣∣∣
ξ̃
n

(k),ũn(k)

∈ Rnξ×nξ , B(k) =
df

du

∣∣∣∣
ξ̃
n

(k),ũn(k)

∈ Rnξ×nu ,

C(k) =
dg

dξ

∣∣∣∣
ξ̃
n

(k),ũn(k)

∈ Rny×nξ , D(k) =
dg

du

∣∣∣∣
ξ̃
n

(k),ũn(k)

∈ Rny×nu ,

and the terms δξn(k) = ξ(k)−ξ̃n
(k), δun(k) = u(k)−ũn(k), and δyn(k) =

y(k) − ỹn(k) account for the deviations of the linearized dynamics with

respect to the nominal trajectories.
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3.2.2 Input-output models

The LTI and LTV reformulations are suitable approximations that can be

used to reduce the complexity of a nonlinear system by describing linearly

its behavior in a neighborhood of an equilibrium point or in a neighbor-

hood of a set of nominal trajectories. Despite this, the resulting approxima-

tions can become computationally expensive when high order systems are

considered. For instance, when dynamical systems described by means of

PDAEs are considered, their DAEs reformulation generally leads to high-

dimensional models (see e.g. Section 2.5.1) [Foguth et al., 2015]. To over-

come these limitations, linear input-output models can be adopted to cope

with both: (i) the system nonlinearities, and (ii) the possible high-order

structure. In the following the prediction schemes of the input-output mod-

els used in this Thesis are presented, and their formulation discussed.

Finite step response models

Finite Step Response (FSR) models are a particular family of linear input-

output models that have been widely adopted in industrial applications

[Yazuzturk and Spitler, 1999, Moon and Lee, 2009]. According to the FSR

formulation, when a Single-Input Single-Output (SISO) system is consid-

ered, the output prediction scheme at time step k is given by

y1(k) = y1
ss +

N−1∑
g=1

Sg1,1∆u(k − g) + SN1,1(u(k −N)− u1
ss), (3.8)

where u1
ss and y1

ss are respectively the steady-state input and output values.

The FSR coefficients relating the bth output with the ith input are denoted

by Sgi,b while ∆u(k) := u(k)−u(k−1). Notice that, for asymptotically stable

systems, N represents the settling time (i.e. y(k + N) ≈ y(k + N + 1) ≈
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· · · ≈ y(∞)), while for integrating dynamics it represents the time instant at

which the outputs become pure ramps. When considering a MIMO system,

the following FSR formulation for the outputs prediction is obtained

y1(k) = y1
ss +

nu∑
i=1

N−1∑
g=1

Sgi,1∆ui(k − g) + SNi,1(ui(k −N)− uiss)

 ,

y2(k) = y2
ss +

nu∑
i=1

N−1∑
g=1

Sgi,2∆ui(k − g) + SNi,2(ui(k −N)− uiss)

 ,

...

yny (k) = y
ny
ss +

nu∑
i=1

N−1∑
g=1

Sgi,ny∆ui(k − g) + SNi,ny (ui(k −N)− uiss)

 .

This formulation provides a prediction of the outputs by means of a linear

combination of input moves and FSR coefficients.

Remark: FSR models cannot be derived for unstable systems, they can be

only employed to represent the dynamics of asymptotically stable or stable

systems as discussed in [Kwon and Han, 2006].

Autoregressive exogenous models

AutoRegressive eXogenous (ARX) models are another particular family

of input-output affine models [Ljung, 1998]. The one-step ahead output

prediction scheme of SISO system according to the ARX formulation is

given by

y(k + 1) = θ

s(k)

1

 , (3.9)
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where s(k) ∈ Rn is the array of regressors, θ ∈ Rn+1 is the set of parame-

ters. For a given time instant, s(k) is defined as

s(k) = [y(k) y(k − 1) · · · y(k − na + 1)

u(k + 1− nk) u(k − nk) · · · u(k − nk − nb + 2)],

which is composed of the past na output values and the past nb input

values, where nk ≥ 0 accounts for the relative degree of the system, and

n = na + nb. The model (3.9) can be straightforwardly extended to the

MIMO case. Consider the matrices Na ∈ Rny×ny , Nb ∈ Rny×nu , and

Nk ∈ Rny×nu , be analogous to the SISO indices na, nb, and nk respectively.

The element of row i and column j of Na accounts for the number of past

values of the jth output contributing to the dynamics of the ith output of

the system. Similarly the effects of the mth input over the ith output are

given by the element of Nb at row i and column m. Finally, the element of

row i and column j of Nk accounts for the relative degree between input j

and output i.

Piecewise affine autoregressive exogenous models

An extension of the ARX models is represented by the PieceWise affine

ARX (PWARX) models. The main difference lies in the use of several

ARX models defined over polyhedral regions. At each time instant, a switch

among these regions determines what is the affine model used to predict the

plant behavior. Define the regressors set X ⊂ Rn as a bounded polyhedron

that satisfies s(k) ∈ X for all s(k) and is partitioned in L polyhedral

subregions {Xl}Ll=1 (an example is given in Fig. 3.2). In the case of a SISO

system, the following PWARX one-step ahead output prediction scheme is
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obtained [Ferrari-Trecate et al., 2003]

y(k + 1) =



θ1

s(k)

1

 , if s(k) ∈ X1

θ2

s(k)

1

 , if s(k) ∈ X2

...

θL

s(k)

1

 , if s(k) ∈ XL

(3.10)

where θl is the set of parameters related to the lth subregion, and the

active dynamics (i.e., the set of parameters θl used to predict the next

value of the output) are chosen according to the membership of s(k) to

a polyhedral partition element Xl. The SISO formulation (3.10) can be

straightforwardly extended to a general MIMO plant by considering the

matrices Na ∈ Rny×ny , Nb ∈ Rny×nu , and Nk ∈ Rny×nu as in (3.9).

3.3 Model predictive control formulations

The MPC formulation in (3.3) represents a generic optimization problem,

with a quadratic cost function and subject to nonlinear dynamics. The

approximations of (3.1) introduced in the previous section, under suitable

assumptions, allow to represent the MPC problem in a canonical form.

In particular, it is possible to reformulate (3.3) in terms of a Quadratic

Programming (QP) problem. The QP problems are of particular interest

because their formulation guarantees the obtaining of a convex optimization

97



X1

X2

X3

X4

X5

Figure 3.2: Example of a regressors set X ∈ R2 partitioned in 5 different

subregions.

problem that, as a result of its resolution, provides a global optimal solution.

Due to the aforementioned properties, such optimization problems have

been widely studied in literature and several tools have been developed to

solve them in an efficient and reliable way [Boyd and Vandenberghe, 2004].

In the following, the derivation of the QP forms of (3.3) is discussed when

LTI, LTV, ARX, PWARX, and FSR models are considered.

3.3.1 MPC formulation for LTI models

Consider the LTI approximation (3.6) of the nonlinear dynamics (3.1). Such

a formulation allows to represent recursively the evolution of the states

and outputs as function of the initial states and the control actions. This

property can be exploited to derive a QP formulation of (3.3) subject to

LTI dynamics. Starting from a given time instant k, the evolution of the
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states can be written as

δξlin(k + 1|k) =Aδξinit +Bδulin(k|k)

δξlin(k + 2|k) =Aδξlin(k + 1|k) +Bδulin(k + 1|k) =

=A
[
Aδξinit +Bδulin(k|k)

]
+Bδulin(k + 1|k) =

=A2δξinit +ABδulin(k|k) +Bδulin(k + 1|k)

δξlin(k + 3|k) =A3δξinit +A2Bδulin(k|k) +ABδulin(k + 1|k)+

+Bδulin(k + 2|k)

...

δξlin(k +Hp|k) =AHpδξinit +
1∑

i=Hp

AHp−iBδulin(k + i− 1|k),

where δξinit = ξinit − ξss accounts for the initial states deviations. The

same approach can be adopted to derive the prediction of the outputs over

the future Hp steps as a function of the initial states δξinit and control

deviations δulin(k+j|k), for j ∈ [0;Hp]. The states and outputs prediction

schemes can be generalized in a compact form as:

δξ̃k+1:k+Hp|k =Ãδξinit + B̃δũk:k+Hu|k,

δỹk:k+Hp|k =C̃δξinit + D̃δũk:k+Hu|k, (3.11)
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where Ã ∈ RHpnξ , B̃ ∈ RHpnξ×Hunu , C̃ ∈ R(Hp+1)ny , and D̃ ∈ R(Hp+1)ny×Hunu .

Assuming that Hp = Hu one has

Ã =


A

A2

...

AHp

 , B̃ =


B 0 · · · 0

AB B · · · 0
...

...
. . .

...

AHp−1B AHp−2B · · · B

 ,

C̃ =



C

CA

CA2

...

CAHp


, D̃ =



D 0 · · · 0

CB D · · · 0

CAB CB · · · 0
...

...
. . .

...

CAHp−1B CAHp−2B · · · D


.

By making explicit the formulation of (3.11) into (3.4), neglecting all the

terms which do not depend directly from δulin(k), and bearing in mind

that y(k) = δylin(k) + yss and u(k) = δulin(k) + uss, the following QP

formulation is derived

min
δũk:k+Hu|k

1

2
δũk:k+Hu|k

>Hδũk:k+Hu|k + f>δũk:k+Hu|k (3.12)

subject to

Aδũk:k+Hu|k ≤ b

where

H = (R+ D̃
>
QD̃),

f> = (δξinit>C̃
>
QD̃ + yss

>QD̃ − ỹref
>QD̃ + uss

>R− ũref
>R),

while the suitable matrix A ∈ Rnc×nu Hu , and vector b ∈ Rnc are used to

enforce inequality and equality constraints over the inputs, states and out-

puts. Note that the solution of (3.12) provides an optimal input deviation
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sequence δũ∗k:k+Hu|k. According to the RH approach only the first element

of such sequence will be applied to the plant. Because of the meaning of

δũ∗k:k+Hu|k, before applying its first element to the plant, the steady values

of the inputs have to be added, i.e.

uRH(k) = δu∗lin(k|k) + uss.

At the next time instant, the initial states δξinit are updated according to

the available measurements, and the procedure iterated.

3.3.2 MPC formulation for LTV systems

When a LTV system of the form (3.7) is considered with the cost function

(3.4), the optimization (3.3) is still a QP. Starting from time instant k, the

following LTV prediction scheme can be derived

δξn(k + 1|k) =A(k)δξinit,n +B(k)δun(k|k),

δξn(k + 2|k) =A(k + 1)δξn(k + 1|k) +B(k + 1)δun(k + 1|k) =

=A(k + 1)
[
A(k)δξinit,n +B(k)δun(k|k)

]
+

+B(k + 1)δun(k + 1|k) =

=A(k + 1)A(k)δξinit,n +A(k + 1)B(k)δun(k|k)+

+B(k + 1)δun(k + 1|k),

...

δξn(k +Hp|k) =
0∏

p=Hp−1

A(k + p)δξinit,n+

+

Hp−1∑
i=0

 i+1∏
j=Hp−1

A(k + j)


︸ ︷︷ ︸

Inξ ,if j<i+1

B(k + i)δun(k + i|k),
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where Hp ≤ Hū, Inξ ∈ Rnξ×nξ is the identity matrix, and δξinit,n =

ξ(k) − ξ̃n
(k). The above prediction scheme can be written in a compact

way as

δξ̃k+1:k+Hp|k = Ã(k)δξinit,n + B̃(k)δũk:k+Hu|k, (3.13)

δỹk:k+Hp|k = C̃(k)δξinit,n + D̃(k)δũk:k+Hu|k,

where the matrices Ã(k), B̃(k), C̃(k), and D̃(k) are the analogous time

variant versions of Ã, B̃, C̃, and D̃ respectively. By making explicit the

formulation of (3.13) into (3.4), neglecting the terms not depending on

δũn
k:k+Hp|k, and remembering that y(k) = δyn(k) + ỹn(k) and u(k) =

δun(k) + ũn(k), the following QP form is derived

min
δũn

k:k+Hp|k

1

2
δũn

k:k+Hp|k
>H(k)δũn

k:k+Hp|k + f>(k)δũn
k:k+Hp|k (3.14)

subject to

A(k)δũn
k:k+Hp|k ≤ b(k),

where

H(k) =(R+ D̃(k)>QD̃(k)),

f(k)> =(δξinit>C̃(k)>QD̃(k) + ỹn>QD̃(k)− ỹref
>QD̃(k)+

+ ũn>R− ũref
>R),

while the time varying matrix A(k) and vector b(k) are used to enforce

inputs, states, and outputs constraints. Note that, differently to the LTI

case, the matrix and the array used in the QP formulation (i.e., H(k) and

f(k)) are time dependent as well. This implies that such quantities need to

be evaluated at each time step, unlike the equivalent LTI formulation that

requires to compute such quantities only once.
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Nominal trajectories optimization for LTV systems

As discussed in Section 3.2.1, LTV representations are used to approxi-

mate nonlinear dynamics around nominal trajectories of inputs and states.

Such trajectories can be obtained in several ways, based on: (i) prior phys-

ical or heuristic knowledge of the plant [Schubert et al., 1994], (ii) some

empirical rules, or (iii) optimization approaches that exploit a nonlinear

mathematical model of the plant [Srinivasan et al., 2003, Breakwell, 1959].

When optimization-based approaches are applied over nonlinear dynamics,

computationally expensive procedures are employed to obtain sub-optimal

(or, if possible, optimal) solutions of the given problem. In the following,

this latter approach is discussed. Starting from an initial time instant k0,

consider an optimization of the form

min
ũn
k0:k0+Hū

J(ũn
k0:k0+Hū , ξinit) (3.15)

subject to

ξn(j + 1) = f(ξn(j),un(j), j)

yn(j) = g(ξn(j),un(j), j)

ξn(k0) = ξinit

umin ≤ un(j) ≤ umax

ξmin ≤ ξn(j) ≤ ξmax

ymin ≤ yn(j) ≤ ymax

where j ∈ [k0; k0 +Hū] and ũn
k0:k0+Hū ∈ RnuHū , ξ̃

n
k0:k0+Hū ∈ RnξHū , and

ỹn
k0:k0+Hū ∈ RnyHū are defined similarly to (3.2). Due to the nonlinear/com-

plex dynamics used to formulate (3.15), this optimization is usually solved

offline, and the results are used for developing the LTV approximation.

To obtain a nominal trajectory useful for control purposes, the optimiza-
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tion is usually solved over a horizon able to guarantee the attainment of a

neighborhood of the desired setpoint.

LTV closed-loop MPC scheme

In order to carry out the closed-loop control action, the LTV-based MPC

strategy needs a suitable algorithm.

Starting from k = k0, the optimal solutions ũn,∗
k0:k0+Hū

and ξ̃
n,∗
k0:k0+Hū pro-

vided by (3.15) are applied within a MPC context as follows:

1. Obtain the LTV approximation of the nonlinear dynamics using the

sub-sequences ũn,∗
k:k+Hu

and ξ̃
n,∗
k:k+Hp as discussed in Section 3.2.1

2. At time k, solve the optimization (3.14) to obtain δũn,∗
k:k+Hu|k and

update the subsequence ũn,∗
k:k+Hu

← ũn,∗
k:k+Hu

+ δũn,∗
k:k+Hu|k

3. According to the RH approach (3.5), apply uRH(k) = un,∗(k|k) to

the real plant

4. If k+ 1 +Hu > k0 +Hū then extend the nominal input trajectory by

repeating its last element, i.e.,

ũn,∗
k+1:k+1+Hu

= [un,∗(k + 1),un,∗(k + 2), · · · ,un,∗(k +Hū), un,∗(k +Hū)] .

5. Update the initial states δξinit,n using the plant measurements

6. Compute ξ̃
n,∗
k+1:k+1+Hp by feeding ũn,∗

k+1:k+1+Hu
into the nonlinear dy-

namics used in (3.15)

7. Set k ← k + 1 and go back to Step 1
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3.3.3 MPC formulation for ARX and PWARX systems

Predictive control strategies can be easily developed also when the plant

dynamics are represented by means of ARX or PWARX models. However,

when dealing with MPC algorithms, it is more convenient to represent the

dynamics of the prediction model in terms of a state-space formulation.

According to the realization theory [Matsuo and Hasegawa, 2003], several

canonical forms (e.g., observability or controllability) can be adopted to

reformulate an input-output model in terms of a state-space one. All of

these considerations also hold for the PWARX models, where the presence

of switching dynamics have to be carefully treated. PWARX models can be

reformulated as state-space ones using two main alternative representations

[Bemporad and Morari, 1999]: (i) the Mixed Logical Dynamical (MLD)

scheme, and (ii) the piecewise linear time invariant scheme. In this Thesis

the MLD formulation is adopted, where a set of logic rules, physical laws,

and constraints are used to represent the dynamical behavior of a switching

system. The one-step ahead prediction scheme of a MLD system is
ξ(k + 1) = Aξ(k) +B1u(k) +B2δ(k) +B3z(k)

y(k) = Cξ(k) +D1u(k) +D2δ(k) +D3z(k)

E2δ(k) +E3z(k) ≤ E1u(k) +E4ξ(k) +E5

(3.16)

where the array δ(k) ∈ {0, 1}nδ represents the set of binary variables (logic

rules) used to switch from one submodel to another, z(k) ∈ Rnz are auxil-

iary variables [Williams, 2013], and A, B1, B2, B3, C, D1, D2, D3, E1,

E2, E3, E4, and E5 are matrices of suitable dimensions. The model (3.16)

should be constructed to be well posed. The structure of (3.16) allows to

reformulate (3.3) into a QP form. Let us introduce the MLD prediction
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scheme over the future Hp steps as
ξ̃k+1:k+Hp|k = Ãξinit + B̃1ũk:k+Hu|k + B̃2δ̃k:k+Hp|k + B̃3z̃k:k+Hp|k

ỹk:k+Hp|k = C̃ξinit + D̃1ũk:k+Hu|k + D̃2δ̃k:k+Hp|k + D̃3z̃k:k+Hp|k

Ẽ2δ̃k:k+Hp|k +Ẽ3z̃k:k+Hp|k ≤ Ẽ1ũk:k+Hu|k + Ẽ4ξinit + Ẽ5

(3.17)

where Ã and C̃ are structured as for the LTI case, while the matrices

B̃1 ∈ RnξHp×nuHu , B̃2 ∈ RnξHp×nuHu and B̃3 ∈ RnξHp×nzHu are defined

as follows

B̃i =


Bi 0 · · · 0

ABi Bi · · · 0
...

...
. . .

...

AHp−1Bi AHp−2Bi · · · Bi

 , i ∈ {1, 2, 3}.

Similarly, the matrices D̃1 ∈ RnyHp×nuHu , D̃2 ∈ RnyHp×nuHu and D̃3 ∈

RnyHp×nzHu are defined as

D̃i =


Di 0 · · · 0

CBi Di · · · 0
...

...
. . .

...

CAHp−1Bi CAHp−2Bi · · · Di

 , i ∈ {1, 2, 3}.

Finally, Ẽ1, Ẽ2, and Ẽ3 are matrices of suitable dimensions structured as

Ẽi =



Ei 0 0 · · · 0

E4Bi Ei 0 · · · 0

E4ABi E4Bi Ei · · · 0
...

...
...

. . .
...

E4A
Hp−1Bi E4A

Hp−2Bi · · · · · · Ei


, i ∈ {1, 2, 3}
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whereas Ẽ4, and Ẽ5 are

Ẽ4 =



E4

E4A

E4A
2

...

E4A
Hp


, Ẽ5 =



E5

E5

E5

...

E5


.

As introduced for the LTI and LTV cases, it is now possible to explicitly

express (3.17) into (3.4) to obtain a QP formulation. Despite this, in the

MLD case, the optimization variables are composed not only of the in-

put moves ũk:k+Hu|k, but also by the binary variables δ̃k:k+Hp|k, and the

auxiliary variables z̃k:k+Hp|k. For this reason, in order to avoid bilineari-

ties which would determine a non-convexity of the resulting optimization

problem, it is convenient to introduce

Υ̃k:k+Hp|k = [ũk:k+Hu|k
>, δ̃k:k+Hp|k

>
, z̃k:k+Hp|k

>]> ∈ RnuHu+Hp(nδ+nz).

According to this change of variables, the prediction scheme in (3.17) can

be rewritten as


ξ̃k+1:k+Hp|k = Ãξinit + B̃totΥ̃k:k+Hp|k

ỹk:k+Hp|k = C̃ξinit + D̃totΥ̃k:k+Hp|k

ẼtotΥ̃k:k+Hp|k−Ẽ4ξinit − Ẽ5 ≤ 0

(3.18)

With this formulation it is now possible to explicit (3.18) into (3.4) to obtain

a QP form. By neglecting the terms that do not depend on Υ̃k:k+Hp|k, the
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following Mixed Integer QP (MIQP) problem is derived

min
Υ̃k:k+Hp|k

1

2
Υ̃k:k+Hp|k

>
HΥ̃k:k+Hp|k + f>Υ̃k:k+Hp|k (3.19)

subject to

AΥ̃k:k+Hp|k ≤ b

δ(j|k) ∈ {0, 1},

where j ∈ [k; k +Hp], B̃tot =
[
B̃1 B̃2 B̃3

]
, D̃tot =

[
D̃1 D̃2 D̃3

]
, Ẽtot =[

−Ẽ1 Ẽ2 Ẽ3

]
, and Υ̃ref represents a reference sequence for Υ̃k:k+Hp|k.

The mixed-integer formulation, due to the presence of the binary variables

δ̃k:k+Hp|k, generally makes the resolution of (3.19) more complex than in the

LTI/LTV cases. From the optimal solution of the above MIQP (Υ̃
∗
k:k+Hp|k),

it is possible to recover the optimal input sequence ũ∗k:k+Hu|k used to pro-

vide the control action to the plant, i.e.

uRH(k) = u∗(k|k).

In order to avoid further repetitions, the formulation of a MPC algorithm

based on an ARX model is not addressed below. In fact, the same procedure

illustrated for the LTI case can be followed, provided that the ARX model

(3.9) is first converted to a state-space form using some realization technique

[Matsuo and Hasegawa, 2003].

Remark: The QP formulations presented for the different approximations

of (3.1) are suitable only for stable or asymptotically stable systems. For

example, in case of LTI unstable dynamics, the matrices Ã, B̃, C̃, and D̃

(or the equivalent ones for the other representations) could diverge or give

rise to numerical problems. In such cases, it is convenient to include the

model dynamics as equality constraints of the MPC problem.
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3.3.4 MPC formulation for FSR models

When FSR models are considered, the formulation introduced in Section

3.2.2 can be used recursively in order to obtain a prediction scheme suitable

for the definition of a QP problem. Recall from (3.8) that the prediction of

the output of a SISO plant at time step k is obtained as a linear combination

of consecutive input differences and step response coefficients. This scheme

can be generalized in order to provide a model able to predict the plant

behavior over the future Hp steps. For simplicity, in the following the SISO

case will be treated in detail, while a summarized version of the MIMO one

will be given.

Define the free response r(k+j|k) at a time step k as the system output

y(k+ j) under the assumption that changes in the control variable are zero

from k into the future (∆u(k + j) = 0, ∀j ≥ 0):

r(k + j|k) := y(k + j) in case of ∆u(k + j) = 0, ∀j ≥ 0.

The predicted output values over the future Hp steps can be written as

y(k + 1|k) = S1
1,1∆u(k|k) + r(k + 1|k),

y(k + 2|k) = S2
1,1∆u(k|k) + S1

1,1∆u(k + 1|k) + r(k + 2|k),

y(k + 3|k) = S3
1,1∆u(k|k) + S2

1,1∆u(k + 1|k) + S1
1,1∆u(k + 2|k) + r(k + 3|k),

...

y(k +Hp|k) =

Hp∑
j=1

Sj1,1∆u(k +Hp − j|k) + r(k +Hp|k),

that can be reformulated in a matrix form as follows

ỹk:k+Hp|k = Ψr̃k:k+N |k + S1
1∆ũk:k+Hu|k. (3.20)
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The binary matrix Ψ is used as a shifting operator for the free response

sequence, and its defined as

Ψ =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 ∈ RHp×N ,

while the dynamic matrix S1
1 is composed of the step response coefficients

Sg

S1
1 =



S1
1,1 0 · · · 0

S2
1,1 S1

1,1
. . .

...
...

...
. . . 0

SHu1,1

...
... S1

1,1

...
...

...
...

S
Hp
1,1 S

Hp−1
1,1 · · · S

Hp−Hu+1
1,1


∈ RHp×Hu . (3.21)

To take into account the discrepancy between the step response model and

the original plant, a correction term based on the actual measurement of the

output is required. Define w̃k:k+Hp|k ∈ RHp as the sequence of the future

uncertainties acting on the system. Given that the terms in w̃k:k+Hp|k

cannot be measured, a good estimate is

w(k|k) = ymeas(k)− r(k|k)

where ymeas(k) is the measured output at time instant k, and it is assumed

that w(k|k) = w(k + 1|k) = · · · = w(k + Hp|k). Therefore, the prediction

equation (3.20) becomes

ỹk:k+Hp|k = Ψr̃k:k+N |k + S1
1∆ũk:k+Hu|k + w̃k:k+Hp|k, (3.22)
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which contains the contribution of past inputs (Ψr̃k:k+N |k), the future con-

trol actions (S1
1∆ũk:k+Hu|k), and a correction term (w̃k:k+Hp|k). The pre-

diction scheme (3.22) can be used to obtain a QP form of the problem (3.3).

Because of the FSR formulation, the control variable is expressed by means

of consecutive input differences ∆u(k), rather than input moves u(k). For

this reason, the cost function (3.4) is rewritten in the following form

J(∆ũk:k+Hu|k, r̃k:k+N |k) = ||ỹk:k+Hp|k − ỹref||2Q + ||∆ũk:k+Hu|k||
2
R.

(3.23)

By making explicit the definition of (3.22) into (3.23), the following opti-

mization problem is obtained

min
∆ũk:k+Hu|k

ς̃k:k+Hp|k
>Qς̃k:k+Hp|k + ∆ũk:k+Hu|k

>R∆ũk:k+Hu|k (3.24)

subject to

umin ≤ u(k + j|k) ≤ umax
ymin ≤ y(k + j|k) ≤ ymax

∆umin ≤ ∆u(k + j|k) ≤ ∆umax

∆ymin ≤ ∆y(k + j|k) ≤ ∆ymax

where j ∈ [1;Hp], while the sequence

ς̃k:k+Hp|k = Ψr̃k:k+N |k + S1
1∆ũk:k+Hu|k + w̃k:k+Hp|k − ỹref

represents the differences between the predicted outputs ỹk:k+Hp|k and the

reference trajectory ỹref. From the formulation of (3.24) it is possible to
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define the following QP formulation

min
∆ũk:k+Hu|k

1

2
∆ũk:k+Hu|k

>H∆ũk:k+Hu|k + f>∆ũk:k+Hu|k (3.25)

subject to

A∆ũk:k+Hu|k ≤ b,

where

H = (R+ S1
1
>
QS1

1),

f> = (r̃k:k+N |k
>Ψ>QS1

1 + w̃k:k+Hp|k
>QS1

1 − ỹref
>QS1

1),

The solution of (3.25) provides the optimal sequence ∆ũ∗k:k+Hu|k. Accord-

ing to the RH approach (3.5), the plant has to be subjected only to the first

element of such sequence. In particular, given that ∆ũ∗k:k+Hu|k contains a

sequence of input variations, the control action applied to the plant will be

uRH(k) = u(k − 1) + ∆u∗(k|k).

After the resolution of (3.25), the free response array of the next time

step (i.e., k + 1) is updated by

r̃k+1:k+1+N |k := Πr̃k:k+N |k + S1,1∆u(k|k) (3.26)

where S1,1 ∈ RN is the array containing all the step response coefficients,

and Π ∈ RN×N is the binary matrix

Π :=



0 1 0 · · · 0

0 0 1
...

...
...

...
...

. . . 0

0 0 · · · 0 1

0 0 · · · 0 1


∈ RN×N . (3.27)
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The above formulation of Π is suitable for asymptotically stable systems.

When the output of the model shows an integrating behavior, the matrix

Π is redefined as [Morari et al., 2002]

Π :=



0 1 0 · · · 0

0 0 1
. . .

...
...

...
. . .

. . . 0

0 0 · · · 0 1

0 · · · 0 −1 2


∈ RN×N . (3.28)

In this case, the last element of r̃k+1:k+1+N |k is

r(k+N−1|k+1) := r(k+N−1|k)+(r(k+N−1|k)−r(k+N−2|k))+SN∆u(k|k)

which considers the integrating trend of the output. Due to its recursive

formulation, the free response sequence needs to be initialized. To this

aim, the quantity r̃k0:k0+N |k is used to represent the initial value of the

such sequence. Usually the plant is kept to steady state, and the output

values are used to initialize the free response terms.

The prediction scheme in (3.22), suitable for SISO plants, can be straight-

forwardly extended to MIMO systems as follows:
ỹ1
k:k+Hp|k

ỹ2
k:k+Hp|k

...

ỹ
ny
k:k+Hp|k

 =


Ψr̃1

k:k+N |k + w̃1
k:k+Hp|k

Ψr̃2
k:k+N |k + w̃2

k:k+Hp|k
...

Ψr̃
ny
k:k+N |k + w̃

ny
k:k+Hp|k

+


S1

1 · · · S1
nu

S2
1 · · · S2

nu
...

. . .
...

S
ny
1 · · · Snynu




∆ũ1

k:k+Hu|k

∆ũ2
k:k+Hu|k

...

∆ũ
nu
k:k+Hu|k

 .

(3.29)

Notice that r̃bk:k+N |k and w̃b
k:k+Hp|k are the free response and disturbance es-

timation sequences of the bth output, respectively. The elements Sbi are the
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FSR coefficients matrices relating the ith input to the bth output structured

as shown in (3.21), whereas ∆ũik:k+Hu|k represents the input variations se-

quence related to the ith input.

The formulation of a predictive control algorithm as in (3.24), refers

to the family of Quadratic Dynamic Matrix Control (QDMC) paradigms

[Garcia and Morshedi, 1986].

3.3.5 MPC formulation with soft output constraints

When dealing with nonlinear plants, the use of approximated models for

control purposes brings inevitable mismatch which may lead to constraint

violations. A common approach adopted for guaranteeing recursive feasibil-

ity, is to soften the state and output constraints by suitably modifying the

control problem. The softening of the outputs constraints can be carried

out by adding a set of optimization variables to the general formulation

(3.3), which leads to the optimization

min
ũk:k+Hu|k,ṽk:k+Hp|k

Ĵ(ũk:k+Hu|k, ṽk:k+Hp|k, ξinit) (3.30)

subject to

ξ(j + 1|k) = f(ξ(j|k),u(j|k), j)

y(j|k) = g(ξ(j|k),u(j|k), j)

ξ(k|k) = ξinit

umin ≤ u(j|k) ≤ umax

ξmin ≤ ξ(j|k) ≤ ξmax

ymin − v(j|k) ≤ y(j|k) ≤ ymax + v(j|k)

v(j|k) ≥ 0
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where ṽk:k+Hp|k ∈ RnyHp is defined similarly to (3.2), the cost function Ĵ

is defined as

Ĵ(ũk:k+Hu|k, ṽk:k+Hp|k, ξinit) = J(ũk:k+Hu|k, ξinit) + ||ṽk:k+Hp|k||
2
P ,

and P ∈ RHpny×Hpny is a positive semidefinite matrix used to weight

the constraint violations. The above formulation can be easily adapted

when LTI, LTV, ARX, PWARX or FSR models are considered. Moreover,

although additional optimization variables are added to account for con-

straints softening, the above optimization problem can be still formulated

as a QP program.

3.4 Control models identification

The identification process aims to find a suitable structure and parametriza-

tion of a mathematical model, able to represent (as best as possible) a se-

quence of input-output measured data (ũmeas, ỹmeas) collected from a plant.

Different identification approaches can be adopted:

• White-box identification: the model structure is derived by means

of first-principles physical laws that describe in detail the plant dy-

namics and all the parameters characterizing the system behavior are

known. This approach implies a deep knowledge of the physics gov-

erning the overall system.

• Grey-box identification: the physics that governs the dynamics is

not well known or understood, hence the model structure is derived

on the basis of the insight and the available knowledge about the

system. Nevertheless, the parameters used to characterize the model

behavior need to be identified from the available plant data.
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• Black-box identification: it is not possible to assume a priori a

particular structure, but the model has to be developed uniquely on

the basis of the measured data.

This brief introduction highlights how the structure of the model and its

parameterization vary according to the particular identification approach.

In this section, the black box paradigm is adopted. Starting from input-

output measured data, various mathematical models are developed to rep-

resent the dynamics of a plant. To this end, the models structures already

presented in the Section 3.2 are considered. In the following, the procedures

used in this Thesis for the identification of the parameters of such models

are presented.

3.4.1 Finite step response models

The parameters that characterize a FSR prediction model are the step

response coefficients Sg. These terms are usually obtained as samples of

a plant output whose dynamics are a consequence of the application of a

unitary step input. The sampling is performed with a give time step Ts,

and N terms are collected in order to fully characterize the input-output

relationships. It is reminded that the index N represents the discrete time

instant starting from which the output of an asymptotically stable system

settles, or for stable systems it represents the time instant starting from

which the output becomes a pure ramp. A visual example is given in

Fig. 3.3, where the output of a plant is sampled every Ts seconds, and

N = 6 coefficients are collected to fully represent the input-output dynamics

according to the FSR notation.

If the system to be identified is linear, then a single experiment will be
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Figure 3.3: Example of FSR coefficients sampled with a given Ts. In this

example, N = 6.

enough to describe all the possible responses that arise from step inputs of

generic magnitudes (within round off errors due to possible measurements

noise). On the other hand, when nonlinear systems are considered, a single

experiment would not be sufficiently informative. For this reason, multi-

ple experiments can be run and a mean model can be obtained from the

collected data. Note that the concept of “informative dataset” is strictly

related to the particular application tackled. In order to excite all the

plant dynamics, a random input sequence should be injected to the system.

An example of this approach is given by the PseudoRandom Bynary Se-

quences (PRBSs) (see for instance [Hunt et al., 1998, Miao et al., 2005]).

However, the application of random sequences to the system often cannot

be carried out for safety reasons. Therefore, a common approach involves

the application of input profiles that will result to be close to the ones used

during regular plant operations.

Data collection

Consider a plant having a set of indices of manipulated variables C :=

{1, 2, · · · , nu} and a set of indices of measured variables B := {1, 2, · · · , ny}.
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For a given input channel i ∈ C, the FSR coefficients relating such input to

every output b ∈ B are sampled according to this algorithm:

1. Define a set of different magnitudes for input channel i as Ji :=

{j1,i, · · · , jdi,i} and set q = 1

2. With the plant starting from a steady condition (uss,yss), apply a

step of magnitude jq,i ∈ Ji to the ith input channel, while keeping all

the other inputs (i.e., C − {i}) at steady values.

3. The data sampled from each bth output channel are collected in the

array Λji,b ∈ RN and normalized according to

Λji,b =
(Λji,b − ybss)

jq,i
.

4. If q = di the algorithm stops, otherwise q = q+ 1 and go back to step

2

Note that |Ji| = di, and the nomenclature | · | represents the cardinality of a

set. Once the above algorithm has been repeated for every input magnitude,

the normalized data is collected into the array

Λ̃i,b := [(Λj1i,b)
>, · · · , (Λjdi,b)

>]>. (3.31)

which accounts for the different experiments containing the normalized FSR

coefficients relating the ith input to the bth output. The above procedure

is then repeated for each input channel, and the normalized arrays (3.31)

are collected for each input-output pair.

Step response coefficients identification

Once the arrays Λ̃i,b have been collected ∀i ∈ C, and ∀b ∈ B, the step

response coefficients can be identified. To this aim, the best FSR coefficients
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relating the ith input to the bth output, i.e.

S∗i,b := [S∗,1i,b , · · · , S
∗,N
i,b ]>,

are obtained by minimizing

JLS(Si,b) :=
∥∥∥ΦLSSi,b − Λ̃i,b

∥∥∥2

2
,

where ΦLS := [IN , IN , · · · , IN ]> ∈ RN |Ji|×N . The same operation is re-

peated for all the input-to-output relationships. Due to the absence of

constraints, the solution of the above Least Squares (LS) problem can be

derived analytically. The optimal solution S∗i,b is obtained by evaluating

S∗i,b = (ΦLS
>ΦLS)−1ΦLS

>Λ̃i,b, (3.32)

where the quantity (ΦLS
>ΦLS)−1ΦLS

> is usually referred to be the pseudo-

inverse matrix of ΦLS, and shorthanded with the notation ΦLS
†.

3.4.2 Autoregressive exogenous models

ARX models (3.9) predict the output of a system by means of a linear com-

bination of past inputs and outputs values. According to their formulation,

the parameters that characterize the prediction scheme are collected in the

vector θ. Such vector is an unknown quantity and needs to be identified.

Contrary to the FSR models, the data used for the identification of ARX

ones can be obtained as a result of the application of random input pro-

files (not only step changes). In particular, the collected data have to be

suitably informative so as to emphasize the dynamics of the plant that one

wants to capture. In the following, the identification of a SISO ARX model

is presented.
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Data Collection

Suppose that, starting from a given initial instant k = k0, the plant to be

identified is operating in an equilibrium condition represented by the pair

(uss,yss). The application of an input deviation sequence δũmeas
k0:k0+Numeas ∈

RNumeas (on top of uss), produces an output deviation sequence δỹmeas
k0:k0+Nymeas

∈ RNymeas (on top of yss) whose elements are obtained by sampling the plant

output every Ts seconds. The collected data need to be structured according

to the ARX formulation introduced in Section 3.2.2. Note that, due to the

procedure explained above, the ARX model presented in the following will

consider δu and δy quantities instead of u and y, respectively. In order to

proceed to the identification of θ, the indices na, nb, and nk need to be de-

fined. Such choice can be conducted by analyzing quantitative indices (e.g.

Akaike’s information criterion, the final prediction error, or the minimum

description length criterion), or exploiting some prior knowledge about the

plant dynamics. According to the chosen order incides, the measured data

deviations are structured by assuming that they have been obtained from

an ARX model, i.e.

δymeas(nm + 1) = θ s(nm) + e(nm), (3.33)

δymeas(nm + 2) = θ s(nm + 1) + e(nm + 1),

δymeas(nm + 3) = θ s(nm + 2) + e(nm + 2),

...

δymeas(Nymeas) = θ s(Nymeas − 1) + e(Nymeas − 1),
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where e(k) accounts for the measurement noise and (if present) for plant-

model mismatches, s(k) = [s(k)>, 1]>, and nm = max(na, nb). Note that

the above ARX formulation differs from (3.9), because the one presented in

Section 3.2.2 represents the ARX prediction scheme and not the complete

ARX model. Let generalize the above prediction scheme in a matrix form

as

δỹnm+1:Nymeas = Φarx θ
> + e, (3.34)

where Φarx ∈ R(Nymeas−nm)×(n+1) is

Φarx =
[
s(nm) s(nm + 1) · · · s(Nymeas − 1)

]>
.

Remark: When dealing with MIMO systems, there are not quantitative

indices that can support the choice of the order matrices. For this reason,

such choice it is largely based on the insight, analysis of the input-output

data, and some prior knowledge of the plant.

Parameters vector identification

The structured data 3.34 are then used to identify the parameters vector θ.

Similarly to the FSR case, the process of identifying the array θ∗ finds the

best set of parameters able to represent the collected input-output data,

which minimizes the following cost function

Jarx(θ) :=
∥∥∥Φarxθ

> − δỹnm:Nymeas

∥∥∥2

2
.

Analogously to (3.32), because of the absence of constraints, the quantity

θ∗ can be obtained analytically as

θ∗ = Φarx
† δỹnm:Nymeas .
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Remark: The aforementioned identification approach accounts for input

and output deviations with respect to the equilibrium operating conditions,

rather than input and output sequences. Such formulation, generalized for

nonlinear plants, reduces to the form presented in Section 3.2.2 when linear

plants are considered.

3.4.3 Piecewise affine autoregressive exogenous models

The identification of PWARX models has been addressed by many au-

thors. In [Ferrari-Trecate et al., 2003] a modified K-means algorithm is pro-

posed to cluster the measurement data, followed by a weighted least squares

technique for parameter identification. A Kohonen neural network-based

method was proposed in [Lassoued and Abderrahim, 2013] for both clus-

tering and identification of PWARX parameters, while [Vidal et al., 2003]

proposed a geometric-algebraic approach for the identification of hybrid

systems. A thorough comparison of identification techniques for PWARX

models is given in [Juloski et al., 2005] and references therein. Although

identification toolboxes for PWARX exist (e.g., HIT [Ferrari-Trecate, 2005],

PWAOAFID [Stevek and Kozak, 2011]), the support for MIMO systems is

limited, the scalability with respect to the number of identification data

points is poor, and there is not the possibility to account for the direct

feedthrough between a given input-output pair. For these reasons, in this

Thesis two tailored algorithms have been developed able to provide suit-

able identification processes for PWARX systems. The two approaches

are presented for the SISO case, and their extension to the MIMO one is

straightforward.
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Data collection

The data collection process, the order indices choice, and the data structur-

ing can be carried out similarly to the ARX case presented in Section 3.4.2.

Starting from the structured data, it is possible to define the regressors

arrays s(nm + j), with j ∈
[
0;Nymeas − 1

]
. All of these vectors are used to

form the bounded polyhedron X ∈ Rn, which is named as regressors set.

The data belonging to X must be appropriately processed in order to parti-

tion such set in different subregions where, in each of which, different ARX

models will be identified. The identification of a PWARX model usually

involves three main steps:

1. define a polyhedral partition {Xl}l of the bounded polyhedron X

2. cluster the input-output data (δũmeas
k0:k0+Numeas , δỹ

meas
k0:k0+Nymeas ) in each

partition element Xl

3. estimate the parameters vectors θl related to the ARX model in each

partition element Xl

The above three steps are carried out by means of two different approaches

that are presented in the following.

Algorithm 1: Iterative grid approach

In order to partition X , introduce a set of cut direction indices F =

{1, · · · , nc}. For a given value of f̄ ∈ F , introduce also a set of cut point in-

dices Gf̄ = {1, · · · , nφf̄ }. Fixing j̄ ∈ Gf̄ , according to the H-representation

[Grötschel and Henk, 2003], the lth element of the polyhedral partition is
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δymeas(k)

δu
m

ea
s (k
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X j̄,f̄1 X j̄,f̄2

0 1

1

Figure 3.4: Example of a regressors set X ∈ R2 partitioned in 2 different

subregions.

defined as

X j̄,f̄l =
{
s ∈ X

∣∣∣Γf̄l s ≤ φj̄l,f̄} , (3.35)

∀l =1, · · · , 2q,

where q is the iteration number of the algorithm, Γf̄l ∈ Rq×n is a suitable

matrix, and φj̄
l,f̄
∈ Rq is a suitable array. An example of this representation

is given in Fig. 3.4. In this case, for a fixed cut direction and point (f̄ , and j̄

respectively), at iteration q = 1 the partition element X j̄,f̄1 is described with

Γf̄1 = [1, 0] and φj̄
1,f̄

= 0.5, while X j̄,f̄2 is represented using Γf̄2 = [−1, 0]

and φj̄
2,f̄

= −0.5. The polyhedral partition
{
X j̄,f̄l

}2q

l=1
is accepted if∣∣∣X j̄,f̄l ∣∣∣ ≥ υ, ∀l,

where υ is a tunable threshold. For each accepted polyhedral partition, the

corresponding set of parameters vectors {θj̄
l,f̄
}l is estimated according to
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the LS method,

θ∗,j̄
l,f̄

= arg min
∥∥∥X j̄,f̄l θj̄

l,f̄
− Yl

∥∥∥2

2
, ∀l = 1, · · · , 2q,

where Yl is the subset of δỹmeas
k0:k0+Nymeas that is supposed to be generated

from the regressors of the lth partition element X j̄,f̄l , according to the

PWARX model in (3.10). Finally, the model accuracy is evaluated using

the fitness function

Jq,j̄
f̄

= 100

1−

∥∥∥δỹmeas − δŷj̄,f̄
∥∥∥

2

‖δỹmeas − δȳmeas‖2

 , (3.36)

where δŷj̄,f̄ defines the prediction of δỹmeas according to (3.10) with the

polyhedral partition defined by Γf̄l and φj̄
l,f̄

, l = 1, · · · , 2q, and δȳmeas

corresponds to the mean value of δỹmeas.

The fitness function in (3.36) is evaluated ∀f̄ ∈ F and ∀j̄ ∈ Gf̄ . The

set of parameters (Γ∗,q,φ∗,q) which produces J∗,q = maxΓ,φ Pq is chosen,

where Pq is the set which contains all the fitness function results of the qth

iteration.

The (q + 1)th iteration starts with X already partitioned according to

the {(Γ∗,l,φ∗,l)}ql=1 pairs, and the above procedure will be repeated.

Each iteration is considered to be successful if J∗,q+1 > J∗,q. If J∗,q+1 ≤

J∗,q, the algorithm will stop. By denoting with s the number of successful

iterations, the final PWARX model will have 2s submodels.

Algorithm 2: K-means based approach

The objective of the K-means algorithm is to divide Nr = Nymeas − nm

points (which represent the data defined over the regressors set) into L

clusters Xl, l ∈ {1, · · · , L} [Jain, 2010]. This objective is accomplished in
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an iterative way, by defining a suitable distance function d(x,y). Such

function is used to represent a cluster X ql at each iteration q as

X ql = {s| d(s,Cq
l ) ≤ d(s,Cq

c), ∀c 6= l},

where Cq
l ∈ Rn indicates the centroid of the lth cluster. Before starting

iteration q + 1, the centroid of each partition is updated according to this

formula

Cq+1
l =

1

|X ql |
∑
s∈X ql

s,∀l ∈ {1, · · · , L}.

At iteration q+1 the clusters are recomputed considering the new centroids.

The algorithm finds the optimal cluster configuration X ∗ := {X ∗1 ,X ∗2 , · · · ,X ∗L}

by minimizing the following cost function

Jq(X ) :=
L∑
l=1

∑
s∈Xl

d(s,Cq
l ).

The choice of the distance function d(x,y) can significantly influence the

shape and structure of the optimal cluster configuration provided by the

algorithm. This aspect, although generally does not pose an issue, has to

be taken into strong consideration when working with optimization-based

control algorithms. In fact, the particular choice of d(x,y) can determine

the convexity or not of the resulting optimal partition X ∗. Therefore, in

order to ensure the obtaining of convex optimization problems, in the fol-

lowing it is assumed that the distance function is represented by means of

the Euclidean distance, i.e.

d(x,y) = ||x− y||2 =
√∑

(x− y)2. (3.37)

Under this assumption, the optimal cluster configuration results in a set

of polyhedra {X ∗l }Ll=1, such that X ∗ =
⋃
l X ∗l and X ∗p ∩ X ∗j = ∅, ∀p 6= j.
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An example of this algorithm is given in Fig. 3.5, where some collected

input-output data has been used to define X , with na = 1, nb = 1, and

nk = 1.

Figure 3.5: Example of input-output data composing the regressors set X

By applying the K-means algorithm with the distance function (3.37), the

partition {X ∗l }Ll=1 with L = 30 elements is obtained as depicted in Fig. 3.6.
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Figure 3.6: Polyhedral partition {X ∗l }30
l=1 of the regressors set X using

the K-means algorithm. The red squares represent the optimal centroids,

whereas the lines are used to represent the edges of each cluster.
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After the obtaining of an optimal cluster configuration X ∗, the set of pa-

rameters {θl}Ll=1 is identified over each partition element X ∗l . To this end,

similarly to the previous cases, a LS approach is used to find the best set

of parameters θ∗l able to minimize

J(θl) := ‖X ∗l θl − Yl‖
2
2,

where Yl has the same meaning as explained in the previous algorithm.

State-space partitioning

As introduced in Section 3.3.3, when dealing with MPC algorithms, it is

common to reformulate ARX or PWARX dynamics in terms of state-space

models. In general, for both linear or piecewise formulations, this objective

can be achieved by means of realization techniques [Matsuo and Hasegawa,

2003], whose goal is to provide an equivalent state-space representation of

given input-output dynamics. Let consider an ARX system of the form

(3.9) having transfer function G(z) (where G(z) represents z transform of

the impulse response of the system [Ogata, 1995]). The objective of the

realization theory is to find a suitable set of state-space matrices A, B, C,

and D such that

G(z) = C(zI −A)−1B +D.

Note that there are infinite sets of state-space matrices that can enforce such

equality. Observability or controllability canonical forms can be adopted to

find state-space representations of a given input-output system which will

be guaranteed to be observable or controllable, respectively.

When PWARX dynamics are considered, a number of state-space re-

alizations has to be carried out according to the number of regions of the
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regressors set (see Section 3.2.2). Moreover, the partitioning of the regres-

sors set needs to be suitably translated into a partitioning of the state-space

in which the new dynamics evolve. Given that the regressors set is com-

posed of past values of inputs and outputs, it is preferable to perform a

realization of the input-output dynamics such that the meaning of each

state composing the new formulation will reflect the physical meaning of

the quantities in the regressors set. For instance, let consider a PWARX

model reformulated in terms of a PieceWise affine system (PWASystem) of

the following form

ξ(k + 1) =



A1ξ(k) +B1u(k) + f1 if (ξ(k),u(k)) ∈ R1

A2ξ(k) +B2u(k) + f2 if (ξ(k),u(k)) ∈ R2

...

ALξ(k) +BLu(k) + fL if (ξ(k),u(k)) ∈ RL

y(k) =



C1ξ(k) +D1u(k) + g1 if (ξ(k),u(k)) ∈ R1

C2ξ(k) +D2u(k) + g2 if (ξ(k),u(k)) ∈ R2

...

CLξ(k) +DLu(k) + gL if (ξ(k),u(k)) ∈ RL

in which Ri, ∀i ∈ {1, · · · , L} represent the state-space partitions, and the

active dynamics are chosen according to the membership of the current

states and inputs (ξ(k),u(k)) to a given partition element Ri. Despite the

above formulation will not be used in the remainder of this Thesis, it has

been introduced to highlight how state-space models can deal with piece-

wise dynamics. In fact, for computational purposes, the MLD formulation

results to be more efficient than the PWASystem. For a complete overview

of the different formulations of hybrid dynamical systems and their equiv-
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alences, please refer to [Heemels et al., 2001] and the references therein.
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Chapter 4

Advanced Battery

Management Systems

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 133

4.2 Fast charging algorithms for Li-ion batteries . . 135

4.3 Health-aware charging protocols for Li-ion bat-

teries . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.4 Optimal charging of a Li-ion cell: A hybrid

model predictive control approach . . . . . . . . 159

4.5 Linear time varying strategies for the optimal

charging of Li-ion batteries . . . . . . . . . . . . . 169

4.1 Introduction

In this chapter, the main results related to the development of ABMSs based

on MPC strategies are presented. All the methodologies introduced in the
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previous chapters is used to develop the different control algorithms. In

particular, the modeling and identification approaches presented in Section

3.2 are employed for the development of the proposed ABMSs. Finally,

in order to assess the effectiveness of the control strategies, the different

ABMSs are evaluated considering the real Li-ion cell represented by means

of the P2D model implemented in the LIONSIMBA toolbox. The control

scheme adopted in the remainder of this chapter is shown in Fig. 4.1.

ABMS

MPC Controller Cost FunctionConstraints

Approximation of the P2D model

LIONSIMBAMeasurements

Figure 4.1: Control scheme of the proposed ABMSs. The real plant is

represented with the P2D implementation of LIONSIMBA.

In all the proposed control strategies, the Li-ion cell is considered as a

Single-Input Multi-Output (SIMO) plant where the applied current density

Iapp(t) is the manipulated variable, while the temperature T (t), voltage

Vout(t), and SOC(t) are considered measurable quantities. Only the SOC(t)
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is the controlled variable. In the following, the SOC has been defined as

SOC(t) =
1

ln cmax
s,n

∫ ln

0
cavg
s (x, t) dx (4.1)

As already introduced in Section 2.7, according to the parameters used to

simulate the P2D model, the 1C rate of the considered cell (i.e., I1C ) is

approximately equal to 30 A/m2.

In the following, the notation Qb ∈ RHp×Hp is used to refer to the diag-

onal matrix, portion of Q, used to weight the bth output deviations. More-

over, the notationQb = α, where α ∈ R, is equal toQb = diag{α, α, α, · · · , α}.

The same meaning is given to Ri ∈ RHu×Hu and Ri = α. Finally, the con-

straints violation multipliers belonging to the diagonal of P , and related to

the bth output are denoted with γb. For convenience the outputs of the Li-

ion battery are represented in a compact way as y = [SOC(t) , Vout(t) , T (t)],

while the input u = Iapp(t).

4.2 Fast charging algorithms for Li-ion batteries

4.2.1 Introduction

The objective of this work is to provide an optimal control strategy able

to reduce the charging time of a Li-ion battery while satisfying physical

constraints on output voltage, input current, and battery temperature. The

outcomes of this control algorithm are obtained by approximating the P2D

dynamics with a linear input-output FSR model. The approximated model

is then used in a QDMC [Garcia and Morshedi, 1986] formulation to design

an optimal charging strategy for the Li-ion battery. The QDMC approach

is widely adopted in industrial applications and can handle constraints on

the process input and output variables. Soft constraints on the output
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variables and hard constraints on the input are included in the QDMC

formulation. The effectiveness of the approach has been tested on the P2D

model in several scenarios. The results show the suitability of the proposed

approach for online implementation.

4.2.2 Simulation setup

The step response model used for output predictions was identified using

the LS approach outlined in Section 3.4.1. Define J = { 5, 8, 11, 14,

17, 20, 23, 28, 31, 34, 37 }, and for each output N = 185 step response

coefficients have been collected with a sampling time of Ts = 10 s. Figs.

4.2, 4.3, and 4.4 show the identified step response models for the three

measured variables (Voltage, SOC, and Temperature). These outputs show

an integrating behavior, which leads to a QDMC implementation using the

Π matrix defined in (3.28).

The controlled variable SOC is tracked to a setpoint. The starting

value of SOC is 49% (in order to simulate a half discharged battery) and

the setpoint is set equal to 85%. The battery is initially kept at steady

state by dropping the current to zero and waiting for the temperature to

stabilize. QSOC = 10 for each scenario, while the value of R varies. The

control horizon Hu and prediction horizon Hp were chosen equal to 80 steps,

with sampling time Ts = 10 s which is consistent with the bandwidth of

the system. The simulations are run using Matlab R© and MOSEK [An-

dersen and Andersen, 2016] for the optimal control algorithm on a i5 @

3.2-GHz 64-bit CPU system with 8 GB of RAM and O.S. Ubuntu 14.04.

MOSEK required CPU time to solve the optimization problem is around

0.1 s. Simulations were run under different scenarios, with the controller
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parameters summarized in Table 4.1. Finally, for each of the proposed

Parameter Value

ymin [45%, 2.6 V, 220 K]>

ymax [95%, 4.2 V, (∗) K]>

umin 0 A/m2

umax I2C A/m2

∆umin −1.5 A/(m2 s)

∆umax 1.5 A/(m2 s)

QSOC 10

QV 0

QT 0

QQs 0

R (*)

yref [85, 0, 0]>

uref 0

Table 4.1: Controller parameters. The upper bound values of the temper-

ature T (t) and the values of R are reported in Table 4.2

scenario, the configurations in Table 4.2 are considered (where not specified,
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T (t) Tenv γVout(t) R

Scenario 1: ≤ 313.5 K 298.15 K 103 0.1, 1, 10

Scenario 2: ≤ +∞K 298.15 K 102 1

Table 4.2: Simulation scenarios parameters

γ∆Vout(t) = γSOC(t) = γVout(t) = γT (t) = 103):

Figure 4.2: Voltage Step Response Model : estimated LS input-output model

(solid black line) and output values obtained with different step inputs

(stars).

138



Figure 4.3: State-of-Charge Step Response Model : estimated LS input-

output model (solid black line) and output values obtained with different

step inputs (stars).

Figure 4.4: Temperature Step Response Model : estimated LS input-output

model (solid black line) and output values obtained with different step

inputs (stars).
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4.2.3 Scenario 1 results

Scenario 1 evaluates the influence of R on the control action (see Fig. 4.5).

The values of R = 0.1 and 1 have a similar trend, while the less aggressive

R = 10 shows a delayed control action. The SOC profiles in Fig. 4.6 show

that the specified value of 85% is reached in about 1700 s for all values of

R, with R = 10 giving a larger value of the SOC around 500 s, followed

by a lower value around 1000 s. Both voltage constraints are satisfied for

all time for R = 1 and 10 (Fig. 4.7), with a slight violation of the upper

bound at 1500 s for R = 0.1, with the voltage approaching 4.1 V at longer

times for all values of R. The temperature constraint is slightly violated

around 500 s for each value of R (Fig. 4.8), which is permitted by the

constraint softening. The violation can be reduced or removed by more

strongly weighing the soft constraint or by shifting the upper bound on the

temperature in the algorithm down by a small amount.

Figure 4.5: Input current : solid black lines are the hard constraints on the

input.
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Figure 4.6: SOC : black horizontal line represents the reference value.

Figure 4.7: Voltage: black horizontal line is the voltage upper soft con-

straint.
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Figure 4.8: Temperature: black horizontal line is the upper bound soft

constraint.
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4.2.4 Scenario 2 results

To reduce the battery charging time, this scenario relaxes the tempera-

ture upper bound constraint and voltage violation multiplier γVout(t). As

expected, the temperature and voltage go over their hypothetical upper

bounds (see Figs. 4.12 and 4.11), by about 10 K and 0.08 V, respectively.

In contrast with Scenario 1 (Fig. 4.5), the injected current for Scenario

2 in Fig. 4.9 does not drop nearly to zero at 600 s to remodulate itself

for enforcement of the temperature constraints. Dropping the constraints

results in the input current almost immediately reaching its maximum al-

lowed value (I2C ) for the entire charging process and falling only when the

SOC is near its final setpoint. These plots show the high importance of

including temperature constraints when optimally charging batteries.

The SOC in Scenario 2 reaches the reference value of 85% in about 1200

s (Fig. 4.10), which is nearly ten minutes less than in Scenario 1. The slope

of the SOC is nearly constant for the entire charging process, to reach the

setpoint earlier.
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Figure 4.9: Input current : actual (blue solid) and hard constraints (black

line).

Figure 4.10: SOC : actual (blue solid), reference (black horizontal).
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Figure 4.11: Voltage: actual (blue solid) and upper bound soft constraint

(black line).

Figure 4.12: Temperature: actual (blue solid) and the removed upper bound

soft constraint (black line).
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4.2.5 Summary

In the simulations, an approximation of the P2D model is developed and

incorporated into a quadratic dynamic matrix controller to obtain a fast

charging protocol. The control algorithm accounts for constraints on cur-

rent, SOC, battery temperature, and voltage, and it is designed in such a

way that the constraints are allowed to be softened in order to improve the

performance. Simulation results show that temperature constraints play

a fundamental role in the optimal charging process of a battery. In fact,

by removing temperature upper bounds and performing a minimal viola-

tion of the voltage constraints (+0.08V), the charging time was reduced by

roughly 600s. Nevertheless, an appropriate handling of temperature con-

straints need to be enforced in order to avoid possible safety issues. The

adoption of a FSR input-output model has provided good control results,

while being a linear approximation of the P2D dynamics. Simulations in-

dicate the suitability of this approach to real-time applications.
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4.3 Health-aware charging protocols for Li-ion bat-

teries

4.3.1 Introduction

Long-term degradation effects occurring during battery operations are im-

portant when designing ABMSs. The modeling of these effects has been

addressed by many authors in the recent years (for example, see [Sankara-

subramanian and Krishnamurthy, 2012], [Zhang and White, 2008]). Among

them, a first-principles model able to accurately describe the capacity fade

mechanisms has been proposed in [Ramadass et al., 2003]. This model is

able to reproduce: (i) the formation of the solid-electrolyte interface layer,

which results in an additional and variable resistance between the elec-

trolyte and active material (anode), and (ii) the capacity fade effects which

lead to a continuous loss of capacity during the battery cycling.

The objective of this investigation is to design an ABMS for Li-ion

batteries using the P2D model in combination with a description of the

capacity fade mechanisms. The inclusion of the latter mechanisms allows

the design of health-aware charging strategies. The ABMS proposed in the

following is based on a QDMC algorithm ([Garcia and Morshedi, 1986]),

where FSR models are used to approximate the input-output dynamics

of the P2D model. Differently from the results proposed in the previous

section ([Torchio et al., 2015]), the inclusion of the aging dynamics allows

the design of a health-aware charging protocol by adding soft constraints

on the battery capacity fade on top of the already existing constraints on

voltage and temperature. In simulations, the proposed approach shows that

different tradeoffs between battery aging and minimum time charging can
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be obtained by properly tuning the control parameters.

4.3.2 Aging model

To consider battery aging, the model introduced in Section 2.4 is extended

to account for the dynamics describing the capacity fade effects and the

formation of the SEI layer at the electrolyte-anode interface. To this end,

the formulation of the ionic flux in (2.8) needs to be modified as follows

j(x, t) = jint(x, t) + jside(x, t),

where jint(x, t) represents the regular intercalation/deintercalation flux (ex-

actly as defined in (2.8)), while jside(x, t) accounts for side reactions that

occur during the charging of the battery. Given that the side reactions are

considered to occur only at the electrolyte-anode interface, the contribution

of jside(x, t) at the cathode side is null and no SEI resistance between cath-

ode and electrolyte is considered in the following. As in [Ramadass et al.,

2004], the side reaction flux is modeled using a Tafel relation:

jside(x, t) = −
i0,side(t)

F
exp

(
0.5F

RT (x, t)
ηside

)
, (4.2)

where i0,side(t) is the side reaction exchange current and ηside is the side

reaction anodic overpotential defined as

ηside := Φs(x, t)− Φe(x, t)− USEI − Fj(x, t)Rf (t),

where the term USEI represents the side reaction OCV and Fj(x, t)Rf (t)

accounts for an extra voltage drop due to the presence of the SEI resistance

Rf (t). The growth of the SEI layer is modeled as

∂

∂t
δ(x, t) = −Mw

ρ
jside(x, t), (4.3)
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where Mw is the molar weight of the electrode and δ(x, t) represents the

film thickness. The overall film resistance is given by

Rf (t) = RSEI +
δ̄(t)

ν
,

where RSEI is the initial SEI layer resistance, ν is the admittance of the

film, and

δ̄(t) =
1

ln

∫ ln

0
δ(x, t) dx.

The side reaction exchange current i0,side(t) depends on the battery ap-

plied current density Iapp(t) ([Rashid and Gupta, 2014]). No experimental

data are available for the identification of such relation, and the empirical

equation

i0,side(t) = i0,base

(
Iapp(t)

I1C

)w
(4.4)

is adopted. At the anode side, due to the presence of the SEI layer, the

diffusion process of Li-ions within the electrode (2.3), (2.4) is driven from

j(x, t) = jint(x, t). The dynamics describing the capacity fade effects can

be represented by the ODE

∂Qs
∂t

= −anF
∫ ln

0
jside(x, t)dx,

where Qs(t) accounts for the capacity fading as a function of the side re-

action flux. At the end of each charge cycle Nc, an estimate of the overall

lost capacity is computed as

QNcs = Qs(t
Nc
f )

where tNcf represents the duration of the Ncth charging cycle. Before start-

ing the next discharging cycle, the initial concentration of the anode is
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updated by

cavg,init
s ← cavg,init

s − QNcs −QNc−1
s

Fεnln
.

According to this scheme, the long-term degradation effects considered in

this work produce a reduction of the cell capacity after each charging cycle.

After the first charging cycle (i.e. Nc = 1), the quantity Q0
s is initialized at

zero.

4.3.3 Simulation setup

The effectiveness of the proposed health-aware control algorithm is demon-

strated in this section. Besides voltage, temperature, SOC, and current

density, also the lost capacity Qs(t) is assumed to be a measurable vari-

able. The controller presented in Section 3.3.4 has been implemented to

track a reference value of the SOC while fulfilling input and output con-

straints. The FSR coefficients used for online optimizations, were estimated

according to the approach outlined in Section 3.4.1. Voltage, temperature,

and SOC coefficients are the same as the ones presented in Section 4.2.

Additionally, FSR coefficients related to the aging dynamics have been

identified, as depicted in Fig. 4.13. Due to the presence of an additional

measured output (i.e., Qs(t)), in the following of this section a new output

set is defined

y = [y, Qs(t)] .

All the proposed scenarios share the constraints reported in Table 4.3. To

assess the effectiveness of the proposed control algorithm, the simulations

have been run considering different values of γ∆Qs . The parameters used

for the side reaction dynamics are the base-side reaction current i0,base =
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Figure 4.13: Capacity fade FSR model : identified coefficients (solid black

line) and data (stars) obtained by application of the set of input varia-

tions J = {5, 8, 11, 14, 17, 20, 23, 28, 31, 34, 37} A/m2, starting from a rest

condition, to the battery.

8 × 10−11 A/m2, the film conductivity ν = 3.79 × 10−7 S/m, and w = 2.

The molar weight is obtained from the cell parameters as Mw = 73× 10−3

kg/mol and the side reaction OCV is set to Uside = 0.4 V. All the scenarios

run with the environmental temperature of Tenv = 298.15 K. The sampling

time has been chosen Ts = 10 s. Prediction and control horizon have been

set to Hp = Hu = 200 steps. In all the scenarios the QDMC controller has

been set up with QSOC = 10 and R = 1. The resulting QP problem is

solved using the Matlab R© quadprog solver. The simulations are performed

on a Windows 10 machine with 8 Gbytes of RAM and a i5 vPro processor

@2.5 GHz.
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Parameter Value

y
min

[0.8%, 2.5 V, 270 K, 0 C/m2 ]>

y
max

[95%, 4.2 V, 320 K, ∞ C/m2 ]>

∆y
max

[
∞%/s, ∞V/s, ∞K, 10−9 C/(m2 s) ]>

umin 0 A/m2

umax I1C A/m2

∆umin −1.5 A/(m2 s)

∆umax 1.5 A/(m2 s)

QSOC 10

QV 0

QT 0

R 1

y
ref

[50, 0, 0, 0]>

uref 0

Table 4.3: Controller parameters.
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4.3.4 Results

In Figures 4.14 to 4.18 different charging protocols are computed by means

of different weights of γ∆Qs
. As it is possible to see with γ∆Qs

= 0 (dashed

purple line), the algorithm provides a charging current density which is for

most of the time set to the maximum value of I1C and starts to drop when

approaching the final charging stage at around 1300 s. The corresponding

behavior of the output voltage shows a fast increase of Vout(t) followed by

a rest transient which settles to 3.87 V. Finally, the temperature shows

a steeper increase which reaches 300 K at 1200 s and the capacity fade

effect which results in a total decrease of the anode concentration of 0.35

mol/m3. By weighting the aging dynamics in the optimization, QDMC

provides more conservative control actions. The applied current profiles

have different shapes according to the different weights: γ∆Qs
= 1 (yellow

line), γ∆Qs
= 5 (dotted orange line), and γ∆Qs

= 10 (dot-dashed blue line).

By increasing γ∆Qs
, the control action provided by QDMC is less aggressive

and lasts longer. The voltage profiles show a more gentle rise during the

charging process and all of them settle at 3.87 V, while temperature never

goes above 298.7 K. In all the different cases, the reference value of the

SOC is reached at different time instant; according to the most conservative

control action, the reference is reached in 6000 s. Finally, after one charging

cycle, the overall lost capacity of the most conservative profile results to

be less than 1/3 of most aggressive control action. The reduction in anode

capacity over multiple charging cycles are compared in Fig. 4.19, whereas

Table 4.4 summarizes the lost anode capacity as a function of the cycle

number. In order to compare the obtained results over multiple cycles, a

common operation protocol has been defined:

153



1. Starting from a rest condition, charge the battery from the 20% to

the 50% of SOC with the proposed health-aware algorithm

2. Stop when the applied current drops below 10−3 A/m2

3. Apply 0 [A/m2] for a rest period of 1300 s

4. Discharge the battery down to 20% of SOC with a galvanostatic cur-

rent of -20 A/m2

5. Apply 0 A/m2 for a rest period of 1300 s

6. Go back to step 1

After 10 charging cycles, the total lost capacity is significantly reduced

when aging dynamics are weighted in the optimization, which magnifies

the results obtained over a single charging cycle.
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Figure 4.14: Iapp(t) comparison for different violation weights.

Figure 4.15: Vout(t) comparison for different violation weights.
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Figure 4.16: T (t) comparison for different violation weights.

Figure 4.17: SOC(t) comparison for different violation weights.
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Figure 4.18: Lost anode capacity for different violation weights.

Figure 4.19: Lost anode capacity over multiple cycles with different viola-

tion weights.
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Cycle # γ∆Qs = 0 γ∆Qs = 1 γ∆Qs = 5 γ∆Qs = 10

1 0.3327 0.202 0.1362 0.1098

5 1.661 1.011 0.6829 0.5498

10 3.322 2.021 1.362 1.099

Table 4.4: Lost anode capacity over multiple cycles.

4.3.5 Summary

An ABMS is investigated that accounts for long-term degradation effects.

Starting from the P2D model, additional equations are included in order

to consider the aging dynamics. A QDMC predictive approach is adopted

to perform an optimal charge of a Li-ion cell while taking into account

both input and outputs constraints. A linear representation of the Li-ion

battery is employed to reduce the computational burden while still guaran-

teeing good control performance. By varying the multiplier γ∆Qs
, different

protocols can be obtained. The results show that the aggressiveness of the

charge profiles provided by the controller have a direct impact on the loss

of capacity. In fact, despite longer charging times, a significant life-cycle

improvement can be gained by defining more conservative charging pro-

tocols. Moreover, the results obtained after a single charging cycle have

been magnified by evaluating the influence of different values of γ∆Qs
over

multiple charging cycles, where a common charging and discharging pro-

tocol is provided. The proof of principle provided by this work highlights

the capabilities of predictive algorithms for use in a health-aware ABMS

application.
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4.4 Optimal charging of a Li-ion cell: A hybrid

model predictive control approach

4.4.1 Introduction

When designing an ABMS, an accurate model of the thermal behaviour

is quite important, since it allows to reduce safety risks, possible damages,

and, in extreme cases, avoid thermal runaways [Bernardi et al., 1985, Band-

hauer et al., 2011]. In this section, we introduce a PWARX approximation

of the P2D model that well describes the temperature dynamics in a Li-ion

cell. Starting from a set of input-output data collected from the P2D EM,

the PWARX model is identified using a tailored algorithm (explained in

detail in Section 3.4.3, algorithm 1) and converted into a state-space model

using the MLD formulation [Bemporad and Morari, 1999]. According to

Section 3.3.3, it is possible to use the obtained model (which involves both

continuous and binary variables) to formulate a Hybrid MPC (HMPC)

[Camacho and Alba, 2013] problem which requires, at each time step, the

solution of a MIQP program. While the hybrid nature of the approximation

increases the complexity of the MPC problem when compared to the linear

case, the time required to solve the optimization is still compatible with

the sampling time. Moreover, simulations show that the HMPC provides

better performance in terms of constraint satisfaction.

4.4.2 Simulation setup

As a first step, data are collected and used to identify the PWARX model

included into the HMPC algorithm according to the procedure outlined in

Section 3.4.3. To this aim, consider the battery working at the equilibrium
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point defined by Vss = 3.733 V, SOCss = 19.69%, Tss = 298.15 K, and

Iss = 0 A/m2. Starting from this condition, a set of random variations of

Iapp(t) have been applied to the P2D model, and the resulting set of input-

output identification data has been collected as depicted in Fig. 4.20. Note

that, as outlined in Section 3.4, the input sequence applied to the P2D

model has been chosen to be as close as possible to the input profiles used

during regular operating conditions of the cell. The order matrices used to

identify the PWARX model are

Na =


1 0 0

1 2 0

2 0 1


, Nb =


1

2

5


, Nk =


1

0

1


. (4.5)

This particular choice of the order matrices was made upon the analysis

of the cell dynamics (even though it does not represent the only suitable

configuration). As shown in Fig. 4.20, the SOC(t) exhibits an integral

behavior with respect to the applied current density, whereas Vout(t) also

exhibits higher order dynamics during relaxation periods. Moreover, the

dynamics of the voltage shows a direct feedthrough with respect to Iapp(t),

which motivates the structure of Nk. The temperature is mainly affected

by the applied current density and the SOC. Whereas SOC(t) and Vout(t)

are well described by linear models, a linear approximation of T (t) provides

poor performance (see last row of Table 4.5, where the results refer to the

validation dataset). Indeed, inspection of Fig. 4.21 indicates that (i) under-

shoots in the temperature profile can be observed for certain values of the

SOC, (ii) a change of rising slope can be found according to the duration

of the charging or discharging current, and (iii) the temperature rises in
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Figure 4.20: Input-output data from the P2D model. Before starting to

identify the PWARX model, the data have been normalized with respect

to the equilibrium point Vss = 3.733 V, SOCss = 19.69%, Tss = 298.15 K,

and Iss = 0 A/m2.

Figure 4.21: A portion of the temperature profile of the identification

dataset I.
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the presence of either positive or negative values of Iapp(t). Therefore, in

order to better capture these nonlinear phenomena, a PWARX model was

employed instead, where the partitioning of the regressors set was carried

out according to the algorithm 1 outlined in Section 3.4.3. On the other

side, the SOC and the voltage behaviors were described with ARX models

obtained from arx command of the Matlab R© identification toolbox. The

choice made in (4.5) implies that the regressors set XT ⊂ R8. A total of

58 different cut directions were tested and, for a given direction, a grid-

ding approach has been used to define the set Gf̄ . The iterative algorithm

stopped after 2 iterations and found 4 different submodels. For comparison

purposes, a linear ARX model representing the overall input-output cell

dynamics has been identified according to the order matrices in (4.5). Ac-

cording to Section 3.4.3, all the data used for identification purposes have

been expressed in terms of deviations with respect to the equilibrium con-

ditions.

The fitness function in (3.36) has been evaluated for the ARX and PWARX

cases and their results are compared in Table 4.5, with some of the vali-

dation results presented in Fig. 4.22 (the validation was performed with

respect to a completely different dataset from the identification one, still

obtained from the P2D model).

ARX PWARX

SOC(t) 96% 96%

Vout(t) 83% 83%

T (t) −3% 83%

Table 4.5: Fitness function values for the ARX and PWARX models eval-

uated using (3.36). with respect to validation data.
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Figure 4.22: Comparison of the temperature profiles for the P2D (true),

ARX, and PWARX models.

Besides the quantitative index presented in Table 4.5, the graphical com-

parison in Fig. 4.22 highlights that the adoption of a set of affine models

(instead of a single linear model) allows to obtain much better prediction

performance. The constraints and the controller parameters for all of the

simulations are summarized in Table 4.6. The control and prediction hori-

zons were set as Hp = Hu = 20, with the objective of the ABMS to track the

SOC to a reference value of 75%, starting from 20%. The weight matrices

have been set to QSOC = 10, R = 1, while P = 3 ·103. The simulations are

performed using Matlab R© . The commercial solver CPLEX [IBM, 2010]

was used to solve the resulting MIQP problem on a i7@ 2.7-Ghz 64-bit

CPU system with 8 Gbytes of RAM and Ubuntu 14.04 machine. The sam-

pling time chosen for this application is Ts = 80 s, which is suitable with

the estimated bandwidth of the system. The control algorithm presented

in Section 3.3.3 is adopted. Given that the P2D approximation embed-
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ded into the ABMS has been identified using data expressed as deviations

with respect to the equilibrium conditions, the algorithm in (3.19) considers

the optimization variables ũk:k+Hu|k = δũk:k+Hu|k + uss and the outputs

ỹk:k+Hp|k = δỹk:k+Hp|k + yss. The PWARX-based HMPC algorithm took

a mean of 0.0659 s to solve the online MIQP at each time step, while the

ARX-based MPC algorithm took a mean of 0.0210 s to solve the resulting

online QP problem.

Parameter Value

ymin [0%, 2.5 V, 290 K]>

ymax [95%, 4.2 V, 306.5 K]>

umin 0 A/m2

umax I1.35C A/m2

QSOC 10

QV 0

QT 0

R 1

yref [75, 0, 0]>

uref 0

Table 4.6: Controller parameters.
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4.4.3 Results

The MPC-based and HMPC-based ABMSs are compared in Figures 4.23

to 4.26. Both control actions drive the Li-ion cell to the reference SOC of

75%. The HMPC algorithm is able to better accommodate the temperature

constraints by re-modulating the input current earlier with respect to MPC.

Indeed, HMPC only slightly violates temperature constraint (by 1.9 K),

whereas MPC significantly violated the constraint (by 10.1 K). The re-

modulation of Iapp(t) has a consequence also on the behavior of both SOC

and Vout(t). In particular, the SOC driven by HMPC decreases its slope

(at around 58%) and reaches the target SOC with 1700 s of delay with

respect to MPC. On the other side, due to the higher current applied, the

MPC voltage profile shows a steeper increase (followed by an overshoot),

whereas HMPC reaches the final voltage of 4.08 V in a more gentle way.

This aspect makes the HMPC charging protocol to be less stressful for the

Li-ion cell by inducing a lower potential drop between the two electrodes

[Torchio et al., 2016b], [Ramadass et al., 2004].
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Figure 4.23: Applied current densities comparison: MPC based on the

ARX model (black line) is compared to HMPC equipped with the PWARX

(dashed red line).

Figure 4.24: SOC comparison: MPC based on the ARX model (black line)

is compared to HMPC equipped with the PWARX (dashed red line).
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Figure 4.25: Temperature profiles comparison: MPC based on the ARX

model (black line) is compared to HMPC equipped with the PWARX

(dashed red line).

Figure 4.26: Voltage profiles comparison: MPC based on the ARX model

(black line) is compared to HMPC equipped with the PWARX (dashed red

line).
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4.4.4 Summary

This section proposes a HMPC algorithm for the development of a Li-ion

cell ABMS. In order to overcome possible limitations related to the on-

line application of the HMPC algorithms, a linearized version of the Li-ion

cell plant is identified by means of a PWARX model. The identification of

such models was carried out according to the tailored algorithm presented

in Section 3.4.3 (algorithm 1). Through an analysis of the identification

dataset, only the thermal dynamics was modeled using a PWARX rep-

resentation. Voltage and SOC were found to be suitably represented by

means of linear ARX models. For comparison purposes, the overall set of

dynamics were also represented by means of an ARX model. The validation

of the PWARX and ARX models highlighted the capabilities of piecewise

affine dynamics to better approximate the thermal nonlinearities. Closed-

loop performance results show the effectiveness of the proposed algorithm,

with particular emphasis over the enforcement of thermal constraints. Even

though the clustering and identification algorithm are based on empirical

rules, the proof of concept provided by this work highlights the capabilities

of PWARX models to be embedded into ABMS in order to ensure good

closed-loop performance while guaranteeing reduced online computational

cost.

168



4.5 Linear time varying strategies for the optimal

charging of Li-ion batteries

4.5.1 Introduction

As a further step towards the development of ever more reliable and efficient

ABMSs, this section proposes the comparison of MPC strategies based on

linear, piecewise affine, and linear time varying approximations of the P2D

model. As previously addressed, it has been shown that linearized models

can provide interesting results. Nevertheless, due to the strong nonlineari-

ties driving the thermal dynamics, the discrepancies between the linearized

models and such dynamics makes it extremely difficult to enforce temper-

ature constraints. For this reason, piecewise affine approximations of the

P2D model have been proposed in the previous section. PWARX models

are formulated as a set of affine dynamics, where binary variables are used

to represent switches among the different submodels. While this choice

represents a compromise between accuracy and complexity, its online ap-

plication becomes prohibitive as the number of submodels increases. With

the aim of further reducing the computational burden, while still providing

satisfactory results, LTV approximations of the P2D model are also consid-

ered. As outlined in Section 3.2.1, these models are obtained by linearizing

the dynamics around a nominal trajectory [Borhan et al., 2012, Barbarisi

et al., 2009, Falcone et al., 2007, Falcone et al., 2006]. Such approximation

is accurate in the neighborhood of the nominal trajectory, and has the ben-

efit of not relying on binary variables, therefore dramatically reducing the

online computational cost.

In all the proposed control scenarios, the objective is to charge the Li-ion
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cell to a reference value of the SOC while enforcing temperature, voltage,

SOC, and applied input current constraints. The results show a significant

improvement in terms of constraint satisfaction when both PWARX or LTV

ABMSs are considered.

4.5.2 Simulation setup

Figure 4.27: Li-ion cell data used for the identification of the PWARX

models.

To identify the ARX and PWARX approximations of the Li-ion cell

dynamics, a set of charging and discharging input profiles were applied to

the P2D model similarly to what shown in Section 4.4. The cell starts from

a steady-state condition characterized by Vss = 3.79 V, SOCss = 20% and

Tss = 298.15 K, which corresponds to the application of Iss = 0 A/m2.

The identification dataset I (i.e., the values of Iapp(t), Vout(t), T (t), and

SOC(t)) are reported in Fig. 4.27. A similar dataset, V, was used for vali-

dation purposes. ARX and PWARX models were obtained according to the

procedures summarized in sections 3.4.2 and 3.4.3 respectively, with Na,
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Nb, and Nk as in (4.5). Two different PWARX models were identified,

with 4 and 8 clusters respectively using the identification algorithm 2 out-

lined in Section 3.4.3. The performance of the obtained approximations are

reported in Table 4.7, where the fitness function (3.36) is computed. Since

the ARX models used in the three experiments are the same for SOC(t)

and Vout(t), their fitness values remain unchanged. On the other hand,

the use of PWARX models improves significantly the approximation of the

temperature behavior as observed in Fig. 4.28, which compares the temper-

ature profiles for a subset of the validation profile. In particular, the ARX

model sometimes even fails to identify the correct sign of the temperature

change. The PWARX models produce much more accurate temperature

predictions, even when only a few clusters are considered. Fig. 4.29 reports

the switches among the different submodels, for PWARX models with 4

and 8 clusters. The identification of the PWARX models presented above,

was carried out considering the collected data to be deviation sequences on

top of the equilibrium condition (uss,yss).

# of clusters SOC Voltage Temperature

0 96% 83% −3%

4 96% 83% 72%

8 96% 83% 89%

Table 4.7: Comparison of the fitness function (3.36) among different models.

Where the number of clusters is 0, a linear ARX model is used.

4.5.3 Results

According to Section 4.5.2, the PWARX model with 8 clusters was the

most accurate approximation of the P2D model. On the other hand, due

to its hybrid nature, its model form has the highest online computational
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Figure 4.28: The temperature profiles for three different identified models

and the P2D dynamics using the V dataset.

Figure 4.29: Switches among the different submodels for the 4- and 8-cluster

PWARX models. These data were obtained during the validation of the

hybrid models.

cost when used in an MPC algorithm. Indeed, its MPC formulation would

require the solution of an MIQP at each time instant, with an online com-
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putational cost of ∼ 3600 s1, which is much higher than the sampling time

Ts = 80 s). To reduce the online computational cost while still providing

satisfactory results, an LTV approximation of the 8-cluster PWARX model

was computed 2. The nominal trajectory used to compute the LTV model

was obtained according to problem (3.15) with initial condition Vss = 3.79

V, SOCss = 20% and Tss = 298.15 K (steady-state condition corresponding

to Iss = 0 A/m2), Hū = 30 steps, and optimization parameters as in Table

4.8. In this case, the optimization (3.15) was solved without any softening

of the output constraints. To optimally charge the Li-ion cell, MPC

strategies based on ARX, PWARX, and LTV models were designed using

the same parameters as in Table 4.8 and Hp = Hu = 30 steps. Due to

the mismatch between the P2D dynamics and the models used for control,

soft constraints were considered as in (3.30) with P = 3 · 103. The MPT

Toolbox [Herceg et al., 2013] was used to compute the MLD dynamics, and

the commercial solver CPLEX [IBM, 2010] to solve the resulting MIQP

and QP problems on a i5@ 2.7-GHz 64-bit CPU system with 16 Gbytes of

RAM running Windows 10 Pro.

The closed-loop responses are compared in Figures 4.30 to 4.33 for MPC

based on ARX (solid blue), PWARX (dashed red), and LTV (dot-dashed

yellow) models. MPC with the ARX model attained the desired SOC in

the shortest time (1280 s) but had the highest temperature constraint viola-

1The commercial solver CPLEX [IBM, 2010] was used to solve the resulting MIQP

and QP problems on a i5@ 2.7-GHz 64-bit CPU system with 16 Gbytes of RAM running

Windows 10 Pro
2Even though a LTV representation of the entire P2D model would be more accurate,

the computational burden related to the computation of the time-varying dynamical

matrices at each time step, and the need of adopting a state observer would make its

online usage very challenging.
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Parameter Value

ymin [0%, 2.5 V, 290 K]>

ymax [95%, 4.2 V, 303.65 K]>

umin 0 A/m2

umax I1.35C A/m2

∆umin −10 A/(m2 s)

∆umax 10 A/(m2 s)

QSOC 10

QV 0

QT 0

R 1

yref [50, 0, 0]>

uref 0

Ts 80 s

Table 4.8: Parameters used for the nominal trajectory optimization and

the synthesis of the controllers

tion (305.7 K). Moreover, due to the significant mismatch between the P2D

model and its ARX approximation, the closed-loop current profile exhibited

undesired fluctuations, mainly between 800 and 1100 seconds. The use of

a PWARX model with 4 clusters provided significant improvement both in

terms of constraint satisfaction and current profile. This improved perfor-

mance comes with increased complexity (2.5 s to solve each optimization

compared to 0.02 s for the ARX model) but is still fast enough for online

application (the sampling time is Ts = 80 s). Finally, the use of an LTV

model leads to even better performance, with a smoother input profile when
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compared to the PWARX model. In fact, the better model approximation

leads to an anticipated current drop, which allows the MPC algorithm to

(i) avoid undesired fluctuations in the input profile, (ii) attain the reference

SOC value in a shorter time (1840 s vs. 2100 s for the PWARX model), and

(iii) almost not exceed the temperature constraints (303.9 K vs. 304.3 K

for the PWARX model). Since the LTV-based MPC requires the solution

of a QP (rather than an MIQP), its online cost (0.022 s) is comparable to

the ARX case. A potential limitation of the LTV-based approach is that

it relies on the linearization of the 8-cluster PWARX around a nominal

trajectory. Given that such trajectory was obtained offline starting from a

particular initial condition, the closed-loop performance may be poor when

different starting conditions are considered. For this reason, the developed

LTV-based MPC was also tested for steady states with SOCss = 15% and

SOCss = 25%. According to Figures 4.34 to 4.36, which compare the LTV

(red dashed line) with the 4-cluster PWARX (blue solid line), even in the

presence of initial condition uncertainties, the LTV-based approach still

provides better closed-loop performance.
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Figure 4.30: Iapp(t) profiles for three ABMSs: ARX-based (solid blue line),

PWARX-based (dashed-orange line), and LTV-based (dot-dashed yellow

line).

Figure 4.31: SOC(t) profiles for three ABMSs: ARX-based (solid blue line),

PWARX-based (dashed-orange line), and LTV-based (dot-dashed yellow

line).
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Figure 4.32: T (t) profiles for three ABMSs: ARX-based (solid blue line),

PWARX-based (dashed-orange line), and LTV-based (dot-dashed yellow

line). The solid black line represents the temperature upper bound.

Figure 4.33: Vout(t) profiles for three ABMSs: ARX-based (solid blue line),

PWARX-based (dashed-orange line), and LTV-based (dot-dashed yellow

line).
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(a) Applied current density

(b) Temperature

(c) State of Charge

Figure 4.34: Simulations with an initial value of SOCss = 15%. HMPC en-

abled ABMS (blue solid line) compared to the LTV enabled ABMS (dashed

red line)
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(a) Applied current density

(b) Temperature

(c) State of Charge

Figure 4.35: Simulations with an initial value of SOCss = 20%. HMPC en-

abled ABMS (blue solid line) compared to the LTV enabled ABMS (dashed

red line)
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(a) Applied current density

(b) Temperature

(c) State of Charge

Figure 4.36: Simulations with an initial value of SOCss = 25%. HMPC en-

abled ABMS (blue solid line) compared to the LTV enabled ABMS (dashed

red line)
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4.5.4 Summary

This investigation considers the optimal charging of a Li-ion cell using a

variety of MPC strategies that were validated using the well-known P2D

model based on porous electrode theory. The complexity of the P2D model,

which is a set of highly nonlinear and tightly coupled PDAEs, makes its

direct usage within a MPC framework impractical. For this reason, the

P2D dynamics were represented by means of a linear ARX model. Al-

though the ARX model is able to provide interesting results, the presence

of strong nonlinearities for the thermal behavior called for the adoption of

more sophisticated approximations. As a step towards the improvement of

the closed-loop performance, PWARX models were proposed based on the

identification algorithm 2 outlined in Section 3.4.3. A comparison among

the prediction accuracy of the ARX, 4-cluster, and 8-cluster PWARX mod-

els highlighted the capabilities of the piecewise affine dynamics to better

approximate the P2D nonlinearities and lead to improved closed-loop per-

formance. A drawback of PWARX models is their use of binary variables,

which lead to the formulation of MIQPs that need to be solved online by

the MPC algorithm. Since the complexity of such problems grows exponen-

tially with the number of clusters, their real-time application can become

expensive. To reduce online computational cost, the 8-cluster PWARX

model was approximated with an LTV representation obtained around a

set of nominal trajectories. With respect to the ARX model, the MPC

strategies based on the 4-cluster PWARX and the LTV approximations

provided better closed-loop performance. To the absence of binary vari-

ables, the LTV-based MPC algorithm is formulated as a QP instead of an

MIQP and so is the least expensive for online application. Even in the
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presence of perturbations of the initial states, the LTV strategy provided

good closed-loop performance.

182



Acronyms

ABMS Advanced BMS

AE Algebraic Equation

ARX AutoRegressive eXogenous

BMS Battery Management System

CC-CV Constant Current - Constant Voltage

CIC Consistent Initial Condition

CV Control Volume

CC Constant Current

DAE Differential-Algebraic Equation

DP Dual Polarization

EA Electrochemical Accumulator

ECM Equivalent Circuit Model

EM Electrochemical Model

EV Electric Vehicle
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FSR Finite Step Response

FTCS Forward-Time Central-Space

FVM Finite Volume Method

HEV Hybrid Electric Vehicle

HM Harmonic Mean

HMPC Hybrid MPC

LIONSIMBA Lithium-ION SIMulation BAttery

LS Least Squares

LTI Linear Time Invariant

LTV Linear Time Varying

MCC Multistage Constant Current

MIMO Multi-Input Multi-Output

MIQP Mixed Integer QP

MLD Mixed Logical Dynamical

MOL Method Of Line

MPC Model Predictive Control

NMPC Nonlinear MPC

NTI Normalized Time Index

OCP Optimal Control Problem
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OCV Open Circuit Voltage

ODE Ordinary Differential Equation

P2D Pseudo Two-Dimensional

PC Pulshe Charging

PDAE Partial Differential and Algebraic Equation

PDE Partial Differential Equation

PNGV Partnership for a New Generation of Vehicles

PWARX PieceWise affine ARX

PWASystem PieceWise affine system

PRBS PseudoRandom Bynary Sequence

QDMC Quadratic Dynamic Matrix Control

QP Quadratic Programming

RH Receding Horizon

RMSE Root-Mean-Square Error

SEI Solid Electrolyte Interface

SIMO Single-Input Multi-Output

SISO Single-Input Single-Output

SOC State Of Charge

SOH State Of Health
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SPM Single Particle Model
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[Luo et al., 2009] Luo, Y. F., Liu, Y. H., and Wang, S. C. (2009). Search

for an optimal multistage charging pattern for lithium-ion batteries using

the taguchi approach. In TENCON Conference, pages 1–5.

[Maciejowski, 2002] Maciejowski, J. M. (2002). Predictive Control: With

Constraints. Harlow Pearson Education, Piscataway, New Jersey.

[Magni et al., 2009] Magni, L., Raimondo, D. M., and Allgöwer, F., editors
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Model Predictive Control.

204



[Moura et al., 2013] Moura, S. J., Chaturvedi, N. A., and Krstic, M.

(2013). Constraint management in Li-ion batteries: A modified reference

governor approach. In Proceedings of the American Control Conference,

pages 5332–5337.

[Moura et al., 2009] Moura, S. J., Forman, J. C., Stein, J. L., and Fathy,

H. K. (2009). Control of film growth in lithium ion battery packs via

switches. In Proceedings of the ASME Dynamic Systems and Control

Conference, volume 1, pages 139–147.

[Nakahara, 2006] Nakahara, H. (2006). Study of Passive Film Formation

on Graphite Surface Lithiated in the Polysiloxane Based Electrolyte for

the Application to Lithium Secondary Battery. ProQuest.

[Newman and Thomas-Alyea, 2012] Newman, J. and Thomas-Alyea, K. E.

(2012). Electrochemical Systems. John Wiley & Sons.

[Nishi, 2001] Nishi, Y. (2001). Lithium ion secondary batteries; past 10

years and the future. Journal of Power Sources, 100(1):101–106.

[Northrop et al., 2011] Northrop, P. W. C., Ramadesigan, V., De, S., and

Subramanian, V. R. (2011). Coordinate transformation, orthogonal col-

location, model reformulation and simulation of electrochemical-thermal

behavior of lithium-ion battery stacks. Journal of The Electrochemical

Society, 158(12):A1461–A1477.

[Ogata, 1995] Ogata, K. (1995). Discrete-time Control Systems, volume 2.

Prentice Hall Englewood Cliffs, New Jersey.

[Patankar, 1980] Patankar, S. (1980). Numerical Heat Transfer and Fluid

Flow. CRC Press, Boca Raton, Florida.

205



[Perez et al., 2016] Perez, H., Hu, X., and Moura, S. (2016). Optimal

charging of batteries via a single particle model with electrolyte and

thermal dynamics. In Proceedings of the American Control Conference,

pages 4000–4005. American Automatic Control Council (AACC).

[Prett and Gillette, 1980] Prett, D. M. and Gillette, R. (1980). Optimiza-

tion and constrained multivariable control of a catalytic cracking unit.

In Joint Automatic Control Conference, number 17, page 73.

[Propoi, 1963] Propoi, A. (1963). Application of linear programming meth-

ods for the synthesis of automatic sampled-data systems. Avtomat. i

Telemekh, 24(7):912–920.

[Qin and Badgwell, 2003] Qin, S. J. and Badgwell, T. A. (2003). A survey

of industrial model predictive control technology. Control Engineering

Practice, 11(7):733–764.

[Rahimian et al., 2011] Rahimian, S. K., Rayman, S., and White, R. E.

(2011). Comparison of single particle and equivalent circuit analog mod-

els for a lithium-ion cell. Journal of Power Sources, 196(20):8450–8462.

[Ramadass et al., 2004] Ramadass, P., Haran, B., Gomadam, P. M., White,

R., and Popov, B. N. (2004). Development of first principles capac-

ity fade model forLi-ion cells. Journal of the Electrochemical Society,

151(2):A196–A203.

[Ramadass et al., 2003] Ramadass, P., Haran, B., White, R., and Popov,

B. N. (2003). Mathematical modeling of the capacity fade of Li-ion cells.

Journal of Power Sources, 123(2):230–240.

206



[Ramadesigan et al., 2010] Ramadesigan, V., Boovaragavan, V., Pirkle,

J. C., and Subramanian, V. R. (2010). Efficient reformulation of solid-

phase diffusion in physics-based lithium-ion battery models. Journal of

The Electrochemical Society, 157(7):A854–A860.

[Ramadesigan et al., 2012] Ramadesigan, V., Northrop, P. W. C., De, S.,

Santhanagopalan, S., Braatz, R. D., and Subramanian, V. R. (2012).

Modeling and simulation of lithium-ion batteries from a systems engi-

neering perspective. Journal of The Electrochemical Society, 159(3):R31–

R45.

[Randall, 2016] Randall, T. (2016). Here’s how electric cars will cause the

next oil crisis. http://www.bloomberg.com/features/2016-ev-oil-crisis/.

[Rao and Newman, 1997] Rao, L. and Newman, J. (1997). Heat-generation

rate and general energy balance for insertion battery systems. Journal

of the Electrochemical Society, 144(8):2697–2704.

[Rashid and Gupta, 2014] Rashid, M. and Gupta, A. (2014). Mathematical

model for combined effect of SEI formation and gas evolution in Li-ion

batteries. ECS Electrochemistry Letters, 3(10):A95–A98.

[Rolison and Nazar, 2011] Rolison, D. R. and Nazar, L. F. (2011). Elec-

trochemical energy storage to power the 21st century. MRS Bulletin,

36(07):486–493.

[Ruetschi, 1977] Ruetschi, P. (1977). Review on the lead-acid battery sci-

ence and technology. Journal of Power Sources, 2(1):3–120.

207



[Samadi and Saif, 2014] Samadi, M. F. and Saif, M. (2014). Nonlinear

model predictive control for cell balancing in li-ion battery packs. In Pro-

ceedings of the American Control Conference, pages 2924–2929. IEEE.

[Sankarasubramanian and Krishnamurthy, 2012] Sankarasubramanian, S.

and Krishnamurthy, B. (2012). A capacity fade model for lithium-ion

batteries including diffusion and kinetics. Electrochimica Acta, 70:248–

254.

[Santhanagopalan et al., 2006] Santhanagopalan, S., Guo, Q., Ramadass,

P., and White, R. E. (2006). Review of models for predicting the cy-

cling performance of lithium ion batteries. Journal of Power Sources,

156(2):620–628.

[Saraswat and Parmar, 2015] Saraswat, P. and Parmar, G. (2015). A com-

parative study of differential evolution and simulated annealing for or-

der reduction of large scale systems. In Proceedings of the International

Conference on Communication Control and Intelligent Systems, pages

277–281.

[Sauer, 2009] Sauer, D. (2009). {BATTERIES}— charge–discharge curves.

In Garche, J., editor, Encyclopedia of Electrochemical Power Sources,

pages 443 – 451. Elsevier, Amsterdam.

[Schiesser, 1991] Schiesser, W. E. (1991). The Numerical Method of Lines.

Academic Press, San Diego.

[Schubert et al., 1994] Schubert, J., Simutis, R., Dors, M., Havlik, I., and

Lubbert, A. (1994). Hybrid modeling of yeast production processes –

208



Combination of a-priori knowledge on different levels of sophistication.

Chemical Engineering Technology, 17(1):10–20.

[Scrosati, 2011] Scrosati, B. (2011). History of lithium batteries. Journal

of Solid State Electrochemistry, 15(7):1623–1630.

[Shen et al., 2012] Shen, W., Vo, T. T., and Kapoor, A. (2012). Charging

algorithms of lithium-ion batteries: An overview. In Proceedings of the

IEEE Conference on Industrial Electronics and Applications, pages 1567–

1572.
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