
GPU-based Image Analysis on Mobile Devices
Andrew Ensor

School of Computing and Mathematical Sciences
AUT University

Auckland, New Zealand
Email: andrew.ensor@aut.ac.nz

Seth Hall
School of Computing and Mathematical Sciences

AUT University
Auckland, New Zealand
Email: sehall@aut.ac.nz

Abstract—With the rapid advances in mobile technology many
mobile devices are capable of capturing high quality images
and video with their embedded camera. This paper investigates
techniques for real-time processing of the resulting images,
particularly on-device utilizing a graphical processing unit. Issues
and limitations of image processing on mobile devices are
discussed, and the performance of graphical processing units on
a range of devices measured through a programmable shader
implementation of Canny edge detection.

I. INTRODUCTION

Mobile phone technology is virtually ubiquitous and rapidly
evolving, giving rise to new and exciting application do-
mains through the convergence of communication, camera and
computing technologies. Many of these applications, such as
those for mobile augmented reality, utilize the device camera
for image recognition or visual tag identification [1], [2],
[3], [4]. Mobile devices have quite distinct capabilities and
limitations from desktop computers, so many of the usual
approaches for application development must be reworked to
be made suitable for deployment to actual mobile devices.
For instance, the procedure for capturing images varies from
device to device, and the quality, contrast, resolution and rates
of image capture can be substantially different. The central
processing unit capabilities of many devices is a significant
inhibiting factor for realizing some applications, as can be the
network communication bandwidth, latency, and cost, as well
as demands on the finite battery charge.

However, mobile computational capabilities and memory
specifications are rapidly evolving making more processor-
intensive applications possible that were considered infeasible
even two years ago. For instance, the Nokia N series of
multimedia devices commenced with the release of the Nokia
N70 in 2005, which included a 2 megapixel rear camera (and
0.3 megapixel front camera), 32 MB memory, and a 220 MHz
ARM-926 CPU. In 2007 the Nokia N95 was released with a
5 megapixel rear camera, 160 MB memory, and a 330 MHz
ARM-11 CPU. More recently, the Nokia N8 was released in
2010 with a 12 megapixel rear camera, 256 MB memory, and
both a 680 MHz ARM-11 CPU and a BCM2727 GPU capable
of 32 MPoly/s. It is now common for newer smart phones to
include a 1 GHz CPU and a GPU such as a PowerVR SGX
(Imagination Technologies), Adreno (Qualcomm, formerly of
AMD), Mali (ARM), or Tegra 2 (NVIDIA).

II. IMAGE CAPTURE AND ANALYSIS ON MOBILE DEVICES

Images can be obtained by an application from a mobile
camera by taking a photograph snapshot. However, this can
be a notoriously slow process, requiring between 520 ms and
8 s for some N-series devices [5]. Instead, it is far preferable to
obtain preview frames from the video. On Java ME supported
mobiles the commonly available Multimedia API provides
access to video data. However, device implementations of this
API usually require that the video capture be stopped to obtain
and then separately decode the video segment (typically in
3GPP format) in order to obtain any frames. Some platforms,
such as Android, allow both RGB and greyscale preview
frames to be captured (with typical rates for a 640×480 image
of 26 frames per second on a Google Nexus One and 30 frames
per second on an HTC Desire HD), whereas others, such as
iOS, only return RGB frames by default (with typical rates of
29 frames per second on an Apple iPhone 4) which can then
be converted by software to greyscale if necessary for further
analysis.

Once captured there are two (non-exclusive) choices for
processing an image:

• off-device utilizing the network capabilities of the mobile,
either a localized network technology such as Bluetooth
or Wi-Fi, or a cellular network to off-load the image
processing to a more powerful machine,

• on-device utilizing the computing capabilities of the mo-
bile to itself perform the processing via the CPU or GPU.

For instance, the Shoot & Copy application [6] utilizes Blue-
tooth to pass a captured image to a Bluetooth server for
identification and contextual information about the image. The
Touch Projector application [7] passes video and touch events
via Wi-Fi to a computer connected to a projector. However,
off-device processing has some significant disadvantages. Al-
though many devices support Bluetooth 2.0 with enhanced
data rates providing a theoretical data transfer rate of 2.1
Mbps, the authors found that in practice on most devices the
rate was closer to 430 kbps upload and 950 kbps download,
which can result in a significant communication latency when
transmitting image frames. Wi-Fi improves the bandwidth
and reduces latency but it has somewhat less support on
older mobile devices and can be quite demanding on the
battery. Whereas both Bluetooth and Wi-Fi are only suitable
for localized processing solutions, utilizing a cellular network

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AUT Scholarly Commons

https://core.ac.uk/display/56362816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

with a persistent but mostly idle TCP connection to a process-
ing server can provide a more suitable off-device solution.
However, this too can result in significant network-specific
bandwidth limitations (a 3G network has typical speeds of
150 kbps upload and 2 Mbps download), latencies, and usage
charges. The eventual availability of LTE promises to reduce
this issue with 50 Mbps upload, 100 Mbps download, and
round trip latencies reduced to around 10 ms.

With the evolving specifications of mobile devices there
is a growing list of literature and applications that choose
to perform image processing on-device. On-device processing
was used by [8] for edge-based tracking of the camera pose
by a tablet PC in an outdoor environment. PhoneGuide [9]
performed object recognition computations on a mobile phone.
SURF [10] was implemented on a Nokia N95 to match camera
images against a database of location-tagged images [11]
providing image matches in 2.8 seconds. Variants of SIFT and
Ferns algorithms were used in [12], and [13] tested them on
an Asus P552W with a 624 MHz Marvell PXA 930 CPU
with the algorithms processing a 240 × 320 frame in 40
ms. Studierstube ES [14] is a marker tracking API that is
a successor to ARToolKitPlus and available for Windows CE,
Symbian, and iOS, but it is closed source. Junaio 3.0 [15] is a
free augmented reality browser for iOS and Android platforms
that utilizes image tracking to display objects from a location-
based channel (showing points of interest in surroundings) or
a Junaio GLUE channel (attaching virtual 3D models to up to
seven visible markers). Most other mobile applications, such as
Google Goggles [16] for Android and iOS have entirely web-
based pattern matching so no image analysis is performed on
the device. From version 2.2 the popular OpenCV API [17]
has been available for Android and Maemo/Meego platforms,
and it also can be built for iOS. NVidia has contributed
(non-mobile) GPU implementations of some computer vision
algorithms, and has contributed optimizations for the Android
CPU implementation.

It is now commonplace for applications to utilize GPU for
processing beyond only graphics rendering, particularly for
tasks that are highly parallel and have high arithmetic intensity,
for which GPU are well suited. As most computer vision
algorithms take an array of pixel data as input and output
a variable-length representation of the image (the reverse of
graphics rendering for which GPU were originally designed)
their implementation on GPU has been somewhat slower than
by some other fields. Some examples of computer vision
algorithms implemented on GPU can be found in [18], [19],
and [20]. However, mobile devices containing programmable
GPU only became widely available in 2009 with the use of the
PowerVR SGX535 processor, so to date there has been very
little literature available on mobile-specific GPU implemented
algorithms. Several recent articles and potential power savings
by utilizing GPU rather than CPU on mobiles are discussed in
[21]. In particular, [22] implements a Harris corner detection
on a OMAP ZOOM Mobile Development Kit equipped with a
PowerVR SGX 530 GPU using four render passes (greyscale
conversion, gradient calculations, Gaussian filtering and corner

strength calculation, and local maxima), reporting 6.5fps for
a 640× 480 video image.

III. OPENGL ES

With the notable exception of Windows Phone devices the
vast majority of modern mobile devices support OpenGL ES, a
version of the OpenGL API that is intended for embedded sys-
tems. From version 2.0 OpenGL ES supports programmable
shaders, so parts of an application can be written in GLSL and
executed directly in the GPU pipeline.

As with all shaders branching is discouraged as it carries a
performance penalty, particularly when it involves dynamic
flow control on a condition computed within each shader,
although the shader compiler may be able to compile out
static flow control and unroll loops computed on compile-time
constant conditions or uniform variables. The reason for this
is that GPU don’t have the branch-prediction circuitry that is
common in CPU, and many GPU execute shader instances in
parallel in lock-step, so one instance caught inside a condition
with a substantial amount of computation can delay all the
other instances from progressing. The same holds for depen-
dent texture reads, where the shader itself computes texture
coordinates rather than directly using unmodified texture co-
ordinates passed into the shader. The graphics hardware cannot
then prefetch texel data before the shader executes to reduce
memory access latency. Unfortunately, many computer vision
algorithms require dependent texture reads when implemented
on a GPU. Another issue that must be considered is the latency
in creating and transferring textures. Ideally, all texture data for
a GPU should be loaded during initialization and preferably
not changed while the shaders execute, to reduce the dataflow
between memory and the GPU. However, for real-time image
analysis to be feasible on a GPU image data captured from the
camera should preferably be loaded into a preallocated texture
at 30 fps, quite contrary to GPU recommended practices.
This can be partially compensated for by reducing the image
resolution or changing its format from RGB vector float values
to integer or compressed.

OpenGL ES 2.0 allows byte, unsigned byte, short, unsigned
short, float, and fixed data types for vertex shader attributes,
but vertex shaders always expect attributes to be float so all
other types are converted, resulting in a compromise between
bandwidth/storage and conversion costs. It requires that a GPU
must allow at least two texture units to be available to fragment
shaders, which is not an issue for many image processing
algorithms, although most GPU support eight texture units.
Textures might not be available to vertex shaders and there
are often tight limits on the number of vertex attributes and
varying variables that can be used (16 and 8 respectively in
the case of the PowerVR SGX series of GPU).

Unlike the full version OpenGL ES uses precision hints for
all shader values:

• lowp for 10 bit values between −2 and 1.999 with
a precision of 1/256 (which for graphics rendering is
mainly used for colours and reading from low precision
textures such as normals from a normal map),

• mediump for 16 bit values between -65520 and 65520
consisting of a sign bit, 5 exponent bits, and 10 mantissa
bits (which can be useful for reducing storage require-
ments),

• highp for 32 bit (mostly adhering to the IEEE754 stan-
dard).

Furthermore, the GPU on a mobile device is most likely
to be a scalar rather than vector processor. This means that
there is typically no advantage vectorizing highp operations, as
each highp component will be computed sequentially, although
lowp and mediump values can be processed in parallel. It is
also common for GPU on mobiles to use tile-based deferred
rendering, where the framebuffer is divided into tiles and
commands get buffered and processed together as a single
operation for each tile. This helps the GPU to more effectively
cache framebuffer values and allows it to discard some frag-
ments before they get processed by a fragment shader (for this
to work correctly fragment shaders should themselves avoid
discarding fragments).

There are performance benchmarks for the GPU commonly
found in mobile devices [23]. However, the benchmarks typ-
ically only compare the performance for graphics rendering
throughput, not for other tasks such as image processing, so
do not significantly test the implications of effects such as
frequent texture reloading and dependent texture reads.

IV. CANNY SHADER IMPLEMENTATION

Canny edge detection [24] is one of the most commonly
used image processing algorithms, and it illustrates many of
the issues associated with implementing image processing
algorithms on GPU. It has a texture transfer for each frame
captured, a large amount of conditionally executed code, and
dependent texture reads. As such it might not be considered
an ideal candidate for implementation on a GPU.

The Canny edge detection algorithm is based on the gradient
vector and can give excellent edge detection results in practice.
Starting with a single channel (greyscale) image it proceeds
in four steps to produce an image whose pixels with non-zero
intensity represent the edges in the original image:

• First the image is smoothed using a Gaussian filter to
reduce some of the noise.

• At each pixel in the smoothed image the gradient vector
is calculated using the two Sobel operators. The length
|∇f | of the gradient vector is calculated or approximated,
and its direction is classified into one of the four direc-
tions horizontal, vertical, forward diagonal, or backward
diagonal (depending to which direction ∇f is closest).

• At each pixel non-maximum suppression is applied to the
value of |∇f | by comparing the value of |∇f | at the pixel
with its value at each of the two opposite neighbouring
pixels in either direction. If its value is smaller than
the value at either of those two pixels then the pixel is
discarded as not a potential edge pixel (value is set to 0 as
the neighbouring pixel has a greater change in intensity
so it better represents the edge). This results in thin lines
for the edges.

• At each remaining pixel a double threshold (or hysteresis
threshold) is applied using both an upper and a lower
threshold, with a ratio upper:lower typically between 2:1
and 3:1. If the pixel has a value of |∇f | above the upper
threshold then it is accepted as an edge pixel (and referred
to as a strong pixel), whereas any pixel for which |∇f | is
below the lower threshold is rejected. For any pixel whose
value of |∇f | is between the upper and lower thresholds,
it is accepted as an edge pixel if and only if one of its
eight neighbours is above the threshold (it has a strong
pixel neighbour, in which case the pixel is referred to as
a weak pixel).

Canny edge detection was implemented in [25] using CUDA
on a Tesla C1060 GPU with 240 1.3 GHz cores. The GPU
implementation achieved a speedup factor of 50 times over a
conventional implementation on a 2 GHz Intel Xeon E5520
CPU, although both these GPU and CPU were far more pow-
erful than the processors currently found in mobile devices.

In this work the authors have created a purely GPU-
based implementation of the Canny edge detection algorithm
and tested its performance across a range of popular mobile
devices that support OpenGL ES 2.0 using the camera on
each device. The purpose is to determine whether it is yet
advantageous to utilize the GPU in these devices for image
analysis instead of the usual approach of having the processing
performed entirely by the CPU. To achieve this the algorithm
was implemented in GLSL via a total of five render passes
using four distinct fragment shaders all having mediump
precision:

• Gaussian smoothing using either a 3 × 3 or a 5 × 5
convolution kernel. Since a Gaussian kernel is separable
it can be applied as two one-dimensional convolutions
so the Gaussian smoothing is performed in two passes,
trading the overhead of a second render pass against the
lower number of texture reads. Even for a 3 × 3 kernel
using two render passes rather than one was found to
benefit performance on actual devices.

• The gradient vector is calculated and its direction is
classified. First the nine smoothed pixel intensities are
obtained in the neighbourhood of a pixel, and used by
the Sobel X and Y operators to obtain the gradient
vector. Then IF statements are avoided by multiplying
the gradient vector by a 2×2 1

16 -turn rotation matrix and
then its angle relative to horizontal is doubled so that it
falls into one of four quadrants. A combination of step
and sign functions is then used to classify the resulting
vector as one of the eight primary directions (Δx,Δy)
with Δx and Δy each being either −1, 0, or 1. These
eight directions correspond to the four directions in the
usual Canny edge detection algorithm along with their
opposite directions. The shader then outputs the length
of the gradient vector and the vector (Δx,Δy). This
approach to classifying the direction was found to take
as little as half the time of several alternative approaches
that utilized conditional statements.

• Non-maximal suppression and the double threshold are
applied together. Non-maximal suppression is achieved
by obtaining the length of the gradient vector from the
previous pass for the pixel with the length of the gradient
vector for the two neighbouring pixels in directions
(Δx,Δy) and (−Δx,−Δy). The length at the pixel is
simply multiplied by a step function that returns either
0.0 or 1.0 depending whether its length is greater than
the maximum of the two neighbouring lengths. For the
double threshold a smoothstep is used with the two
thresholds to output an edge strength measurement for
the pixel between 0.0 (reject) and 1.0 (accept as a strong
pixel).

• The final shader handles the weak pixels differently from
Canny’s original algorithm. Rather than simply accepting
a pixel as a weak pixel if one of its neighbouring eight
pixels is a strong pixel, since the previous render pass has
provided an edge strength measurement for each pixel
more information is available. This shader obtains the
nine edge strength measurements in the neighbourhood
of a pixel, and takes a linear combination of the edge
strength measurement at the pixel with a step function
that accepts a weak pixel if the sum of the nine edge
strength measurements is at least 2.0. This avoids the
usual IF statement with eight OR conditions, greatly
increasing performance of this render pass and giving a
small improvement in the weak pixel criterion.

In effect, the entire Canny edge detection algorithm is imple-
mented without any conditional statements whatsoever, ideal
for a GPU shader-based implementation on OpenGL ES. The
shader code is available from the authors upon request.

V. PERFORMANCE RESULTS

The GPU version of the Canny edge detection described
in Section IV was implemented on the following devices,
chosen as they were all released within the same year and
now commonplace:

• Google Nexus One, released January 2010, operating
system Android 2.3, CPU 1 GHz Qualcomm QSD8250
Snapdragon, GPU Adreno 200, memory 512 MB RAM,
camera 5 megapixel, video 720×480 at minimum 20 fps.

• Apple iPhone 4, released June 2010, operating system
iOS 4.3.5, CPU Apple A4 ARM Cortex A8, GPU
PowerVR SGX 535, memory 512 MB RAM, camera 5
megapixel, video 720p (1280× 720) at 30 fps.

• Samsung Galaxy S, released June 2010, operating sys-
tem Android 2.3, CPU 1 GHz Samsung Hummingbird
S5PC110 ARM Cortex A8, GPU PowerVR SGX 540
with 128 MB GPU cache, memory 512 MB RAM,
camera 5 megapixel, video 720p at 30 fps.

• Nokia N8, released September 2010, operating system
Symbianˆ3, CPU 680 MHz Samsung K5W4G2GACA-
AL54 ARM 11, GPU Broadcom BCM2727, memory 256
MB RAM, camera 12 megapixel, video 720p at 25 fps.

• HTC Desire HD, released October 2010, operating sys-
tem Android 2.3, CPU 1 GHz Qualcomm MSM8255

TABLE I
RENDER PASS AND IMAGE RELOADING TEXTURE TIMES (MS)

Operation Nexus One iPhone 4 Desire HD

Greyscale n/a 8.9± 3.0 n/a

Gaussian X 29.9± 4.9 12.2± 0.8 11.1± 3.3

Gaussian Y 29.0± 4.5 12.0± 0.1 11.2± 3.7

Gradient 138.2± 3.9 60.2± 0.4 22.5± 1.4

Non-max Sup 50.1± 6.0 25.1± 2.7 11.2± 1.8

Weak Pixels 78.8± 2.5 28.9± 4.4 19.7± 1.0

Reload texture 86.6± 12.8 36.8± 4.3 5.2± 4.8

Snapdragon, GPU Adreno 205, memory 768 MB RAM,
camera 8 megapixel, video 720p at 30 fps.

• Google Nexus S, released December 2010, operating
system Android 2.3, CPU 1 GHz Samsung Hummingbird
S5PC110 ARM Cortex A8, GPU PowerVR SGX 540,
memory 512 MB RAM, camera 5 megapixel, video
800× 480 at 30 fps (not 720p).

The Android devices directly supported obtaining the video
preview in YUV format, and the Y component could be used
as input as a greyscale image without the requirement for
any preliminary processing. However, the iOS and Symbianˆ3
devices only supported obtaining the preview in RGB, so
they required an additional preliminary render pass to convert
the RGB image to greyscale. An additional point worth
mentioning for the iPhone is that any pending OpenGL ES
commands must be flushed before the application is put into
the background, otherwise the application gets terminated by
the operating system.

Table I lists the times in milliseconds for each of the render
passes for some of the devices. To obtain these times the
OpenGL ES glFinish command was used to flush any queued
rendering commands and wait until they have finished. Note
this removes the ability of the GPU to commence further com-
mands, so although useful for comparing the times required
for each render pass, their sum only gives an upper bound on
the total algorithm time. The two Gaussian smoothing render
passes were timed using a 3 × 3 convolution kernel. Using
instead a Gaussian 5 × 5 kernel was found to add between
an extra 3 ms (for iPhone 4 and Desire HD) and an extra 10
ms (Nexus One) to each of the two Gaussian render passes,
but did not have any visibly noticeable effect on the edge
detection results. The calculation of the gradient vector is the
most burdensome render pass, explained by the nine texture
reads it performs and relatively complex computation used
to classify its direction. This number of texture reads is also
performed in the weak pixels render pass, whereas the other
two render passes only require three texture reads. The table
also gives the time required to copy captured image data to the
texture, which is an important quantity for real-time processing
of images captured from the device camera, and dictated by
the GPU memory bandwidth. A 640×480 (VGA, non-power-
of-two) image was used, a common resolution available for
video preview on all the devices, although most supported
greater resolutions as well. No texture compression was used

TABLE II
FRAME RATES FOR IMAGE CAPTURE AND EDGE DETECTION (FPS)

Device CPU+Android Cam CPU+Native Cam GPU Shaders

Nexus One 7.5± 1.8 9.7± 0.7 3.9± 0.2

iPhone 4 n/a 7.4± 0.4 7.6± 0.0

Galaxy S 9.1± 0.5 14.8± 0.1 11.3± 0.2

Nokia N8 n/a n/a 14.5± 0.1

Desire HD 7.1± 1.3 10.7± 0.8 15.4± 0.2

Nexus S 8.2± 0.9 15.5± 0.8 8.9± 0.4

which would introduce conversion latency but assist texture
data to better fit on the memory bus and in a texture cache.

The results in Table II show the actual overall frame
rates that were achieved in practice on each device. As the
OpenGL ES glTexImage2D command used to update a texture
with new image data blocks until all the texture data has
been transferred, for efficiency the (non-blocking) render pass
commands were performed before glTexImage2D was called
to set the texture with a image capture for the next set of render
passes — this was found to help increase frame rates. To
provide some comparison with the CPU performance on each
device, an OpenCV version of Canny edge detection was also
timed (unlike the iOS build of OpenCV, the Android version
currently has an optimized platform-specific build available).
No specific Symbianˆ3 release of OpenCV was available
during testing. As the OpenCV edge detection relies on the
performance of the CPU, wherever practical any applications
running in the background on the device were stopped. On
the Android devices it was found that the burden on the
CPU associated with obtaining an image capture could be
significantly reduced by using a native camera capture API
rather than the default Android API, hence the two sets of
CPU results reported.

VI. DISCUSSION AND CONCLUSIONS

Perhaps the most interesting conclusion that can be drawn
from the results in Section V is the great variation in the
ability of different GPU in the mobile market for performing
image processing. The Nexus One with an Adreno 200 GPU
displayed quite poor performance, due to the time to transfer
texture data and its slower execution of shader code. However,
the Desire HD with the newer Adreno 205 GPU provided
surprisingly good results, receiving at least a 50% performance
benefit by offloading edge detection to the GPU rather than
CPU. Both these devices use Snapdragon CPU which were
seen to execute OpenCV code slower than their competing
Hummingbird CPU, found on the Galaxy S and Nexus S. For
these two devices the benefit of running the edge detection
on the GPU is less definitive, although doing so would free
up the CPU for other processor-intensive tasks that might be
required by an application. The GPU results for the N8 with its
Broadcom GPU were encouraging as its processor hardware
is common across Symbianˆ3 devices of the era, whereas the
GPU results for the iPhone 4 are not surprising, it uses an older
PowerVR SGX535 rather than the newer PowerVR SGX540

found in the Galaxy S and Nexus S. It should be reiterated
that the iPhone CPU results were taken using an OpenCV
build that was not optimized for that platform.

It is worthwhile to compare the frame rates with some
of the OpenGL ES rendering benchmarks that are available.
For instance, [23] reports comparative benchmark results for
Nexus One (819), iPhone 4 (1361), Galaxy S (2561), Desire
HD (2377), and Nexus S (2880). These results do depart
somewhat from the GPU fps results in Section V, indicating
differences between benchmarking GPU for typical graphics
rendering versus performing an image processing algorithm
such as Canny edge detection.

The general pattern in the GPU ability for image processing
appears to have reached a tipping point during the 2010 release
period of the investigated devices, with some devices clearly
being able to benefit from offloading processing to the GPU.
As GPU continue to rapidly evolve, with the release of Adreno
220 and PowerVR SGX543, along with new GPU such as
the Mali and the Tegra 2 for mobile devices available on
devices in 2011, this benefit is only continuing to increase.
For instance, modest performance improvements are observed
in the Sony Ericsson Xperia Arc, released in April 2011 with
same CPU and GPU as the Desire HD, with the CPU+Android
Camera tests achieving 10.0±1fps and GPU shaders achieving
17.5±0.1fps. More impressive are the results for the Samsung
Galaxy S2, first released in May 2011 with a 1.5 GHz
Snapdragon S3 CPU and Mali-400 GPU. Its CPU+Android
Camera tests achieved 14.2± 0.7fps, which were dwarfed by
the GPU shader results of 33.8± 3.6fps.

REFERENCES

[1] de Santos Siera, A., Casanova, J.G., Avila, C.S., and Vera, V.J., Silhouette-
based Hand Recognition on Mobile Devices, 43rd Annual International
Carnahan Conference on Security Technology, 2009, pp. 160–166.

[2] Karodia, R., Lee, S., Mehta, A., and Mbogho, A., CipherCode: A Visual
Tagging SDK with Encryption and Parameterisation IEEE Workshop on
Automatic Identification Advanced Technologies, 2007, pp. 186–191.

[3] Lee, J.A. and Kin Choong Yow, Image Recognition for Mobile Appli-
cations IEEE International Conference on Image Processing, 2007, pp.
177–180.

[4] Human Interface Technology Lab, “ARToolKit 2.65” 2011,
http://www.hitl.washington.edu/artoolkit/.

[5] Gu, J., Mukundan, R., and Billinghurst, M., Developing Mobile Phone AR
Applications Using J2ME IVCNZ 23rd International Conference Image
and Vision Computing New Zealand, 2008.

[6] Boring, S., Altendorfer, M., Broll, G., Hilliges, O., and Butz, A., Shoot
& Copy: Phonecam-based Information Transfer from Public Displays
onto Mobile Phones Mobility ’07 Proceedings of the 4th International
Conference on Mobile Technology, Applications, and Systems, 2007, pp.
24–31.

[7] Boring, S., Baur, D., Butz, A., Gustafson, S., and Baudisch, P., Touch
Projector: Mobile Interaction through Video CHI ’10: Proceedings of the
28th International Conference on Human Factors in Computing Systems,
2010, pp. 2287–2296.

[8] Reitmayr, G. and Drummond, T., Going out: Robust Model-based Track-
ing for Outdoor Augmented Reality ISMAR ’06 Proceedings of the 5th
IEEE and ACM International Symposium on Mixed and Augmented
Reality, 2006, pp. 109–118.

[9] Bruns, E. and Bimber, O., Adaptive Training of Video Sets for Image
Recognition on Mobile Phones Journal of Personal and Ubiquitous
Computing, Volume 13 Issue 2, 2009, pp. 165–178.

[10] Bay, H., Ess, A., Tuytelaars, T., Gool, L, SURF: Speeded Up Robust
Features Computer Vision and Image Understanding, Vol. 110, No. 3,
2008, pp. 346–359.

[11] Takacs, G et.al., Outdoors Augmented Reality on Mobile Phone using
Loxel-based Visual Feature Organization MIR ’08 Proceeding of the 1st
ACM International Conference on Multimedia Information Retrieval ,
2008, pp. 427–434.

[12] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D,
Pose Tracking from Natural Features on Mobile Phones 7th IEEE/ACM
International Symposium on Mixed and Augmented Reality, 2008, pp.
125–134.

[13] Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Real-Time
Detection and Tracking for Augmented Reality on Mobile Phones IEEE
Transactions on Visualization and Computer Graphics, Volume 16, Issue
3, 2010, pp. 355–368.

[14] Schmalstieg, D. and Wagner, D., Experiences with Handheld Augmented
Reality ISMAR ’07 Proceedings of the 2007 6th IEEE and ACM
International Symposium on Mixed and Augmented Reality, 2007.

[15] Metaio Inc, “Junaio 3.0” 2011, http://www.junaio.com/.
[16] Google Inc, “Google Goggles 1.6” 2011,

http://www.google.com/mobile/goggles/.
[17] Willow Garage, “OpenCV 2.3.1” 2011,

http://opencv.willowgarage.com/.
[18] Fung, J. and Mann, S., OpenVIDIA: Parallel GPU Computer Vision

MULTIMEDIA ’05 Proceedings of the 13th Annual ACM International
Conference on Multimedia, 2005, pp. 849–852.

[19] Allusse, Y, Horain, P., Agarwal, A., Saipriyadarshan, C., GpuCV: An
Open Source GPU-accelerated Framework For Image Processing and
Computer Vision MM ’08 Proceeding of the 16th ACM International
Conference on Multimedia, 2008, pp. 1089–1092.

[20] Junchul, K., Eunsoo, P., Xuenan, C., Hakil, K., Gruver, W., A Fast
Feature Extraction in Object Recognition using Parallel Processing on
CPU and GPU IEEE International Conference on Systems, Man and
Cybernetics, 2009, pp. 3842–3847.

[21] Kwang-Ting, C. and Yi-Chu, W. Using Mobile GPU for General-
Purpose Computing A Case Study of Face Recognition on Smartphones
International Symposium on VLSI Design, Automation and Test (VLSI-
DAT), 2011, pp. 1–4.

[22] Singhal, N., Park, I., Cho, S. Implementation and Optimization of Image
Processing Algorithms on Handheld GPU IEEE International Conference
on Image Processing (ICIP), 2010, pp. 4481–4484.

[23] Kishonti Informations Ltd, “GLBenchmark 2.1 Egypt”, 2011,
http://www.glbenchmark.com/.

[24] Canny, J., A Computational Approach To Edge Detection IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 1986, pp. 679–698.

[25] Ogawa, K., Ito, Y., Nakano, K., Efficient Canny Edge Detection Using
a GPU First International Conference on Networking and Computing
(ICNC), 2010, pp. 279–280.

