77,013 research outputs found

    Intuitive haptic control surface for mobile robot motion control

    Full text link
    Haptic human-machine interfaces and similar techniques to enhancing human-robotic interaction offer significant potential over conventional approaches. This work considers achieving intuitive motion control of a tracked mobile robotic platform utilising a 3D virtual haptic cone. The 3D haptic cone extends upon existing approaches by introducing of a third dimension to the haptic control surface. It is suggested that this approach improves upon existing methods by providing the human operator with an intuitive method for issuing vehicle motion commands whilst still facilitating simultaneous real-time haptic augmentation regarding the task at hand. The presented approach is considered in the context of mobile robotic teleoperation however offers potential across many applications. Using the 2D haptic control surface as a benchmark, preliminary evaluation of the 3D haptic cone approach demonstrates a significant improvement in the ability to command the robot to cease motion.<br /

    Vision-based real-time position control of a semi-automated system for robot-assisted joint fracture surgery

    Get PDF
    Purpose: Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. Methods: The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model.Results: The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09mm (translations) and of (Formula presented.) (rotations), maximum observed errors in the order of 0.12mm (translations) and of (Formula presented.) (rotations), and a reduction repeatability of 0.02mm and (Formula presented.). Conclusions: The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality

    Utilizing Reinforcement Learning and Computer Vision in a Pick-And-Place Operation for Sorting Objects in Motion

    Get PDF
    This master's thesis studies the implementation of advanced machine learning (ML) techniques in industrial automation systems, focusing on applying machine learning to enable and evolve autonomous sorting capabilities in robotic manipulators. In particular, Inverse Kinematics (IK) and Reinforcement Learning (RL) are investigated as methods for controlling a UR10e robotic arm for pick-and-place of moving objects on a conveyor belt within a small-scale sorting facility. A camera-based computer vision system applying YOLOv8 is used for real-time object detection and instance segmentation. Perception data is utilized to ascertain optimal grip points, specifically through an implemented algorithm that outputs optimal grip position, angle, and width. As the implemented system includes testing and evaluation on a physical system, the intricacies of hardware control, specifically the reverse engineering of an OnRobot RG6 gripper is elaborated as part of this study. The system is implemented on the Robotic Operating System (ROS), and its design is in particular driven by high modularity and scalability in mind. The camera-based vision system serves as the primary input, while the robot control is the output. The implemented system design allows for the evaluation of motion control employing both IK and RL. Computation of IK is conducted via MoveIt2, while the RL model is trained and computed in NVIDIA Isaac Sim. The high-level control of the robotic manipulator was accomplished with use of Proximal Policy Optimization (PPO). The main result of the research is a novel reward function for the pick-and-place operation that takes into account distance and orientation from the target object. In addition, the provided system administers task control by independently initializing pick-and-place operation phases for each environment. The findings demonstrate that PPO was able to significantly enhance the velocity, accuracy, and adaptability of industrial automation. Our research shows that accurate control of the robot arm can be reached by training the PPO Model purely by applying a digital twin simulation

    In-home and remote use of robotic body surrogates by people with profound motor deficits

    Get PDF
    By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms. We then conducted two studies to investigate the use of robotic body surrogates. In the first study, 15 novice users with profound motor deficits from across the United States controlled a PR2 in Atlanta, GA to perform a modified Action Research Arm Test (ARAT) and a simulated self-care task. Participants achieved clinically meaningful improvements on the ARAT and 12 of 15 participants (80%) successfully completed the simulated self-care task. Participants agreed that the robotic system was easy to use, was useful, and would provide a meaningful improvement in their lives. In the second study, one expert user with profound motor deficits had free use of a PR2 in his home for seven days. He performed a variety of self-care and household tasks, and also used the robot in novel ways. Taking both studies together, our results suggest that people with profound motor deficits can improve their quality of life using robotic body surrogates, and that they can gain benefit with only low-level robot autonomy and without invasive interfaces. However, methods to reduce the rate of errors and increase operational speed merit further investigation.Comment: 43 Pages, 13 Figure

    Bayesian Optimization for Learning Gaits under Uncertainty

    No full text
    © 2015, Springer International Publishing Switzerland.Designing gaits and corresponding control policies is a key challenge in robot locomotion. Even with a viable controller parametrization, finding near-optimal parameters can be daunting. Typically, this kind of parameter optimization requires specific expert knowledge and extensive robot experiments. Automatic black-box gait optimization methods greatly reduce the need for human expertise and time-consuming design processes. Many different approaches for automatic gait optimization have been suggested to date. However, no extensive comparison among them has yet been performed. In this article, we thoroughly discuss multiple automatic optimization methods in the context of gait optimization. We extensively evaluate Bayesian optimization, a model-based approach to black-box optimization under uncertainty, on both simulated problems and real robots. This evaluation demonstrates that Bayesian optimization is particularly suited for robotic applications, where it is crucial to find a good set of gait parameters in a small number of experiments
    • …
    corecore