10,187 research outputs found

    A Marine Radar Wind Sensor

    Get PDF
    A new method for retrieving the wind vector from radar-image sequences is presented. This method, called WiRAR, uses a marine X-band radar to analyze the backscatter of the ocean surface in space and time with respect to surface winds. Wind direction is found using wind-induced streaks, which are very well aligned with the mean surface wind direction and have a typical spacing above 50 m. Wind speeds are derived using a neural network by parameterizing the relationship between the wind vector and the normalized radar cross section (NRCS). To improve performance, it is also considered how the NRCS depends on sea state and atmospheric parameters such as air–sea temperature and humidity. Since the signal-to-noise ratio in the radar sequences is directly related to the significant wave height, this ratio is used to obtain sea state parameters. All radar datasets were acquired in the German Bight of the North Sea from the research platform FINO-I, which provides environmental data such as wind measurements at different heights, sea state, air–sea temperatures, humidity, and other meteorological and oceanographic parameters. The radar-image sequences were recorded by a marine X-band radar installed aboard FINO-I, which operates at grazing incidence and horizontal polarization in transmit and receive. For validation WiRAR is applied to the radar data and compared to the in situ wind measurements from FINO-I. The comparison of wind directions resulted in a correlation coefficient of 0.99 with a standard deviation of 12.8°, and that of wind speeds resulted in a correlation coefficient of 0.99 with a standard deviation of 0.41 m s^−1. In contrast to traditional offshore wind sensors, the retrieval of the wind vector from the NRCS of the ocean surface makes the system independent of the sensors’ motion and installation height as well as the effects due to platform-induced turbulence

    The International Workshop on Wave Hindcasting and Forecasting and the Coastal Hazards Symposium

    Full text link
    Following the 13th International Workshop on Wave Hindcasting and Forecasting and 4th Coastal Hazards Symposium in October 2013 in Banff, Canada, a topical collection has appeared in recent issues of Ocean Dynamics. Here we give a brief overview of the history of the conference since its inception in 1986 and of the progress made in the fields of wind-generated ocean waves and the modelling of coastal hazards before we summarize the main results of the papers that have appeared in the topical collection

    Characterizing Evaporation Ducts Within the Marine Atmospheric Boundary Layer Using Artificial Neural Networks

    Full text link
    We apply a multilayer perceptron machine learning (ML) regression approach to infer electromagnetic (EM) duct heights within the marine atmospheric boundary layer (MABL) using sparsely sampled EM propagation data obtained within a bistatic context. This paper explains the rationale behind the selection of the ML network architecture, along with other model hyperparameters, in an effort to demystify the process of arriving at a useful ML model. The resulting speed of our ML predictions of EM duct heights, using sparse data measurements within MABL, indicates the suitability of the proposed method for real-time applications.Comment: 13 pages, 7 figure

    Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere

    Get PDF
    The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options

    Gaussian Process Regression for Estimating EM Ducting Within the Marine Atmospheric Boundary Layer

    Full text link
    We show that Gaussian process regression (GPR) can be used to infer the electromagnetic (EM) duct height within the marine atmospheric boundary layer (MABL) from sparsely sampled propagation factors within the context of bistatic radars. We use GPR to calculate the posterior predictive distribution on the labels (i.e. duct height) from both noise-free and noise-contaminated array of propagation factors. For duct height inference from noise-contaminated propagation factors, we compare a naive approach, utilizing one random sample from the input distribution (i.e. disregarding the input noise), with an inverse-variance weighted approach, utilizing a few random samples to estimate the true predictive distribution. The resulting posterior predictive distributions from these two approaches are compared to a "ground truth" distribution, which is approximated using a large number of Monte-Carlo samples. The ability of GPR to yield accurate and fast duct height predictions using a few training examples indicates the suitability of the proposed method for real-time applications.Comment: 15 pages, 6 figure

    Analysis of Sea Surface Features by Using X-Band Radar Data Sets

    Get PDF
    En este trabajo se recoge el estudio de algunos de los fenómenos que ocurren en el océano debido al oleaje mediante técnicas de teledetección en el rango de las microondas. Estos fenómenos están relacionados con los diferentes mecanismos de formación de la imagen radar en banda X y en condiciones de incidencia tangente. Dichos mecanismos permiten detectar fenómenos en dichas imágenes radar (conocidas como “clutter” marino para propósitos de navegación), como son la relación de dispersión del oleaje, sus armónicos superiores y la contribución espectral conocida en la literatura científica como “group line”. Para el estudio de estos fenómenos se emplean los espectros de las imágenes proporcionadas por diferentes estaciones que utilizan tecnología basadas en radar de navegación en banda X. Los sistemas radar proporcionan una secuencia de imágenes en el dominio del tiempo que, gracias a la descomposición tridimensional de Fourier, permite obtener dichos espectros correspondientes de la secuencia de imágenes radar para su posterior análisis. Así, el espectro de la secuencia de imágenes de radar marino proporciona información sobre la distribución de la energía del oleaje, haciendo visible todos los fenómenos relacionados con el oleaje, el viento local, etc. El estudio del “clutter”, o del ruido de fondo del espectro, también es importante ya que permite la estimación de la altura significativa de las olas. En este trabajo se recoge un estudio detallado de la detección del “group line” y de la relación de dispersión del oleaje en función de la dirección de los diferentes ángulos de azimut que barren la imagen del radar, así como para diferentes alcances a partir de la ubicación del radar, además, de un estudio de la relación señal ruido considerando los fenómenos anteriores, así como de la máscara de iluminación de la superficie del mar, debida al efecto de ensombrecimiento de la antena radar, que también contiene las principales contribuciones del espectro de la imagen. A partir del análisis de las diferentes contribuciones del espectro de la imagen radar, y utilizando diversas técnicas de inteligencia artificial, se desarrollan algoritmos que mejoran la estima de parámetros oceanográficos, como la altura significativa del oleaje y las corrientes superficiales

    Phase-resolved ocean wave forecast with simultaneous current estimation through data assimilation

    Full text link
    In Wang & Pan (J. Fluid Mech., vol. 918, A19, 2021), the authors developed the first ensemble-based data assimilation (DA) capability for the reconstruction and forecast of ocean surface waves, namely the EnKF-HOS method coupling an ensemble Kalman filter (EnKF) and the high-order spectral (HOS) method. In this work, we continue to enrich the method by allowing it to simultaneously estimate the ocean current field, which is in general not known a priori and can (slowly) vary in both space and time. To achieve this goal, we incorporate the effect of ocean current (as unknown parameters) on waves to build the HOS-C method as the forward prediction model, and obtain a simultaneous estimation of (current) parameters and (wave) states via an iterative EnKF (IEnKF) method that is necessary to handle the complexity in this DA problem. The new algorithm, named IEnKF-HOS-C method, is first tested in synthetic problems with various forms (steady/unsteady, uniform/non-uniform) of current. It is shown that the IEnKF-HOS-C method is able to not only estimate the current field accurately, but also boost the prediction accuracy of the wave field (even) relative to the state-of-the-art EnKF-HOS method. Finally, using real data from a shipborne radar, we show that the IEnKF-HOS-C method successfully recovers the current speed that matches the in situ measurement by a floating buoy
    corecore