37,189 research outputs found

    Deep Feature-based Face Detection on Mobile Devices

    Full text link
    We propose a deep feature-based face detector for mobile devices to detect user's face acquired by the front facing camera. The proposed method is able to detect faces in images containing extreme pose and illumination variations as well as partial faces. The main challenge in developing deep feature-based algorithms for mobile devices is the constrained nature of the mobile platform and the non-availability of CUDA enabled GPUs on such devices. Our implementation takes into account the special nature of the images captured by the front-facing camera of mobile devices and exploits the GPUs present in mobile devices without CUDA-based frameorks, to meet these challenges.Comment: ISBA 201

    Multisensor-based human detection and tracking for mobile service robots

    Get PDF
    The one of fundamental issues for service robots is human-robot interaction. In order to perform such a task and provide the desired services, these robots need to detect and track people in the surroundings. In the present paper, we propose a solution for human tracking with a mobile robot that implements multisensor data fusion techniques. The system utilizes a new algorithm for laser-based legs detection using the on-board LRF. The approach is based on the recognition of typical leg patterns extracted from laser scans, which are shown to be very discriminative also in cluttered environments. These patterns can be used to localize both static and walking persons, even when the robot moves. Furthermore, faces are detected using the robot's camera and the information is fused to the legs position using a sequential implementation of Unscented Kalman Filter. The proposed solution is feasible for service robots with a similar device configuration and has been successfully implemented on two different mobile platforms. Several experiments illustrate the effectiveness of our approach, showing that robust human tracking can be performed within complex indoor environments

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    Event-based Face Detection and Tracking in the Blink of an Eye

    Full text link
    We present the first purely event-based method for face detection using the high temporal resolution of an event-based camera. We will rely on a new feature that has never been used for such a task that relies on detecting eye blinks. Eye blinks are a unique natural dynamic signature of human faces that is captured well by event-based sensors that rely on relative changes of luminance. Although an eye blink can be captured with conventional cameras, we will show that the dynamics of eye blinks combined with the fact that two eyes act simultaneously allows to derive a robust methodology for face detection at a low computational cost and high temporal resolution. We show that eye blinks have a unique temporal signature over time that can be easily detected by correlating the acquired local activity with a generic temporal model of eye blinks that has been generated from a wide population of users. We furthermore show that once the face is reliably detected it is possible to apply a probabilistic framework to track the spatial position of a face for each incoming event while updating the position of trackers. Results are shown for several indoor and outdoor experiments. We will also release an annotated data set that can be used for future work on the topic

    Real-time Convolutional Neural Networks for Emotion and Gender Classification

    Full text link
    In this paper we propose an implement a general convolutional neural network (CNN) building framework for designing real-time CNNs. We validate our models by creating a real-time vision system which accomplishes the tasks of face detection, gender classification and emotion classification simultaneously in one blended step using our proposed CNN architecture. After presenting the details of the training procedure setup we proceed to evaluate on standard benchmark sets. We report accuracies of 96% in the IMDB gender dataset and 66% in the FER-2013 emotion dataset. Along with this we also introduced the very recent real-time enabled guided back-propagation visualization technique. Guided back-propagation uncovers the dynamics of the weight changes and evaluates the learned features. We argue that the careful implementation of modern CNN architectures, the use of the current regularization methods and the visualization of previously hidden features are necessary in order to reduce the gap between slow performances and real-time architectures. Our system has been validated by its deployment on a Care-O-bot 3 robot used during RoboCup@Home competitions. All our code, demos and pre-trained architectures have been released under an open-source license in our public repository.Comment: Submitted to ICRA 201

    GPU-based Image Analysis on Mobile Devices

    Get PDF
    With the rapid advances in mobile technology many mobile devices are capable of capturing high quality images and video with their embedded camera. This paper investigates techniques for real-time processing of the resulting images, particularly on-device utilizing a graphical processing unit. Issues and limitations of image processing on mobile devices are discussed, and the performance of graphical processing units on a range of devices measured through a programmable shader implementation of Canny edge detection.Comment: Proceedings of Image and Vision Computing New Zealand 201
    • ā€¦
    corecore