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Abstract

In this work some phenomena that happen in the ocean, which are caused by wind-generated
waves, are studied by using microwave remote sensing techniques. These phenomena are related
to the processes responsible of the radar imaging effects in X-band at grazing incidence conditions
responsible of the formation of the radar images, commonly known for navigation purposes as sea
clutter. Those imaging mechanisms permit to detect phenomena such as the dispersion relation
of the waves, its higher harmonics or the so-called group line. The study of all these phenomena
it is carried out from the analysis of the spectrum of the X-band marine radar images, provided
by measuring stations based on X-band marine radar technology. These radar systems supply
temporal sequences of marine images. Hence, after a three-dimensional spatio-temporal Fourier
decomposition, the spectra of the time series of radar images is derived and analysed. The
spectrum of the X-band marine radar images provides information about the distribution of the
wave energy, and it is possible to see all the phenomena related to waves, local wind, etc. The
study of the clutter, or the background noise of the spectrum, is important as well because it is
very useful to estimate the significant wave height.

A detailed study related to the detection of the group line and the dispersion relation
dependent on the different azimuths that sweep the radar image and different ranges from the
location of the radar is presented in this work. Besides a Signal to Noise Ratio study is collected
considering the phenomena commented before and the illumination mask, due to the shadowing
effect of the radar antenna, of the free sea surface because it includes the main contributions of
image spectrum energy.





Resumen

En este trabajo se recoge el estudio de algunos de los fenómenos que ocurren en el
océano debido al oleaje mediante técnicas de teledetección en el rango de las microondas.
Estos fenómenos están relacionados con los diferentes mecanismos de formación de la imagen
radar en banda X y en condiciones de incidencia tangente. Dichos mecanismos permiten
detectar fenómenos en dichas imágenes radar (conocidas como clutter marino para propósitos
de navegación), como son la relación de dispersión del oleaje, sus armónicos superiores y la
contribución espectral conocida en la literatura científica como group line. Para el estudio
de estos fenómenos se emplean los espectros de las imágenes proporcionadas por diferentes
estaciones que utilizan tecnología basadas en radar de navegación en banda X. Los sistemas
radar proporcionan una secuencia de imágenes en el dominio del tiempo que, gracias a la
descomposición tridimensional de Fourier, permite obtener dichos espectros correspondientes
de la secuencia de imágenes radar para su posterior análisis. Así, el espectro de la secuencia de
imágenes de radar marino proporciona información sobre la distribución de la energía del oleaje,
haciendo visible todos los fenómenos relacionados con el oleaje, el viento local, etc. El estudio del
clutter, o del ruido de fondo del espectro, también es importante ya que permite la estimación
de la altura significativa de las olas.

En este trabajo se recoge un estudio detallado de la detección del group line y de la relación
de dispersión del oleaje en función de la dirección de los diferentes ángulos de azimut que barren
la imagen del radar, así como para diferentes alcances a partir de la ubicación del radar, además,
de un estudio de la relación señal-ruido considerando los fenómenos anteriores, así como de la
máscara de iluminación de la superficie del mar, debida al efecto de ensombrecimiento de la
antena radar, que también contiene las principales contribuciones del espectro de la imagen.
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Chapter 1

Introduction

The study of ocean waves is very complicated because of the sea state can vary significantly,
but it is very important because it is widely used for the design of marine structures, such as
oil platforms, breakwaters, off-shore platforms, ships, etc. Furthermore, waves and currents are
some of the most important phenomena to distribute the temperature of the ocean, modifications
of the coastline, the quality of the water and sea life, etc.

The ordinary X-band marine radar is a device that scan the free sea surface at grazing
incidence with HH-polarization. The marine radar images are due to the interaction of the
electromagnetic waves emitted by the radar with the sea surface ripples caused by the local
wind. The images of the sea surface and the measurements of the ocean waves parameters are
based on the analysis in spatial and temporal domain of the sea surface. The main benefit of
marine radars is that it can be used as remote sensing system for oceanographic purpose. The
most of the marine radars have installed the Wave Monitoring System WaMoS II to monitor
the real time measurements of directional ocean wave spectra. They are able to monitor the
sea surface in both time and space allowing the determination of unambiguous directional wave
spectra.

The X-band marine radar images have to be handled to work easily. Therefore, a three-
dimensional Fourier Transform is applied in the images getting the spectrum of the radar image
of the sea surface. In the spectrum it is possible to see the distribution of the energy of the sea.
There are some characteristic phenomena, or energy distributions, in the spectrum related to
waves. The main energy is located in the dispersion relation caused by waves. The dispersion
shell relates the dependency between the angular frequency and the wave number describing the
shape of the wave propagation. With the dispersion shell it is possible to study the behaviour
of the ocean waves, as well as the wind speed and direction.

Then the rest of the energy is distributed in other structures visible as ocean wave features
in the spectrum, such as the subharmonic group line and the higher harmonics of the dispersion
relation. The group line is the combination of nonlinear phenomena existing in the surface of
the ocean, such as the wind, the effects produced by the waves breaking, etc. The group line
study is not easy because of the closeness with the dispersion shell. This makes the isolation of
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2 Chapter 1. Introduction

the group line difficult. Moreover the size and the intensity of the group line is modified by the
intensity of the wind, the wave direction and the range in the radar image. The rest of the low
energy is distributed in the background spectral noise. This background spectral noise is useful
to estimate the significant wave height, because the accuracy of the estimation of additional sea
state parameters as the significant wave height.

The data employed in this work come from two different stations. The first station is FINO
1, located in the North Sea, near the German island of Borkum. The second station is Hörnum,
which is located in the German island of Sylt. In addition, simulation techniques of radar images
based in the stochastic theory of ocean waves have been employed. In this case, radar imagery
have been obtained from simulated wave fields that hold a given theoretical meteorological
situation. Simulation techniques provide realistic synthetic sea clutter images and they have
shown that the main sea surface modulation mechanisms for grazing incident and horizontal
polarization is the shadowing and the tilt modulation. Illumination mask of the free sea surface
is as well obtained and its spectrum includes the most important phenomena related to waves,
such as dispersion relation and the subharmonics.

This Thesis is divided in nine chapters which are grouped in two blocks. The first block is
a theoretical background related to the stochastic description of the ocean waves and sea states
in chapter 2, and radar theory and the processes followed in X-band marine radar images in
chapter 3. The second block is the work carried out in this Thesis related to the analysis of the
sea surface from X-band marine radar images. The chapter 4 presents the dispersion relation
detection according to the range and azimuth of the marine radar. Another characteristic feature
of the sea is the known as group line, which is going to be presented in chapter 5. The Signal
to Noise Ratio according to the azimuth and range of the marine radar is collected in chapter
6. In chapter 7 the used data will come from the Hörnum station and the main features as the
dispersion relation, the group line and SNR will be studied. In chapter 8 a comparison of the
simulation of wave fields and real marine radar data is presented. The sea surface current detected
by different devices is collected in chapter 9. The last chapter summarises the conclusions of this
work.
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Theoretical Background
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Chapter 2

Stochastic Description of Ocean Waves

2.1 Wind-generated waves

Ocean waves play an important role in the energy transference mechanisms between the
Atmosphere and the Ocean. Furthermore, ocean waves can be a dangerous hazard for human
activities, such as navigation, on- and off-shore platforms maintenance, coastal and oceanic
management and engineering, etc. At present, a proper characterisation of the properties of
ocean wave fields is an important issue still under research.

The Ocean is a complex dynamical system that presents different kind oceanic oscillations
(e.g. tides, internal waves, planetary waves, etc.). One of these oceanic oscillations are the so-
called wind-generated waves. The general idea about wind-generated waves, or more commonly
known as ocean waves, is the effect produced by the wind blowing over the free sea surface. Wind-
generated waves transmit energy instead of mass [2]. Ocean waves consume a small amount of
their energy in their movement but mainly when they are closed to the coast, where ocean
waves break releasing the potential and kinetic energy, because of the shallow water conditions.
However, other ocean oscillations are caused by water mass transmission, such as tsunamis, which
are due to seismic movements with vertical component, or pushing heavy material stuff against
the water. An overview of the physical oscillation phenomena on the sea can be seen in the figure
2.1.

When the ocean waves correspond to the same area where the wind is blowing, the wave
field is known as wind sea. Once those waves propagate to different geographical locations,
far away from the storm that generated the wind sea, the wave field is known in the scientific
literature as swell. Commonly wind sea waves present a large spreading in the wave propagation
directions than swell. In addition, those wave fields corresponding to swell cases are usually
composed of larger wave lengths and wave periods than the wind sea cases. In general, it is
common in the ocean to measure wave fields composed of two or more individual wave systems
(i.e. superposition of different swell and wind sea cases). Those mixed wave fields are known in
the scientific literature as multimodal wave fields, in contrast of those wave fields formed by a
unique wave system (swell or wind sea), which are known as unimodal wave fields.
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Figure 2.1: Scheme showing the relative energy of different oceanic oscillations (adapted from
Pond and Pickard, 1983 [1]).

For practical applications, and mainly offshore and deep areas, it is usually considered that
those ocean wave fields (e.g wind sea and swell) can be described using a linear approach for
the solutions of the hydrodynamic equations that describe the oscillation of the free sea surface
forced by the wind. This linear description is as well applicable in practice for moderate water
depth conditions. However, it is not possible to assume this statement close to the coast, where
nonlinear effects take an important role in the wave dynamics due to the effects of the bottom
topography [3]. The description of the surface of a single wave affected by the wind seems
chaotic and irregular in time and space. Therefore, additionally of the hydrodynamic description
of the wave oscillation movements, the stochastic theory is as well applied. Then, ocean waves
are described from the concept of sea state. A sea sate is a wave field that presents constant
statistical properties for a time interval (typically about one hour) and for a given oceanic area
(few squared kilometres for deep waters). Therefore, a sea state can be regarded as a stochastic
process stationary in time and homogeneous in space [4]. The following sections deal with and
overview of the hydrodynamic wave theory in combination with stochastic approach applied to
linear wave fields.

2.2 Theoretical description of linear ocean waves

Under the frame of the linear theory (see appendix A), the solution of the vertical wave
displacement η over the mean sea level is given by the equation z = η(r, t), where r = (x, y) is
the sea surface location and t denotes the time. A monochromatic solution for η(r, t) is given by

η(r, t) = a cos (k · r− ωt+ ϕ) =
a

2
e j(k·r−ωt+ϕ) + c.c. (2.1)
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where a is the amplitude, k = (kx, ky) is the wave number vector, ω is the angular frequency,
and ϕ is the phase. The expression c.c. stands for the complex conjugate, being j =

√
−1. Often

the phase ϕ is combined with the amplitude a in the so-called complex amplitude c = a e jϕ/2.
Taking into account the linear wave approach, a more general solution of the wave elevation is
regarded as the superposition of different monochromatic wave components

η(r, t) =
∑
n

cne j(kn·r−ωnt) + c.c. (2.2)

where each monochromatic component is labeled with the index n. In principle, equation (2.2)
does not consider that the monochromatic components n = 1, 2, . . . are harmonics. Figure 2.2
shows and scheme of the linear superposition of individual monochromatic waves to reconstruct
the sea surface elevation η.

+ 
…

 =
+

+
+

+
+

xy

Figure 2.2: Reconstruction of the sea surface elevation η(r) at a given time t from the
superposition of different monochromatic wave components. Adapted from [5].
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2.2.1 Dispersion relation

The spatial evolution of ocean waves is related to the temporal evolution through the so-called
dispersion relation. Thus, under the frame of the linear wave theory, ocean waves are dispersive
and the dispersion relation, ω = $(k), is given by [6]

ω = $(k) =
√
gk tanh(kd) + k ·U (2.3)

where k = |k|, g is the acceleration of the gravity, d is the water depth and U = (Ux, Uy) is the
so-called current of encounter that can be due to a geophysical currents (e.g. tides, etc.) or due
to a relative motion between the wave field and the observer (e.g. the sensor) [7]. In equation
(2.3), the surface tension of water are neglected because the typical wavelengths of ocean waves
are bigger enough, covering the range from some meters until several hundred meters. For deep
water (kd→∞⇒ tanh(kd) = 1) the dispersion relation can be simplified as:

ω = $(k) =
√
gk + k ·U (2.4)

It can be seen in equation (2.3) that the relationship between ω and k is not linear. Therefore,
ocean waves are dispersive, having different values of the phase vp = ω/k and group velocity
vg = dω/dk for each monochromatic wave component. In addition, vp 6= vg.

2.2.1.1 Dispersion shell

The dispersion relation (2.3) forms a manifold in the (k, ω)-space, which is commonly known as
dispersion shell [8]. The dispersion shell can be presented as the equation (2.3):

ω = $(k) =
√
gk tanh(kd) + k ·U

As there is an important connection between the angular frequency ω and the wave number
k, it is necessary to know the effect on the dispersion relation when the current of encounter
U = (Ux, Uy) or the depth d change.

• Effect of the current of encounter

Taking into account a constant depth, if the current is considered as U = 0, the function
of the dispersion $(k) depends only on the modulus of the wave number. If the wave
number increases, the dispersion relation $(k) increases as well. Therefore, for a plane of
ω = constant, the level curves depending on (kx, ky) are be concentric circumferences and
the radius of the circumference increases when ω increases. The figure 2.3 presents the
thee-dimensional dispersion shell ω = $(k) when the current is absent.

However, the figure 2.4 shows the current effect in the three-dimensional dispersion
shell ω = $(k) when the current of encounter is presented and its value is equal to
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Figure 2.3: Dispersion shell ω = $(k) with lack of current of encounter.
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Figure 2.4: Dispersion shell ω = $(k) for a current of encounter U = (6, 0) m s−1.

U = (6, 0) m s−1. In this case, the angular frequency increases only when the term k·U > 0.
Whereas if the term k ·U < 0, the function of ω decreases in the another direction. Thus,
if the current U increases, the semi-plane corresponding to k ·U > 0 goes to the origin.
Nevertheless the other semi-plane moves away from the origin. When kx < 0 and there
is a current U 6= 0, the curves decrease quickly, even changing the sign in its derivative
and giving two possible solutions for kx < 0 for the same ω. The second kx solution is far
away from the origin and useless for the ocean waves study. This effect with the current is
represented in the figure 2.6.
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Figure 2.5: Dispersion shell transect ω = $(kx, 0) for different values of depth, being the current
of encounter U = (3, 0) m s−1.

• Depth effect

The dependency of the dispersion function ω = $(k) with depth is not so strong in
comparison with the effects of the current U. Figure 2.5 displays the relation between the
dispersion shell and the water depth d. The reason for this weak dependency is due to the
tanh(kd), because it approaches quickly to 1 as the product of kd is high enough.

2.3 Stochastic description of sea states

The real ocean waves are a complex chaotic physical phenomenon. Hence, the hydrodynamic
theory (see appendix A) that derived the superposition given by (2.2) is a limited model to
described the spatio-temporal properties of the sea surface elevation η. Therefore, it is necessary
to add additional theoretical assumptions that permit a better description of the wave elevation
of the free sea surface. Hence, assuming valid the frame of the linear wave theory, the theory of
stochastic processes is taking into account as well. Under these considerations, the wave elevation
η(r, t) is regarded as a stochastic process, which is a solution of the linearized wave hydrodynamic
equations. From this stochastic approach the above mentioned concept of sea state arises. A
sea state is defined as a wave field which is statistically stationary in time and homogeneous in
space [4].
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2.3.1 Spectral representation of sea states

Assuming the concept of sea state through the stochastic approach, to describe wave fields η(r, t)

may be expressed by the following spectral representation [9]

η(r, t) =

∫
Ωk,ω

e j(k·r−ωt) dZ(k, ω), (2.5)

where each spectral monochromatic wave component is identified by its wave number k and
angular frequency ω. The integration in equation (2.5) is defined in terms of a Riemann-
Stieltjes integral [10], dZ(k, ω) is known as spectral random measure, and it plays a similar
role than the complex amplitude cn in the expression (2.2). As η(r, t) is a real-valued process,
dZ(k, ω) = dZ∗(−k,−ω), where the upper index ∗ indicates the complex conjugate. dZ(k, ω)

is a zero-mean complex Gaussian process, which are statistically uncorrelated for different wave
components (k, ω) [9]:

E[dZ(k, ω)] = 0 ∀ (k, ω) (2.6)

E[dZ(k, ω) dZ∗(k′, ω′)] = 0 (k, ω) 6= (k′, ω′) (2.7)

where E is the expectation operator. The integration domain Ωk,ω in equation (2.5) is defined
from the admissible range of wave numbers k and angular frequencies ω corresponding to ocean
waves (i.e. wavelengths from 1 m to 300 m and wave periods from 0.5 s to less than 20 s
approximately). In practice, the domain Ωk,ω is commonly limited by the spatio-temporal
resolution of the measuring sensor. Hence Ωk,ω is regarded as the Cartesian product

Ωk,ω = Ωk × Ωω (2.8)

being
Ωk = [−kxc , kxc)× [−kyc , kyc)

and
Ωω = [−ωc, ωc)× [ωc, ωc)

where kxc , kyc and ωc are the Nyquist limits for kx, ky and ω respectively.

Hence, taking into account the expression (2.5), the reconstruction of the sea surface
illustrated in figure 2.2 can be understood as a superposition of different stochastic spectral
components.

Assuming the model given by the equation (2.5), the wave elevation of the free sea surface
η respect to a reference level is Gaussian distributed with mean µη = 0 and standard deviation
ση. Hence, the probability density function of η is given by

p(η) =
1

σ2
η

√
2π

e
− η2

2σ2η (2.9)

This model is useful for symmetric ocean waves, in deep water. In shallow waters ocean waves
are asymmetrical (higher than deeper) and the Gaussian model (2.5) is not valid.
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2.3.2 Three-dimensional wave spectrum

From the equation (2.5) the three-dimensional (3D) power spectral density (or 3D wave spectrum)
is defined as [10]

F (3)(k, ω) d2k dω = E [dZ(k, ω)dZ∗(k, ω)] = E
[
|dZ(k, ω)|2

]
, (2.10)

where d2k ≡ dkxdky. As η is a real-valued stochastic process, the spectral density F (3) presents
an even dependence on the spectral variables (k, ω)

F (3)(k, ω) = F (3)(−k,−ω) (2.11)

The spectrum F (3)(k, ω) must hold the dispersion relation (2.3). Figure 2.6 illustrates the
2D transect of the location of the (k, ω) components of the wave field within the domain Ωk,ω.

Figure 2.6: Two-dimesional example showing the distribution of the spectral wave components
of the three-dimensional wave spectrum F (3)(k, ω) given by eq. (2.21) and the modifications due
to the existence of a current U. Adapted from [11].

The spectral density F (3)(k, ω) provides information about the amplitudes of the waves, but
not about the phase lag between each wave spectral component. This phase is usually considered
a random variable uniformly distributed in the interval [−π, π). In addition, the spectral density
F (3)(k, ω) describes the statistical and spectral properties of the stochastic process η(r, t) and it
derives the variance of the wave elevation of the free sea surface associate with the spectral set
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[kx, kx+dkx)×[ky, ky+dky)×[ω, ω+dω). Furthermore, F (3)(k, ω) is related to the meteorological
and dynamic condition of the wave field [6].

Considering the stochastic model described above in section 2.3 where the mean is equal to
0 and the standard deviation is the equation (2.9), it is possible to get the variance attending to
the spectral density F (3)(k, ω):

σ2
η =

∫
Ωk,ω

F (3)(k, ω) d2k dω (2.12)

Because of the mean µη = 0, the standard deviation ση is equivalent to the root mean squared
of the wave elevation of the sea state:

ηrms = ση =
√

E [η2(r, t)] (2.13)

2.3.3 Parameters obtained from the three-dimensional spectral density

The 3D spectral density F (3)(k, ω) is an important and useful magnitude. From F (3)(k, ω) other
useful spectral parameters can be obtained, such as

• Spectral moments mn:
They inform about the ocean waves characteristics [6]. The spectral moment of order nth,
mn, is defined as

mn =
1

(2π)n

∫
Ωk,ω

ωnF (3)(k, ω) d2k dω ; n = 0,±1,±2, . . . (2.14)

For practical applications, the most relevant spectral moments are m−1, m0, m1 and m2

[4]. I.e. the zeroth order moment m0 is used to estimate the significant wave height Hs,
which is an important parameter to characterise wave fields, as well as for design of marine
structures. Table 2.1 shows some of the wave heights and periods derived from the spectral
moments.

• The mean energy density per unit area of sea state parameter ξ is written as [6]:

ξ = ρwg

∫
Ωk,ω

F (3)(k, ω) d2k dω = ρwgm0 (2.15)

being ρw the sea water density.

• Mean moment per unit of area [6]:

M =

∫
Ωk,ω

F (3)(k, ω)
k

ω
d2k dω (2.16)

• Mean action per unit of area [6]:

A = ρωg

∫
Ωk,ω

F (3)(k, ω)

ω
d2k dω (2.17)
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• Mean constant of the movement: in general, from F (3)(k, ω) it is possible to construct a
dynamic constant of the movement IΓ as [6]

IΓ =

∫
Ωk,ω

F (3)(k, ω)Γ(k, ω) d2k dω (2.18)

where the function Γ(k, ω) can be a vector or a scalar magnitude.

Table 2.1: Wave heights and periods got from moments of the wave spectrum

Significant wave height HS = 4.004
√
m0

Mean wave height H̄ = 2.507
√
m0

Root-mean-squared wave height Hrms = 2.828
√
m0

Period of the energy Te = m−1/m0

Mean period (m01-estimator) Tm01 = m0/m1

Mean period (m02-estimator) Tm02 =
√
m0/m2

2.3.4 Alternative spectral representations

Based on three-dimensional spectral density F (3)(k, ω), various forms of spectral densities can
be obtained [12]. All of these must preserve the variance σ2

η (i.e. preserving the total volume of
the spectrum).

1. Frequency spectrum S(ω): It depends only on the angular frequency ω, which is associated
with the time dependence of sea state. It is useful to analyse the measurements of the
anchored buoys:

S(ω) =

∫
Ωk

F (3)(k, ω)d2k (2.19)

2. Directional spectrum: In this case, there is a directional vector associated to the spectra,
in Cartesian or Polar coordinates.

• Unambiguous wave number spectrum F (2)(k):
This spectral density function is obtained integrating three-dimensional spectral
density F (3)(k, ω) over the set of positive frequencies ω ≥ 0.

F (2)(k) = 2

∫ ωc

0
F (3)(k, ω) dω (2.20)

Under the assumption of linear wave theory and taking into account the dispersion
relation (see equation (2.3)), the three-dimensional wave spectrum can be written
from F (2)(k) as (see figure 2.6):

F (3)(k, ω) =
1

2

[
F (2)(k)δ(ω −$(k)) + F (2)(−k)δ(ω +$(−k))

]
(2.21)

Therefore, the spectral components are distributed in the Ωk,ω domain with the
dispersion shell defined by the dispersion relation ω = $(k).
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• Wave number spectrum in polar coordinates F̃ (2)(k, θ):
If it considers the Polar coordinates given by k and the propagation direction θ of
each wave component:

F̃ (2)(k, θ) = F (2)(k(k, θ))k (2.22)

where k is the Jacobian needed from the coordinate transform (kx, ky) 7→ (k, θ).
From F̃ (2)(k, θ) the one-dimensional wave number spectrum F (k) is derived by
integrating F̃ (2)(k, θ) over all the wave propagation directions θ:

F (k) =

∫ π

−π
F̃ (2)(k, θ) dθ (2.23)

• Directional spectral density E(2)(ω, θ):
If in the above expression the dispersion relation ω = $(k) is imposed, the directional
spectral density E(2)(ω, θ) is obtained as

E(2)(ω, θ) = F̃ (2)(k(ω), θ)
dk
dω

(2.24)

where dk/dω = v−1
g is the Jacobian needed for the transformation k 7→ ω. From the

equation (2.24), the scalar spectrum S(ω) can be got again by integrating over all
directions:

S(ω) =

∫ π

π
E(2)(ω, θ) dθ (2.25)

The E(2)(ω, θ) function can be factored as follow:

E(2) = S(ω)D(ω, θ) (2.26)

where D(ω, θ) is the so-called directional spreading function [4].

The figure 2.7 shows the different spectral measurements commented above.
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F (3)(k, ω)

S(ω) =
Ωk

F (3)(k, ω)d2k F (2)(k) = 2
ωc

0

F (3)(k, ω)d2k

F̃ (2)(k, θ) = F (2)(k(k, θ))k

E(2)(ω, θ) = F̃ (2)(k(ω), θ)
dk

dω

S(ω) =
π

−π

Ẽ(2)(ω, θ)dθ

Figure 2.7: Dependence among the different spectral densities defined from sea state. Adapted
from [12]



Chapter 3

Marine Radar Image Processing

The radar transmits electromagnetic signals towards the sea surface and the echoes are received
by the receiving antenna of the radar. The marine radar measures the roughness of the sea
surface and the roughness is related to the existence of wind in the sea state. The marine
radar images not only depend on wind, but there are more factors that affect the images such as
physico-chemical properties of the sea water [13]. Firstly, the radar theory and the main common
characteristics are going to be presented, to focus lately in the marine radar and in the processes
to manage the radar images.

3.1 Brief description of the pulsed radar theory

The term Radar is an acronym of English words Radio Detection And Ranging. Radar is an
electromagnetic system that can detect and locate moving or static objects. The radar is not
capable to distinguish well-defined features, like colour or shape, but however the radar can detect
targets, giving its position all the time, in adverse conditions such as rain, fog and snow. The first
use of the radar was in the Second World War to detect enemy airplanes. Nowadays it is used on
countless daily activities. The radar emits a certain type of electromagnetic wave, focused on a
very narrow beam. This electromagnetic wave is reflected in all directions by the target, but only
the echo signal sent back in the radar direction is important. For a pulsed radar, the transmitted
electromagnetic wave is usually a narrow rectangular pulse train. When the radar emits a pulse,
it must wait long enough time to receive the echo signal before emitting the next pulse. The
time between pulses is determined by the desired maximum range. The wave reflection changes
according to the electromagnetic wavelength λem and the shape and roughness of the target. If
the wavelength λem is smaller than the size of the target, the electromagnetic wave will bounce.
However, if the wavelength λem is bigger than the target, the electromagnetic wave will polarize.
Nevertheless, military planes use magnetic substances that absorb the electromagnetic radar
waves, reducing the reflection [13, 14].

The diagram shown in figure 3.1 shows the performance of a radar. Transmitter is the main
element of the radar. The synchronizer generates a series of narrow pulses with a particular

17
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Figure 3.1: Scheme of a radar system.

pulse repetition frequency, these pulses excite a modulator, which triggers the transmitter. This
modulated pulse travels along the transmission line to the antenna, which is radiated to space.
The mission of the duplexer is to protect the receiver from the damage caused by the high power
transmitter. Also it directs the returning echo to the receiver and not to the transmitter. Some
receivers have a first stage with a radio frequency amplifier (RF ). In the second stage is used
a mixer and an oscillator to convert the RF signal to an intermediate frequency signal (IF ).
The signal is filtered to be further amplified by a video amplifier, getting a suitable level for the
display unit.

3.1.1 Radar characteristics

The main characteristics of a common radar are:

• Range R: R is the distance between the object and the transmitter. It is calculated by
measuring the time τ that a pulse needs to reach the object and back to the receiver.
Therefore, the range is given by the expression:

R =
c τ

2
(3.1)

where c is the speed of light (c ≈ 3 · 108 m s−1). Thus, if the next pulse is emitted without
receiving the echo pulse corresponding to the previous pulse, there will be ambiguities in
the range measurement.
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• Maximum unambiguous distance: When the radar emits a pulse, the radar waits the echo
signal before the radar transmits the next pulse. If the pulse repetition frequency fPRF is
high, the echo signal could come back later than the next pulse emitted by the radar. The
echoes which arrive to the radar later than the next pulse are called Second-time-around
echoes. These echoes would be shorter and closer than the real measurement and they
could occasion several mistakes. The maximum unambiguous distance is the more distant
distance in which the echoes are second-time-around echoes, and this distance could be
written as:

Run =
c TPRF

2
=

c

2 fPRF
(3.2)

Where TPRF is the pulse repetition period and fPRF is the pulse repetition frequency.
Therefore, a good detection in short and far range simultaneously is difficult. To detect in
short range the pulse must be small and low power

• The emitted signal: It is usually a narrow rectangular pulse train. The mean power of the
rectangular pulse train is:

Pav =
τ Pt
TPRF

= Pt τ fPRF (3.3)

Where τ is the width of the pulse and Pt is the power emitted by the transmitter.

• Radar resolution: It provides the minimum distance between two targets for which is
possible seeing the two targets separately. There are two different resolutions:

– Range resolution: It is a radial resolution and is related to the width of the pulse τ
emitted by the radar. Therefore, there will be an error in range ∆R:

∆R =
c τ

2
(3.4)

If the width of the pulse τ is small, the range resolution will be better. But the
value of τ is restricted and it could not be very small because the received power will
decrease a lot.

– Azimuth resolution: It is a resolution tangential to the antenna rotation direction and
it is related to the horizontal width of the radar beam.

The main signals that take part in a radar system are:

• Signal: It is the desirable signal reflected by the target.

• Clutter: It is the unwanted echoes. Such echoes are typically returned from ground, sea,
rain, animals, atmospheric turbulence, and can cause serious performance issues with radar
systems.

• Noise: It is a non-desired electromagnetic signal that interferes in the receiver overlapping
to the signal. The noise is aleatory and it could come from environmental source or even
the electrical devices in the receiver.



20 Chapter 3. Marine Radar Image Processing

The electromagnetic waves broadcast by the radar antennas are in the microwave domain.
Table 3.1 collected the typical radar bands.

Table 3.1: Radar working band frequencies fem and wavelengths λem in the microwave domain.

Band Frequency fem [GHz] Wavelength λem [cm]
P-band 0.225 - 0.39 133 - 77
L-band 0.39 - 1.55 77 - 19
S-band 1.55 - 3.90 19 - 7.7
C-band 3.90 - 6.20 7.7 - 4.8
X-band 5.75 - 10.9 5.2 - 2.8
Ku-band 10.9 - 18.0 2.8 - 1.7
K-band 18.0 - 26.50 1.7 - 1.13
Ka-band 26.50 - 36.0 1.13 - 0.8
V-band 36.0 - 75.0 0.8 - 0.4
W-band 75.0 - 110.0 0.4 - 0.27

3.1.2 Radar equation

The radar equation relates the range R to the characteristic of the transmitter, the receiver,
the antenna, the target and the environment. This equation allows for understanding the main
factors that affect the efficiency of the radar. It is supposed that the antenna is an isotropic
antenna, emitting in all directions a uniform power Pt. The power density registered in a point
of distance R is:

℘ =
Pt

4πR2
(3.5)

The units of the power density are [W m−2]. But it is an ideal situation, because in real life
the antennas are not isotropic and they focus the energy in some directions to detect better the
targets. The gain of the antenna or the gain describes how well the antenna converts input power
into radio waves headed in a specified direction with respect to an isotropic one. Therefore, the
power density radiated using a directive antenna with gain G can be rewritten as:

℘ =
PtG

4πR2
(3.6)

The target blocks a part of the incident energy and reflects it in some directions. The Radar
Cross Section (RCS), denoted σ as well, assesses the power density which returns to the radar
depending on the incident power density on the target. Its unit is [m2]. However, the RCS is
not related to the physical size of the target, but the shape of the target. In theory, the received
signal from a target is constant in time, but in fact the echo is never constant. These variations
are due to the meteorological conditions, the antenna radiation diagram or changes in the RCS.
Therefore the power reflected by the target is:
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Ptarget = σ℘ = σ
PtG

4πR2
(3.7)

The power density reflected by the target in the receiver direction is:

℘r =
PtGσ

(4π)2R4
(3.8)

The receiving antenna is usually the same that the antenna used in broadcast. Due to
reciprocity, the gain of any antenna when receiving is equal to its gain when transmitting. The
receiving antenna takes a portion of the energy that reaches the receiving antenna. The antenna
aperture or effective area, Aeff , is a measure of how effective an antenna is at receiving the power
of radio waves. The effective area is the multiplication of the area of the antenna A and its
efficiency η, so Aeff = A · η. Therefore, the power received for the radar in watts [W] will be:

Pr = ℘r Aeff =
PtGσAeff

(4π)2R4
(3.9)

There is a maximum range where the targets can not be detected. This restricted distance is
represented by Rmax and at this point the power received by the radar from the echo Pr is equal
to the minimum signal detectable Smin by the radar or sensitivity, therefore:

Rmax =

[
PtGσAeff

(4π)2 Smin

] 1
4

(3.10)

The equations (3.9) and (3.10) are the main equations to characterise a radar. But there are
other possible ways to represent the maximum range if the gain of the antenna is considered like:

G =
4π Aeff

λ2
em

(3.11)

Where λem is the wavelength of the electromagnetic signal of frequency fem (i.e. λem = c/fem).
Therefore, the maximum range is expressed as:

Rmax =

[
PtG

2 σ λ2
em

(4π)3 Smin

] 1
4

(3.12)

Rmax =

[
PtA

2
eff σ

4π λ2
em Smin

] 1
4

(3.13)

3.2 The marine radar

Marine radars often work in X or S band. The X-band has a higher resolution and greater
sensitivity to the capillary waves caused by the wind. S-band is less effective than X because
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Figure 3.2: Example of temporal sequence of sea clutter images taken by FINO 1 platform.

S-band needs more local wind. This type of radar uses horizontal polarization, both in emission
and reception. Marine radars have an incoherent logarithmic amplifier and they lack frequency
agility. The main limitation of marine radar consists of the range, in the area in which the
wave height measurements are carried out, is less than other radars. The electromagnetic fields
generated in the sea surface are the sources that create the radar images on the display unit. In
case of studying the ocean free surface, the radar image provided by the display unit is the right
one. However, if the study is focus in particular targets, the energy coming from the sea surface
is considered as a sea clutter or even noise for other purposes like coastal surveillance, and the
intensity of the sea clutter is low. So the signal in which is going to be focused this work is in
this low power signal come from the sea surface.

The values of the image are coded in different grey levels, which depend on the specific
configuration that the radar has in a certain moment. Therefore, it cannot know absolute values
of parameters related to the return electromagnetic energy, such as backscatter.

In marine radar, the transmitter spins around with constant speed. The typical speed for
these transmitters is between 20 and 30 r.p.m. The rotation of the antenna is synchronised with
the display unit, therefore the relative direction of a particular target can be known. Most of
the marine radar systems incorporate a compass signal, which is useful to refer all the directions
with the geographic North.
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The marine radar needs roughness in the sea surface, because if sea is completely flat and
calm, the electromagnetic waves emitted by the radar will be reflected like a mirror without
echoes coming back the receiving antenna. The roughness is owing to the capillary waves, which
are produced by the local wind and the existence of sea foam [15]. But the roughness is altered by
other phenomena such as chemical substance in the water, currents, waves originating from wind
sea and whatever phenomenon that affects the grouping and the shape of the capillary waves. In
[15] it is commented that final radar images consider the energy scattered by the capillary waves
and the modulation of other anomalies developed on the sea surface, which will be presented in
3.3.

3.2.1 WaMoS II System

WaMoS II system (Wave Monitoring System) is a high-speed video digitalization and storage
device that can operate with any conventional navigation radar X-band. It is marketed by the
German company Ocean Waves GmbH to take measurements of the wave spectrum in real time.
Its main advantage lies in the continued availability of data with the sea rough, severe weather
and at night. It can also be installed in both ground stations and on ships.

Figure 3.3: Scheme of a WaMoS II installation.

The figure 3.3 shows the measuring system, that consists of a conventional navigation radar, a
high-speed video digitizer, and a standard computer. The analogue radar video signal is read out
and digitised into a scale 256 grey levels. This information is transferred and stored on a computer
where the wave analysis software carries out the computation of the sea state parameters in real
time. The system uses three signals from X-band radar to determine the parameters of waves
and surface currents in near real time. These signals are: the video signal, which is converted to
digital data useful for the computer, the trigger signal used to sample the data and the heading
signal that indicates when the antenna passes through the origin of rotation. The software of



24 Chapter 3. Marine Radar Image Processing

the system controls the radar, data storage and presentation of them. The system generates
text files according to the coordinates. But the main drawback is that WaMoS is effective when
the wave height exceeds one meter. The measures are based on the backscatter from the sea
surface. The backscatter shows the propagation patterns followed by waves and it determines
the structure of the ocean clutter.

3.3 Physical phenomena in the marine radar imaging

The final image shows by the radar is not a direct mapping image of the ocean surface. The
image displays the energy scattered by the sea surface and the addition of another energy due
to other still not well-known phenomena, which distort the free ocean surface images. Some of
these phenomena modulate the electromagnetic backscatter inducing additional modulations:

• Wave tilt modulation: It is related to the effective slopes of the waves. The incident angle
θ0 of the electromagnetic radiation changes with respect to the plane of the wave slope
considered at the scale of the spatial resolution. Because of this, the facets orientated close
to the antenna direction produce higher backscatter than the others. Therefore, additional
spectral components are introduced in domain of high wave numbers k, increasing the
spectral energy for those high wave numbers k [16, 15]. So this modulation depends on the
position of the radar antenna and the slope of the waves, being very important in marine
radars.

• Hydrodynamic modulation: This modulation is related to the interaction of the capillary
waves (which are affected by the surface tension) and the long waves. The most of the
capillary waves are inner surface of the long waves and they propagate faster for shorter
wavelengths. For this reason, the electromagnetic energy dispersion is modified, but for
marine radars this distortion is not so strong.

• Orbital modulation: It is caused by the motion of particles of the water during the time in
which the wave is under the radar beam. This modulation is very important for Synthetic
Aperture Radar (SAR), or Doppler radars in general which are more sensitive with the
movements of the targets.

• Shadowing modulation: It happens when the higher waves hide the lower waves from the
radar beams. This effect introduces in the radar image spectrum additional components
of high wave number k and frequency ω, and it is stronger when the angle of incidence of
the radar beam on the ocean surface is near to 90o. This modulation has a very impact in
marine radars because the height of the antenna over the sea is small [15].

All of these modulations spoil the spectra of the radar images introducing noise for frequencies
greater than or equal to peak frequency fp, that is the frequency related to the spectral maximum.

These phenomena are not the unique effects that distort the spectrum. The final radar image
depends, as well, on:
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Figure 3.4: Modulations of the interaction of the electromagnetic waves with free sea surface
[15].

• Range dependence: The more far away from the radar, the weaker the signal is. The power
received by the radar is inversely proportional to the distance between the target and the
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radar. So for far range, the intensity of the signal is faint. Therefore, this dependence
introduces a no-homogeneous and static pattern in the radar wave spectrum [9].

• Azimuthal dependence with the wind direction: The wind action is very important because
the intensity of the images depends on the wind direction. The return is greater in the
direction where the wind is coming from [17].

• Azimuthal dependence with the wave propagation direction: The radar wave image is
stronger up and down wave than perpendicular to the wave propagation direction [18].

• Wind speed dependence: When the wind grows, the image intensity increases [17].

All phenomena insert in the image spectrum additional (k, ω) components, which do not
belong to the wave field. The shadowing and tilt modulations introduce additional energy in
high wave numbers and frequencies. However, the range dependence causes a static pattern in
the sea clutter time series producing a high spectral energy in the low frequency domain.

3.4 Wave spectrum estimation from the radar images

In marine radars, the main technique to analyse wave fields is based on the acquisition of a
temporal sequence of Nt consecutive images of the ocean clutter. The antenna rotation period is
that provides the sampling time ∆t of the time sequence of images. While the spatial resolution
(∆x and ∆y) of each image depends on the azimuth and range resolution of the radar system.
These images are provided by the WaMoS II system.

∆x

∆y

Image # 1

Image # 2

Image # 3

Image # 4

Image # N  - 1t

Image # Nt

x

y

Time

∆t

Figure 3.5: Example of marine radar data set (adapted from [11]).
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The measurement of ocean waves with marine radars is based on the spatial and temporal
structure analysis of the sea surface radar images. These radar images are caused by the in-
teraction of the electromagnetic waves transmitted by the radar antenna with the sea surface
ripples caused by the local wind [11, 19, 20, 21]. This interaction produces a backscatter of the
electromagnetic fields and, therefore, an image pattern in the radar display unit. This image
pattern is commonly known by sailors as sea clutter, and it is considered as noise for navigation
purposes. However, in this study it will not be considered as noise. Hence, using temporal se-
quences of consecutive sea clutter images, the spatial and temporal variability of the sea surface
is analised to estimate wave field spectral properties [22, 23], as well as related sea state param-
eters. But there are some phenomena that affect the dispersion of electromagnetic fields by the
ripples. These effects produce modulations and signal distortion, introducing noise and spoiling
the spectrum, that causes that the radar return is not a true and direct sea surface image, which
should be considered in the radar image. These phenomena are presented before in the section
3.3.

Applying the three-dimensional Fourier decomposition of the sea clutter time series, the so-
called three-dimensional image spectrum F

(3)
ψ (k, ω) is obtained. The different radar imagery

phenomena can be identified in the (k, ω)-components of F (3)
ψ (k, ω).

The figure 3.6 shows an example of image spectrum estimated from a temporal sequence of
radar images measured in the Northern Coast of Spain.

These phenomena are generally nonlinear, causing distortion and signal modulation,
introducing noise, especially in high wave numbers. This brings out additional components
which do not belong to the image of the radar wave field.

Therefore, the wave spectrum estimation is carried out by using the inversion modelling
technique of time series of images provided by the WaMoS II system and the analysis of the
spectral density of background noise (BGN), providing additional information to the inverse
modelling technique.

3.4.1 Analysis of ocean waves from temporal sequences of X-band radar
images of the sea surface

It is a well known the fact that in the near range of ordinary X-band marine radars, the
sea surface ripples induced by the local wind produce a strong radar signal. Electromagnetic
fields are broadcast by the transmitting antenna and these ripples cause a backscatter of these
electromagnetic fields, received by the receiving antenna. Furthermore, the backscattering
pattern is modulated by long ocean waves, such as swell or wind sea. As a result of all those
phenomena, a strong radar signal can be observed in the radar screen. This signal is commonly
known by radar operators as sea clutter and is an undesirable effect for navigation purposes.
But if the purpose is the study of waves, ocean behaviour, currents, etc. this sea clutter will
be the right signal and the center of the study. On the other hand, the temporal evolution of
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Figure 3.6: Example of image spectrum. The plot corresponds to a two-dimensional transect
(kp, ω), where kp indicates the wave number vector projection along the wave propagation
direction (adapted from [24]).

the sea clutter contains information about the sea surface and its evolution in space and time.
Therefore, the analysis of temporal sequences of radar images of the sea surface can be used to
analyse ocean wave fields.

3.4.2 Inversion modelling technique

The digitised data are transformed into the spectral domain by means of a three-dimensional
discrete Fourier transform to estimated the image spectrum F

(3)
ψ (k, ω). Once the three-

dimensional image spectrum F
(3)
ψ (k, ω) is calculated, the inversion modelling technique can be

applied. In [23, 24] this technique is presented and follows these steps:

1. Applying a low-pass filter
F

(3)
ψ (k, ω) needs to be filtered to eliminate the non-stationary and non-homogeneous trends

in the radar image time series. For practical applications, the threshold frequency of the
high-pass filter is ωth = 2π ·0.04 rad s−1 because of lower frequencies may not be considered
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as swell or wind sea. The transfer function of the filter is:

Fth(k, ω) =

{
0 if (k, ω) ∈ Ωth

1 otherwise
(3.14)

F
(3)
th (k, ω) = F

(3)
ψ (k, ω)Fth(k, ω), (3.15)

where Ωth is the set in the three-dimensional spectral domain and is defined:

Ωth = {k | k ≤ κ(ωth)} × [−ωth, ωth] (3.16)

where κ(ωth) denotes the wave number solution of the dispersion relationship without
current for the frequency ωth. Now, the image spectrum F

(3)
ψ (k, ω) has not got the non

stationary spectral energy. The two main effects considered in low frequency are the static
patterns originated by the long range dependence on the sea clutter images, and the group
line. The group line is due to the intermodulations between different wave field components
and it will be one of the targets to be studied in this work.

2. Estimation of the current of encounter
The estimation of the current of encounter U = (Ux, Uy) is not a superficial current, but
the weighted average of the all currents existing in the superficial layer of the ocean affected
by the wave dynamics, and the distribution of the energy of the (k, ω)-spectral components
of the wave field [15]

U =
2

σ2
η

∫ kc

0

∫ 0

−d
F (k) kUlayer(z) e2kz dz dk (3.17)

where z is the vertical variable associated to the depth, Ulayer(z) is the superposition
of different effects as relative motion between the observer and the wave field Urel(z),
induced current produced by tides Utid(z), the current produced by wind Uwind(z), the
current introduced by the wave field Uwave(z) and other currents associated by the oceanic
circulation Uocean(z)

Ulayer(z) = Urel(z) + Utid(z) + Uwind(z) + Uwave(z) + Uocean(z) (3.18)

The estimation of the current U from three-dimensional spectrum of the image F (3)
ψ (k, ω)

is based on considering spatial points (k, ω) in which spectrum energy is important.
Therefore, the energy due to the wave field is only considered, refusing the spectral noise
produced by the radar when the images are generated. Nr points (k, ω) will be selected,
and all of them will have an energy higher than 20% of the maximum value of F (3)

ψ (k, ω)

(kxn , kyn , ωn) ; n = 1, 2, . . . , Nr (3.19)

ωn −$0(kxn , kyn) = kxnUx + kynUy (3.20)

where $0 denotes the so-called intrinsic frequency, i.e. the dispersion relation (2.3) without
current of encounter U.
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The current of encounter U can be estimated by minimizing the functional [23]:

V =

Nr∑
n=1

[ωn −$0(kxn , kyn)− kxnUx − kynUy]2 (3.21)

3. Filtering the spectral energy due to the dispersion shell
The marine radar measurement introduces an additional energy in the three-dimensional
spectral density, therefore the dispersion relation (2.3) does not check. It is necessary to
apply a three-dimensional band-pass filter in the (k, ω) domain to take only the wave field
components which belong to the wave field [23, 8]. The energy related to waves must
comply with the equation (2.3). So the three-dimensional spectral density F

(3)
F (k, ω) is

obtained as

F
(3)
F (k, ω) =

∫
Ωk,ω

F
(3)
th (k′, ω′) δ(k′ − k) δ(ω′ −$(k′)) d2k′ dω′ (3.22)

4. Application of the modulation transfer function
There is a difference between the image spectrum from marine radar imagery and the
corresponding spectrum from in-situ sensors. This difference is due to the radar wave
imaging mechanisms are not considered in the band-pass filter. This difference can be
reduced if a modulation transfer function is used. This empirical modulation transfer
function is related to the interaction of the ripple with long waves and this function is:

T (k) = kβ (3.23)

where the exponent β has been calculated empirically [24, 16]. The empirical value found
for the β exponent is β ≈ −1.2 [11]. Therefore the estimation of the three-dimensional
wave spectrum F̃ (3)(k, ω) is obtained as

F̃ (3)(k, ω) = T (k)F
(3)
F (k, ω) (3.24)

3.4.3 Significant wave height estimation

Significant wave height Hs can be derived from the wave spectrum F (3)(k, ω) as:

Hs = 4

√∫
Ωk,ω

F (3)(k, ω) d2k dω = 4
√
m0 (3.25)

But the X-band marine radars do not provided values of physical parameters related to the
backscatter phenomenon or wave elevation, but images coded in relative value of grey scales.
Hence, the non-scaled spectra F̃ (3)(k, ω) does not provide wave height estimations directly. F̃ (3)

and F (3)
ψ are different, due to the digitalization done by the WaMoS II to the grey-level values.

These grey-level values are affected by some factors such as: the dynamical range of the WaMoS
digitalization, the sea surface roughness, the marine radar features, the radar configuration for
each installation, etc. If the structure of the image spectrum F

(3)
ψ (k, ω) is analysed, Hs can be
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estimated in a similar way than Synthetic Aperture Radar systems (SAR) [25]. Based on this
assumption, the significant wave height has a linear dependence with the root squared of the
Signal-to-Noise Ratio (SNR) [11, 24], that is defined as:

SNR =

∫
Ωk,ω

F̃ (3)(k, ω) d2k dω∫
Ωk,ω

F
(3)
BGN (k, ω) d2k dω

(3.26)

where F (3)
BGN (k, ω) is the spectral energy of the background noise and it will be explained in the

section 3.4.4.
Hence, the significant wave height can be expressed as

Hs = c0 + c1

√
SNR (3.27)

where c0 and c1 are calibrations constants, which are obtained empirically and depend on each
specific installation. The three-dimensional wave spectrum F (3)(k, ω) can be calculated from Hs

as
F (3)(k, ω) = C F̃ (3)(k, ω) (3.28)

where C is a constant used to rescale the spectrum F̃ (3)(k, ω)

C =
H2
s

16

∫
Ωk,ω

F̃ (3)(k, ω) d2k dω
(3.29)

3.4.4 Three-dimensional spectral density of the background noise

A detail analysis of the values of the image spectrum F
(3)
ψ reveals that there is a background

noise that fills all the spectral domain Ωk,ω [15, 26]. This noise appears as well in other radar
systems, as Synthetic Aperture Radars (SAR) [25], that operates under quite different incidence
conditions. The background spectral noise (BGN) is the results of the convolution of the radar
pulse Π(R, φ) sweeping the sea surface in range R and azimuth φ. Π(R, φ) is defined by the
range and azimuthal resolutions (i.e. ∆R, ∆φ). Hence, the sea cutter image in polar coordinates
(R,φ) can be expressed as

ψ(R,Φ, t) =
[
ψ̂ ∗Π

]
(R,Φ, t) =

∫ Rmax

Rmin

∫ φmax

φmin

ψ̂(R′, φ′, t) Π(R−R′, φ− φ′)R dR′dφ′, (3.30)

where Rmin, Rmax, φmin, and φmax define the angular sector of the sea surface, which is scanned
by the radar. ψ̂(R′, φ′, t) indicates the backscatter signal resulting of the different modulation
mechanisms that affect the radar scanning of the sea surface. In equation (3.30) the time t
corresponds to the temporal scale of the wave evolution, which is assumed to be much slower
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than the scanning time scale of the radar. The factor R in the convolution integral (3.30) is
responsible of the effective footprint of the radar (i.e. the so-called facet), R∆R∆φ. Transforming
the equation (3.30) in Cartesian coordinates (x, y) and applying the Fourier transform, the image
spectrum measured by a radar system is given by

F
(3)
ψ (k, ω) = F

(3)

ψ̂
(k, ω)F

(3)
Π (k, ω), (3.31)

where F (3)

ψ̂
is the spectrum of the backscatter signal, which is affected by the different modulation

mechanisms, such as shadowing, wave tilting, etc., and F (3)
Π is the spectrum of the radar pulse

shape, which is responsible of the spectral background noise. This noise is the resulting of the
backscatter signal collected in the imaged facet. This signal is due to speckle noise caused by
the sea surface roughness induced by the local wind [17]. In addition to the effect of the radar
pulse, the thermal noise of the radar system is as well part of this noise [25]

F
(3)
Π (k, ω) = F

(3)
BGN (k, ω) + F

(3)
thermal(k, ω), (3.32)

being F (3)
BGN the spectrum of the noise due to the radar pulse (i.e. the background noise due to

the sea surface roughness), and Fthermal is the spectrum of the thermal noise, which is assumed as
a white noise. Hence, F (3)

thermal(k, ω) has a constant value for each wave number k and frequency
ω.

The spectral analysis of the background noise can report additional properties of sea clutter
that can not be considered in the inverse modelling technique. BGN spectral components are
related to the roughness of the sea surface, which is responsible for the speckle noise in radar
images of ocean. Therefore, the energy spectrum of BGN is closely related to the hydrodynamic
and meteorological phenomena, which affect the sea surface. The background spectral density
is closely related to the sea clutter speckle caused by the sea surface roughness on short spatial
scales. The background spectral energy is necessary to extract ocean wave height information
from sea clutter time series. The SNR expression (3.26) considers the energy of the spectral
components of the imaged wave field for the signal and the total spectral background energy of
the F (3)

ψ (k, ω) for the noise contribution to SNR. Besides, the background noise spectra is related
to the electromagnetic backscattering phenomena, which occur on the sea surface illuminated
by the radar antenna. BGN spectral components are distributed almost throughout the entire
domain of Ωk,ω. The components of the wave components and higher harmonics are clearly
identified in Ωk,ω because their spectral components are located very close to their respective
dispersion relations

ωq = (q + 1)

√
gk

q + 1
tanh

(
kd

q + 1

)
+ k ·U (3.33)

where q = 1, 2, . . . indicates the order of the qth-harmonic. In practice only the first harmonic
(q = 1) has enough energy to be identified in the image spectrum domain. If q was equal to 0,
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the equation (3.33) would be the relation dispersion of linear ocean waves.

The estimation of F (3)
Π , or even F

(3)
BGN , cannot be achieved using the equations (3.31) and

(3.32), because the spectrum F
(3)

ψ̂
is unknown. In addition the internal features of the radar

electronics responsible of the existence of F (3)
thermal are in most of the cases unknown as well.

Assuming that the thermal noise is small, which is a reasonable assumption for operational
radar system, and considering the BGN noise a stochastic process statistically independent of all
the rest of the spectral contributions related with the wave field (dispersion relation , harmonisc,
etc.), the BGN three-dimensional spectral density F (3)

BGN (k, ω) can be approximated as a function
of the image spectrum F

(3)
ψ (k, ω), the spectrum related to the wave components F (3)

F (k, ω) and

the high harmonic spectrum F
(3)
HH(k, ω), which is obtained in a similar way to F (3)

F (k, ω) but
using the high harmonic dispersion relation given by the equation (3.33)

F
(3)
BGN (k, ω) ≈ F (3)

ψ (k, ω)− F (3)
F (k, ω)− F (3)

HH(k, ω) (3.34)

The quasi-static patterns in equation (3.34) are caused by the long range dependence on the sea
clutter image and the group line due to intermodulations between different wave field components
not considered [11]. These spectral contributions are located in areas of low frequencies. For this
reason, the equation (3.34) is an approach for those frequencies higher than a given threshold
frequency ωth. Therefore, the main low-pass filter made in the inversion modelling technique
3.4.2 is so important to remove these static patterns.

If constant values of the wave frequency ω are fixed, the dependence of F (3)
BGN (k, ω) is similar

for different ω-planes, because of the fact that speckle noise at a specific sea surface location is
uncorrelated for different antenna rotations. So the intensity of the BGN spectral components
is independent of the frequency plane and dependent only on the wave number k. An average
two-dimensional BGN spectrum F

(2)
BGN (k) due to the sea surface roughness can be estimated as

F
(2)
BGN (k) =

1

ωc − ωth

∫ ωc

ωth

F
(3)
BGN (k, ω) dω (3.35)

In this case, F (2)
BGN (k) presents high values for low wave numbers k. This behaviour of the

wave number dependence can be shown by the integration of the two-dimensional BGN spectrum
F

(2)
BGN (k) over all the wave number directions θ = tan−1(ky/kx):

FBGN (k) =

∫ 2π

0
F

(2)
BGN (k(k, θ))k dθ (3.36)

where the multiplicative factor k inside the integral is the Jacobian needed to change the Carte-
sian coordinates (kx, ky) to the Polar coordinates (k, θ) used to integrate along all the wave
number directions θ.
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The averaged one-dimensional frequency BGN spectrum SBGN (ω) can be obtained from
F

(3)
BGN (k, ω) as

SBGN (ω) =
1

4kxckyc

∫
Ωk

F
(3)
BGN (k, ω)d2k , ωth < ω ≤ ωc (3.37)

where Ωk ≡ [−kxc , kxc) × [−kyc , kyc) and the normalisation factor 4kxckyc is the Ωk area. Here
again, the low frequencies are not considered to avoid the group line and the static patterns.

3.5 Description of the used data

In this work, data from two different locations in the North Sea have been analysed. The following
sections deal with the description of these data sets.

3.5.1 Data acquisition

The radars of the FINO 1 platform and Hörnum have installed the WaMoS II system to measure
waves and currents. But WaMoS II system needs a good calibration to measure correctly the
parameters of wave height. This requires a reference sensor, in our case the sensor is a buoy, a
Datawell WaveRider model. An analysis of the parameters collected by sea buoys and radar will
be executed in this study.

3.5.2 FINO 1 Platform

The data used for the study are taken from the German research platform of FINO 1 (German
Hydrographic Institute - BSH). FINO1 platform is located in the North Sea, near the German
island of Borkum, at the mouth of the river Ems. It consists of a conventional navigation radar
under a helicopter platform. The main objective of the platform is to improve the knowledge of
hydrological and meteorological sea conditions for the development of wind turbine installations.

The radar located in this platform provides sea radar images. The main characteristic of these
images is the temporal and spatial homogeneity that present most of the time. These images are
caused by the interaction of the electromagnetic waves produced by the radar antenna with the
sea surface ripples caused by the local wind.

3.5.3 Hörnum

Another source of data is the coastal monitoring radar in the German island of Sylt. This radar
is working since 2002 for the German centre Helmholtz-Zentrum Geesthacht. This station works
mainly for shallow water in the North Sea.
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Figure 3.7: Image of the German research platform FINO 1.
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Figure 3.8: On the left, the image of the North Sea from the Hörnum station. On the right, an
example of the image taken by the Hörnum radar.

In the figure 3.8, on the right, a Hörnum radar image is presented. This radar only provides
the half of the complete radar sector, and there are two small shadowing areas in both sides of
the radar.
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Chapter 4

Detection of the Dispersion Shell
Depending the Radar Azimuth and
Range

The main phenomenon related to the imaged wave field, which is visible in the image spectrum
is the dispersion shell or dispersion relation and it will be one of the target in this chapter.
The dispersion relation was presented in the section 2.2.1.1. The process followed to analyse
the spectra of the radar images is the modelling technique presented in section 3.4.2. In this
case, the data applied have been the data provided by the platform FINO 1. It is considered a
temporal sequence of Nt consecutive images, where each image has Nx×Ny pixels. The spatial
resolutions in the axes x and y are ∆x and ∆y, and the temporal interval (i.e. the sampling
time of the image time series) is the antenna rotation period ∆t.

Applying a three-dimensional Discrete Fourier Transform (DFT) to the temporal sequence
of images, the image spectrum F

(3)
ψ (k, ω) is estimated as

F̂
(3)
ψ (kxm1

, kym2
, ωm3) = c

∣∣∣∣∣∣
Nx−1∑
n1=0

Ny−1∑
n2=0

Nt−1∑
n3=0

ψ(xn1 , yn2 , tn3) e
−j2π

[
m1n1
Nx

+
m2n2
Ny

+
m3n3
Nt

]∣∣∣∣∣∣
2

(4.1)

being m1 = 0, 1, . . . ,Nx − 1, m2 = 0, 1, · · · ,Ny − 1 and m3 = 0, 1, · · ·, Nt/2 and

kxm1
= −kxc +m∆kx ; ∆kx =

2π

Nx∆x
(4.2)

kym2
= −kyc + n∆ky ; ∆ky =

2π

Ny∆y
(4.3)

ωm3 = m3∆ω ; ∆ω =
2π

Nt∆t
(4.4)

39
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being kxc , kyc and ωc the Nyquist cut-off limits for each spectral variables. In equation (4.1), c
is a constant of proportionality to keep the variance for a Gaussian process

c =
1

(NxNyNt)2 ∆kx∆ky∆ω
(4.5)

F̂
(3)
ψ (kxm1

, kym2
, ωm3) is not exactly the image spectrum F

(3)
ψ (k, ω) because of the radar images

are not a homogeneous Gaussian process and the values of the grey scales are not a Gaussian
distribution. Once the F̂

(3)
ψ (kxm1

, kym2
, ωm3) is calculated, the current of encounter U is

estimated and then the dispersion shell is retrieved by a filter [7], separating the signal owing to
the waves and the spectral background noise [24].

In this chapter, the dispersion shell is going to be presented for the whole radar image provided
by the WaMoS II system and in an exhaustive study, called Window analyse, where the radar
image is divided in several small rectangular piece of images, or windows, according to the range
and azimuth.

4.1 Filter design to extract the dispersion shell

One of the steps in the inverse signal modelling technique is filtering to keep the spectral
components (k, ω) that hold the dispersion relation. As it was commented above, the background
noise must be removed to separate the signal and the noise. The filter to extract the dispersion
shell was created. This filter would consist of taking the specific points that obey the dispersion
relation equation ω = $(k) =

√
gk tanh(kd) + k ·U in the three-dimensional image spectrum

F
(3)
ψ (kxm , kyn , ωv). The data that have to be managed now are in (k, ω) domain, so they are

sampled in frequency and discrete wave number. Therefore, it is not possible to apply the
dispersion relation point to point, but in associate intervals to the resolution of each spectral
variables. Figure 4.14 shows an example of the dispersion shell.

4.1.1 Three-dimensional pass-band filter

The three-dimensional pass-band filter is the main part of the inverse modelling technique to get
the dispersion shell. This filter is presented in [27] and it considers the dispersion shell for linear
waves and the resolution of all spectral variables ∆kx, ∆ky and ∆ω defined in Nyquist domain
Ωk,ω:

Ωk,ω = [−kxc , kxc)× [−kyc , kyc)× [0, ωc) (4.6)

being kxc , kyc and ωc the Nyquist cut-off limits for each spectral variables. Hence, the equations
(4.2), (4.3) and (4.4) are defined for Nyquist domain as well, being kxm1

∈ [−kxc , kxc),
kym2

∈ [−kyc , kyc) and ωm3 ∈ [0, ωc).

The theoretical filter, represented by F(m1,m2,m3), is applied to the FFT estimation of the
image spectrum for all the frequencies in the Ωk,ω and all the waves numbers. The filter presents



4.1. Filter design to extract the dispersion shell 41

 

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Kx [rad/m]Ky [rad/m]

W
 [

ra
d
/s

]

Figure 4.1: Example of the dispersion shell.

this function:

F(m1,m2,m3) =

{
1 if m3 ∈ Ωm1,m2

0 otherwise
(4.7)

being

Ωm1,m2 ≡
{
m3

∣∣min
(
ω−m1,m2

, ω+
m1,m2

, ω̂−m1,m2

)
≤ ωm3 ≤ max

(
ω−m1,m2

, ω+
m1,m2

, ω̂+
m1,m2

)}
(4.8)

where
ω+
m1,m2

= $(km1,m2 + n1 ∆k) (4.9)

ω−m1,m2
= $(km1,m2 − n1 ∆k) (4.10)

ω̂+
m1,m2

= $(km1,m2) + n2 ∆ω (4.11)

ω̂−m1,m2
= $(km1,m2) − n2 ∆ω (4.12)

being n1 the bandwidth of the filter in k, n2 the bandwidth of the filter in ω, km1,m2 =

(kxm1
, kym2

) and ∆k = (∆kx,∆ky).

In the figure 4.2 a scheme of this filter is shown. Summarising, a pair of (kxm1
, kym2

) is taken
and its corresponding value of dispersion shell is calculated. If the value of the dispersion shell
is in the margin between [ωmax, ωmin], the filter will select this value as one.
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Filter = 1

Figure 4.2: Scheme of the theoretical filter for n1 = 1 and n2 = 1.

4.1.2 Adaptive filter

The filter described above is the theoretical representation of the dispersion shell for a discrete
(k, ω)-domain, independently of the current of encounter U and the depth d, where all data inside
the dispersion relation should have similar values. However, in the reality it does not happen
because there are some regions with very high intensity values, and the rest of the dispersion
shell presents values similar to the background noise. Hence, a second filter or adaptive filter
was implemented to take only the values with more intensity. The process of this filter model is
divided in two steps:

1. The theoretical filter, described previously, is used to select the theoretical dispersion shell,
which depends on the current of the encounter and the water depth.

2. The adaptive filter is used over the theoretical dispersion shell obtained before. This filter
searches the maximum of the dispersion shell. Taking into account the ω-plane where
the maximum of the image spectrum is located, the filter does a sweep in each ω-plane
considering all the positions which have a energy proportional to the maximum. This
proportion is not fixed, this proportion changes according to the ω-plane. The dispersion
shell energy for low and high frequencies is low, however for middle frequencies, the energy
is high.
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In the figure 4.3 it is represented the theoretical dispersion shell filter for FINO 1 data with
Ux = −0.38 m s−1, Uy = −0.40 m s−1 in the wave direction, and d = 30 m. Using the same
data, the adaptive filter is used to work over it, and the result is shown in the figure 4.4. It is
easy to realise that the adaptive filter disregards quite irrelevant values.

4.2 Higher harmonics

The dispersion shell is not the only phenomenon produced by the waves. There are important
harmonics to be study. The equation that manages these harmonics is (3.33)

ωq = (q + 1)

√
gk

q + 1
tanh

(
kd

q + 1

)
+ k ·U ; q = 0, 1, 2, . . . (4.13)

It has already been commented, when q = 0 equation (4.13) becomes the dispersion shell.
When the value of q = 1, the first harmonic is calculated. Figure 4.5 shows the first harmonic
filtered by the theoretical filter for the same data than the figures above.

The first harmonic is presented for the higher frequencies and the rest of higher harmonics
are not so important than the first. But there are other negative effects such as the aliased first
harmonic and the aliased dispersion relation. Their values are not so intense and they can be
observed in figure 4.6. Because of these low energy values presented in the study data, they do
not interfere in the spectra and it is considered not to take into account in this work.

4.3 Additional tools to process the radar images of the sea surface

4.3.1 Adding speckle noise to the blanking areas

The radar image is not always a perfect image to be analysed, because in some of them there
are parts without information due to the structure or the platform where the radar is installed,
or even to the port if the radar is sited close to the coast. For this reason, these blanked parts
are filled by speckle noise [28]. The speckle noise is a granular and multiplicative noise which is
inherent in all radar systems and degrades the quality of the radar images, it is very common in
synthetic aperture radar (SAR) as well. The speckle noise is produced when a electromagnetic
wave interferes with objects or particles whose dimensions are similar to the electromagnetic
wavelength, increasing the mean grey level of a local area.

In the figure 4.7 it is represented the same radar image in spatio-temporal domain but on
the right, the speckle noise is introduced to filled all the blanked areas, like the center and the
circular sector of the image. The speckle noise has been chosen to fill blanked areas because
this noise is implicit in radar systems and it provides authenticity in radar images. The speckle
noise is only introduced and considered for the study of the whole radar images 4.5. However
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Figure 4.3: Dispersion shell filtered by the theoretical filter for FINO 1 data with Ux =

−0.38 m s−1, Uy = −0.40 m s−1 and d = 30 m.

Figure 4.4: Dispersion shell filtered by the adaptive filter for the previous FINO 1 data,
corresponding to the figure 4.3, with Ux = −0.38 m s−1, Uy = −0.40 m s−1 and d = 30 m.

for windows detailed study 4.6 the blanked areas have not been considered.
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Figure 4.5: The first harmonic filtered by the theoretical filter for FINO 1 data with Ux =

−0.38 m s−1, Uy = −0.40 m s−1 and d = 30 m.

Figure 4.6: On the left, there is the aliased dispersion relation and on the right, the aliased first
harmonic is presented, filtered by the theoretical filter for FINO 1 data with Ux = −0.38 m s−1,
Uy = −0.40 m s−1 and d = 30 m.

4.3.2 The interpolation

Once the dispersion shell and the rest of the phenomena (the first harmonic and the group line)
are extracted from the F̂ (3)

ψ (kxm1
, kym2

, ωm3), the background noise is the result. In [9] there are
presented two different methods to carry out the interpolation of the background, getting good
results for both of them. These methods are linear interpolation in ω-domain and least squared
fit in k-domain. But in this work, the interpolation is carried out in ω-domain but randomly. It



46
Chapter 4. Detection of the Dispersion Shell Depending the Radar Azimuth and

Range

x [m]

y
 [

m
]

 

 

-1500 -1000 -500 0 500 1000 1500

-1500

-1000

-500

0

500

1000

1500

0

50

100

150

200

250

x [m]

y
 [

m
]

 

 

-1500 -1000 -500 0 500 1000 1500

-1500

-1000

-500

0

500

1000

1500

0

50

100

150

200

250

Figure 4.7: On the left, it is the real radar images provided by the WaMoS II system. On the
right, it is the same radar images on the left with speckle noise in blanked areas.

means, it is going to be taken a ω and it is going to be considered the points (kx, ky) close to the
area to be interpolated, but these points (kx, ky) will be put randomly, if it were noise.

In the figure 4.8, it is represented an example of interpolation, where the left image represents
the original spectrum of one small window of the radar image. The more intense pixels show the
dispersion shell for the plane ω = −0.55 rad s−1. The image on the right represents the same
spectrum than the left one, but in this image the dispersion shell and the first harmonic were
removed and the interpolation was done.
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Figure 4.8: On the left, it is the spectrum of the radar images. On the right, it is the same
spectrum after doing the interpolation.
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4.4 Signal to Noise Ratio

Signal to Noise Ratio (SNR) is one of the most important parameter to be considered. For this
case, as it was commented before, Signal will be the dispersion relation owing to the waves.
Nevertheless Noise will be the background noise. The main problem is that, in the spectrum,
there are more phenomena caused by the waves, such as the first harmonic and the group line.
Therefore, some different Signals and Noises will be studied according to these phenomena and
the interpolation. The different SNRs estimated for this work will be presented with more details
in chapter 6.

4.5 Processing of the whole radar images
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Figure 4.9: Image of one of the instants of the time series of the X-band marine radar for FINO
1 data set.

The whole radar images sequences are evaluated and the process followed to manage it is:

• The WaMoS II system provides the radar images in Polar coordinates, therefore the first
step is transforming the Polar coordinates to Cartesian.

• Filling the blanked parts with speckle noise as it is discussed before in section 4.3. The
figure 4.7 is an example of the kind of image which is going to be used in this process.

• The Fast Fourier Transform is applied in the 32 images, which compose a data set.

• The dispersion shell, the first harmonic and the group line are extracted.
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• The interpolation is carried out in the parts that have been removed, such as the dispersion
shell, the first harmonic and the group line, as it is discussed before in section 4.3. The
figure 4.8 is an example of the interpolation performed.

• The Inverse Fast Fourier Transform is done to obtain the resulting radar images.

• The Signal to Noise Ratio calculation is done considering different factors, how will be
presented in detail in the chapter 6.
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Figure 4.10: The mean of all the 32 images recorded for the data set depicted in the figure 4.9
on the left. On the right, the mask for the same instant of time than the picture 4.9.

Similar results have been obtained for these data which present in their radar images visible
waves. In these cases the significant wave height is higher than 2.5 m.

The data used like a model of results is a FINO 1 file recorded the 31st of January in 2013,
at 3 a.m. In the figure 4.9 the sea surface for this set of data is represented. It is very clear to
sea the front of the waves. The main characteristics provided by the sensors are:

• Mean wave direction (MDIR): 301o

• Significant wave height (Hs): 6.42 m

• X component of the current (Ux): 0.63 m s−1

• Y component of the current (Uy): -0.27 m s−1

• Modulus of the current (U): 0.69 m s−1

• Peak period (Tp): 11.11 s

• Mean period (Tm02): 9.06 s
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The radar imagery have been averaged for all the 32 images, and the mean of all of these is
represented in figure 4.10 on the left. It is possible to observe 6 points on the left in the image
which intensity is high and they are supposed to be wind turbine installed in the sea. The image
on the right in the figure 4.10, the mask of the radar image for the same instant of time than
the picture 4.9 is depicted. Black colour indicates the shadowing of the waves, and white colour
represents the part of the wave illuminated by the radar.

Once the radar signal has been prepared and shown (i.e. the mean of all the images of
the data set, the illumination mask and following filling the blanking areas by speckle noise),
the spectra of the images are going to be studied focus on the dispersion relation. The FFT
is applied in all the data set. The vector k, the value of the current and the 3D-spectrum
F̂

(3)
ψ (kx, ky, ω) are obtained. With these parameters it is possible to get the three-dimensional

pass-band filter (4.1.1) and then employed the adaptive filter (4.1.2) to extract the dispersion
relation of the spectrum. Figure 4.11 represents a comparison between the three-dimensional
pass-band filter and the original 3D-spectrum before being filtering. The filter is represented by
4 colours according to the phenomenon displayed, being the orange colour which represents the
dispersion relation, in green colour the aliased of the dispersion relation, in light blue the first
harmonic and in dark blue the aliased first harmonic. For both three-dimensional pass-band filter
and spectrum, three different axis transects have been shown, being the kx = 0 rad m−1 the first
transect represented. In this transect the dispersion relation in the spectrum can be observed
clearly and in the same positions of the theoretical dispersion shell shown by the filter. Then
ky = 0 rad m−1 axis cut is represented but in this case the spectrum does not show the dispersion
relation properly. The last cut is for ω = −0.94 rad s−1 and in this plane the dispersion relation
and the first harmonic are visible in the spectrum.

The following step is filter the spectrum, first by the three-dimensional pass-band filter and
then by the adaptive filter. In figure 4.12 it is depicted the extraction of the dispersion relation.
Hence the same three cuts for kx, ky and ω of the spectrum are shown but the dark blue colour
represents the positions of the dispersion shell that have been removed. For the planes kx and ω
the dispersion shell extraction is precise.

The adaptive filter have taken the highest values of the spectrum bound to the dispersion
relation. Figure 4.14 shows the shape of the dispersion relation that have been retrieved by the
filtered process from the spectrum. The dispersion shell presents symmetry how can be seen in
the picture.

The positions in the spectrum that have been removed, such as the values corresponding
to the dispersion shell, the first harmonic and the group line, must be replaced how it was
commented in the subsection 4.3.2. The interpolation is carried out in ω-domain randomly and
the result is shown in figure 4.13. The same transects kx = 0 rad m−1, ky = 0 rad m−1 and
ω = −0.94 rad s−1 are depicted to show the good results obtained in the interpolation process.



50
Chapter 4. Detection of the Dispersion Shell Depending the Radar Azimuth and

Range

K
y

[r
a

d
/m

]

W[rad/s]

-1 -0.5 0 0.5 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Kx[rad/m]

W
[r

a
d

/s
]

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

Kx[rad/m]

K
y

[r
a

d
/m

]

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

W[rad/s]

K
y

[r
a

d
/m

]

 

 

-1 -0.5 0 0.5 1

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-20

-10

0

10

20

30

40

50

60

70

80

W
[r

a
d

/s
]

Kx[rad/m]

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

-10

0

10

20

30

40

50

60

70

80

90

Kx[rad/m]

K
y

[r
a

d
/m

]

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0

5

10

15

20

25

30

35

40

45

50

Figure 4.11: Pictures on the left represent the three-dimensional pass-band filter. The pictures
on the right represent the spectra before being filtering. The first row depicts a cut in the
3D-spectrum for kx = 0 rad m−1 axis, the second row represents a cut in the 3D-spectrum for
ky = 0 rad m−1 axis and bottom row depicts a cut for ω = −0.94 rad s−1.
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Figure 4.12: The different transects kx = 0 rad m−1, ky = 0 rad m−1 and ω = −0.94 rad s−1 for
3D-spectrum without the dispersion shell.
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Figure 4.13: Interpolation made in the spectrum, in this case are represented the transects
kx = 0 rad m−1, ky = 0 rad m−1 and ω = −0.94 rad s−1.

4.6 Window analysis of the radar images

This section collects an exhaustive study of the radar images. The whole radar image is divided
in several squared windows according to the range and azimuth of the radar. The size of each
window is approximately 700 m × 700 m.

Five ranges are contemplated, from near range (300 m) until far range (1900 m), covering
in each range 700 m. There is a small overlap between two consecutive ranges, hence the whole
range is covered efficiently.

Not all the azimuths are useful. The possible azimuths under study are included in the
interval [69o - 285o], and the rest of the angles (it means, from 0o to 68o and from 286o to 359o)
belongs to the blanked areas. The angles sweep done for the azimuth takes the angles separated
15o from the wave direction provided by the WaMoS II system. The number of windows for each
range will be between 13 and 15. It is owing to the fact that the window does not consider the
blanked areas, and for this analysis, the blanked parts are not filled by speckle noise, but the
blanked areas are ignored.
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Figure 4.14: Dispersion shell removed from the spectrum after the filtered process.

All windows are normalised conforming to a selected value. This selected value is fixed for
each set of data because this value corresponds to the maximum value of the dispersion shell
contained by the window in wave direction for middle range (750 m - 1450 m).

For each window, the dispersion relation, the group line and the SNR are studied. But in
this chapter the dispersion relation and the mean intensity of the signal and the spectra will
be asserted, being the group line the target in the next chapter 5 and Signal to Noise Ratio in
chapter 6. The main characteristics under study in each window will be:

• The mean intensity of the radar signal.

• The mean intensity contained in the 3D spectrum of the dispersion shell.

• The mean intensity contained in the 3D spectrum of the group line.

• The mean of the 3D spectrum.

• The mean of the 2D spectrum.

• Signal to Noise Ratio for both filters.

The steps made for windows analysis are the following:

• Positioning the azimuth in the direction under study. The WaMoS II system provides the
radar images in Polar coordinates and turning the Polar images is easier than in Cartesian,
hence changing the azimuth will be performed in Polar coordinates.

• Transforming the radar images in Polar coordinates to Cartesian.
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• Taking the window under study, for a particular range and for an azimuth already
positioned.

• The Fast Fourier Transform is applied in the 32 images, which compose a data set.

• The dispersion shell, the first harmonic and the group line are extracted from the window
under study.

• The interpolation is carried out in the parts that the dispersion shell, the first harmonic
and the group line have left empty, following the way described before in section 4.3.

• The Inverse Fast Fourier Transform is done to obtain the resulting window radar images.

• The Signal to Noise Ratio calculation is done considering different factors, how will be
presented in detail in the chapter 6.

Firstly, the research about the behaviour of the dispersion shell with the range will be
examined. Then, the dispersion shell will be evaluated according to the azimuth.
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Figure 4.15: These are the five windows considered for each range (green window for R1, pink
window for R2, red window for R3, blue colour for R4 and yellow window for R5) in the wave
direction.

4.6.1 Range study

The whole radar image has been demarcated according to the range in five different regions:

• R1: It is the nearest range to the radar. It covers the distance 300 m - 1000 m from the
radar.

• R2: It is the following range and it covers the distance 500 m - 1200 m from the radar.
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• R3: It is middle range and the distance covered is 750 m - 1450 m from the radar.

• R4: In this range the distance covered is 1000 m - 1700 m.

• R5: It is far range, the furthest distance from the radar covering from 1200 m - 1900 m.

In figure 4.15 the five windows to be analysed are presented. The overlap among the windows
is visible in the figure as well. In this study, only the azimuth corresponding to the wave direction
is considered, or by default, like in this case, the azimuth of the opposite direction to the waves
because the azimuth corresponding to wave direction is in the blanked area. Hence is going to
be considered the coming-from criterion. Therefore, the azimuth prearranged will be equal to
121o (301o - 180o).

The results obtained are collected in the following table 4.1, where the characteristics under
study in this chapter are:

• Isignal: The mean intensity of the radar signal.

• Idispersion: The mean intensity contained in the 3D spectrum of the dispersion shell.

• I3D: The mean of the 3D spectrum.

• I2D: The mean of the 2D spectrum.

Table 4.1: Results in range study.

Ranges Isignal [dB] I3D [dB] I2D [dB] Idispersion [dB]
R1 (300 m - 1000 m) 20.14 -34.77 -14.38 35.57
R2 (500 m - 1200 m) 19.39 -35.75 -25.66 35.19
R3 (750 m - 1450 m) 18.55 -34.99 -17.33 34.67
R4 (1000 m - 1700 m) 17.72 -36.42 -18.93 33.97
R5 (1200 m - 1900 m) 17.03 -35.91 -20.38 33.29

Figure 4.16 shows easily the data collected in the table 4.1. In all the analysed data, the
mean intensity of the radar signal is higher for near range and lower in far range. And the
same happens with the intensity of the dispersion relation. However the mean intensity of the
spectrum in 3D presents very close values but it is not always higher in near range, and the
same occurs for the mean intensity of the spectrum in 2D for k in the direction of the maximum
(kmax).

In the figure 4.17 it is observed that the intensity of the dispersion relation is more intense in
near range than in far range. For this azimuth, the dispersion relation is defined for each ranges.

4.6.2 Azimuth study

The whole radar image has been demarcated according to the azimuth among 13 to 15 windows
for each range (R1, R2, R3, R4 and R5). Therefore the maximum number of windows to be
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Figure 4.16: The graphic above on the left, is the mean intensity of the radar signal. Above on
the right, it is the mean intensity contained in the 3D spectrum of the dispersion shell. Down on
the left, it is the mean of the 3D spectrum, and on the right it is the mean of the 2D spectrum.

evaluated in each radar file are 75. In the figure 4.18 all these windows are presented. For R1

and R2 the essential limits are in the blanked areas, which are not considered in this study. The
windows are not in the same position for all radar files. Azimuths are calculated from the wave
direction for each radar file, considering 15o of difference between one window and the adjacent.
Overlaps can be observed among the windows as well, but this fact allows a deep recognition.

To evaluate the main characteristics of the dispersion shell according to the azimuth, it is
going to be explain exhaustive for all the azimuths for only one range, and then, a comparison
between all the azimuth for all ranges will be presented. Therefore, the range prearranged will
be the middle range R3 (750 m - 1450 m). How it was commented before, for this specific data
set, the wave direction is in the blanked area, so it is considered the coming-from criterion, being
the main direction the azimuth corresponding to the opposite of the wave direction (121o in this
case).

A similar table 4.2 than 4.1 is presented but for all azimuth for the range R3. The parameters
under study are the same than the previous subsection 5.3.1.

Figure 4.19 shows the data collected in the table 4.2. The mean intensity of the radar signal
is slightly higher close to the main direction 121o and the descending tendency of the curve
happens close to the wave direction 301oand cross to the wave direction. The dispersion relation
is higher close to the main direction as well and lower in cross direction respect to the main
direction. If it was possible to represent all the azimuths, there would be another maximum in
the wave direction. The mean intensity of the spectrum in 3D presents the maxima values near
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Figure 4.17: 2D spectra for k in the direction of the maximum for the 5 different ranges.

to the cross direction 211o respect to main direction, and the minima values are nearby the main
direction. For the mean intensity of the spectrum in 2D for k in the direction of the maximum
(kmax) the descending tendency of the curve happens nearby the wave direction 301o.

In the figures 4.20 and 4.21 all the spectra in kmax direction are depicted. The intensity
of the dispersion shell is greatest in the main direction (121o) and, it is supposed in the wave
direction (301o) as well. The visibility of the dispersion relation is defined in the main direction
(121o) and, it is supposed in the wave direction (301o) as well. However, in cross direction the
dispersion shell is not defined and the intensity is weak, and even the background is more intense
in these azimuths. Sometimes is not possible to extract the dispersion relation in cross direction,
or only removing a small part of it.

This study for all the azimuths has been done for each range, from R1 to R5 and the results
are shown in the figure 4.22. Five curves are presented, each curve represents the results obtained
for each range for all the azimuths under study. It means, the pink curve represents the values
obtained for all azimuths for short range R1, the yellow curve is the study done for R2, the blue
colour describes the results for all azimuths in middle range (i.e. corresponding to the detailed
study presented before), the green colour indicates the values got for range R4 and red colour
for far range R5. In this figure are depicted 4 subimages. The first subimage, above on the
left, is the mean intensity for all azimuths and ranges. It can be observed that the intensity is
greatest in short range and it decreases for far range. The biggest oscillations between maximum
and minimum values happen for far ranges, the rest of the curves are more or less flat except
when the curves start to descent nearby wave direction 301o. The second subimage, above on the
right, represents the mean intensity contained in the 3D spectrum of the dispersion shell. For
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Figure 4.18: Example of all the windows to be evaluated for each radar image.

short range R1 the intensity collected is higher than in the rest, and the behaviour of the curves
are similar, being maxima in the main direction 121o and minima in cross direction respect to
the main direction or the wave direction. Seen the tendency of the curves, it can be said that
the other maxima are in wave direction as well. The mean of the 3D spectrum is represented
by the picture down on the left in 4.22 and the greatest curve correspond to short range R1

and the maxima values for all the curves are nearby cross direction (211o) respect to the wave
direction, the background in this azimuths have more intensity and the dispersion shell is not
define properly. In the last subimage, down on the right, there is the mean of the 2D spectrum
in kmax direction. In all data set analysed has been found the same fact, that is that the result
for range R2 are unexpected because it has not the same bahaviour than the rest of the curves,
for some random azimuths the curve declines a lot. However, the rest of the curves are similar
being the mean of the spectrum higher in short range R1 and poorest in far range R5. Following
the tendency of the curve, it can be said that the minima will get in wave direction.
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Table 4.2: Results obtained for all the azimuths for a fixed range R3.

Azimuths Isignal [dB] I3D [dB] I2D [dB] Idispersion [dB]
76o 18.33 -36.65 -18.01 34.74
91o 18.37 -37.53 -17.50 34.79
106o 18.58 -35.53 -17.28 34.62
121o 18.55 −34.99 −17.33 34.67

136o 18.49 -35.55 -17.71 34.31
151o 18.54 -35.79 -17.39 34.19
166o 18.53 -37.20 -17.58 33.52
181o 18.52 -35.11 -17.50 32.74
196o 18.52 -35.46 -17.85 31.91
211o 18.42 -31.53 -18.13 31.91
226o 18.32 -32.17 -18.14 31.99
241o 17.95 -31.72 -18.85 32.50
256o 17.64 -36.13 -18.98 32.93
271o 17.53 -37.51 -19.41 32.85
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Figure 4.19: The graphic above on the left, is the mean intensity of the radar signal. Above on
the right, it is the mean intensity contained in the 3D spectrum of the dispersion shell. Down on
the left, it is the mean of the 3D spectrum, and on the right it is the mean of the 2D spectrum.
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Figure 4.20: 2D spectra for k in the direction of the maximum for the azimuths between 76o and
166o for the R3 range.



60
Chapter 4. Detection of the Dispersion Shell Depending the Radar Azimuth and

Range

Kmax [rad/m]

W
 [

ra
d

/s
]

2D Spectrum in Kmax direction for 181º

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

-80

-70

-60

-50

-40

-30

-20

-10

0

Kmax [rad/m]

W
 [

ra
d

/s
]

2D Spectrum in Kmax direction for 196º

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

-80

-70

-60

-50

-40

-30

-20

-10

0

Kmax [rad/m]

W
 [

ra
d

/s
]

2D Spectrum in Kmax direction for 211º

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

-80

-70

-60

-50

-40

-30

-20

-10

0

Kmax [rad/m]

W
 [

ra
d

/s
]

2D Spectrum in Kmax direction for 226º

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

-80

-70

-60

-50

-40

-30

-20

-10

0

Kmax [rad/m]

W
 [

ra
d

/s
]

2D Spectrum in Kmax direction for 241º

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

-80

-70

-60

-50

-40

-30

-20

-10

0

Kmax [rad/m]

W
 [

ra
d

/s
]

2D Spectrum in Kmax direction for 256º

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

-80

-70

-60

-50

-40

-30

-20

-10

0

Kmax [rad/m]

W
 [

ra
d

/s
]

2D Spectrum in Kmax direction for 271º

 

 

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-1

-0.5

0

0.5

1

-80

-70

-60

-50

-40

-30

-20

-10

0

Figure 4.21: 2D spectra for k in the direction of the maximum for the azimuths between 181o

and 271o for the R3 range.
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Figure 4.22: Comparison for all ranges and all azimuths under study. Each curve represents one
range for all its azimuths.





Chapter 5

Group Line Dependence on the Radar
Azimuth and Range Changes

This chapter is based on the previous one 4 but the target of the study is the one of the features
in the image spectrum that are not yet well understood. In the context of the radar measurement
of the sea surface, this feature is known in the literature as group line [29, 30]. The theoretical
and adaptive filter, the interpolation, the background spectral noise, etc. explained in chapter
4, will be considered as well in this chapter and in the following 6.

5.1 Group line definition

There is not a conclusive definition of the group line, because still now the origin of the group
line is unknown. Some scientists assert that the group line is caused by the capillary waves
and other effects such as sea foam, bubbles, etc. However there are more opinions regarded to
waves and dispersion shell. In addition of those phenomena that can cause the existence of the
group line, some non linear features of the wave field dynamics appear as well where the group
line is located [31]. Furthermore, as it is shown in further chapter 8, the shadowing modulation
induces additional spectral features on form of subharmonics of the dispersion relation, which
is the location of the group line. The group line is an evident phenomenon visible in the image
spectra, which is located for very low angular frequencies. The intensity and the position of this
spectral feature are different according to the wave direction and the strength of the waves. How
it was before seen, in figure 3.6 all the visible phenomena in the spectrum are depicted, and
the group line as well. Hence, the group line is an important feature that appear in the image
spectrum that should be analysed for a better understanding of the microwave backscattering
phenomenon on the sea surface at grazing incidence conditions.

In the same way that a filter to extract the dispersion shell and the first harmonic have
been implemented, a filter to take out the group line was carried out as well. In this case, the
filter works with the original spectrum of the radar image F̂ (3)

ψ (k, ω) without the contributions

63
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of the dispersion shell and the first harmonic. So, the maximum reminded in the spectrum
is related to the group line. Hence, the filter searches the maximum of the group line for
ω ∈ [−0.2, 0.2] rad s−1. Taking into account the ω-plane where the maximum is, the filter does
a sweep in each ω-plane considering all the positions which have a energy proportional to the
maximum. This proportion is not fixed, this proportion changes according to the ω-plane.

Figure 5.1: Example of group line extracted in a analysed window for FINO 1 data with
Ux = −0.38 m s−1, Uy = −0.40 m s−1 and d = 30 m.

The group line energy for low and high frequencies in this interval is low, however for
frequencies close to 0 (ω ≈ 0), the energy is high. But sometimes the group line extraction
is not very easy, because it depends of the wave direction and the range respect to the radar. In
some directions, the extraction of the group line is impossible. And sometimes, the size of the
group line exceeds the limits of the previous interval, being very close to the ω’s belonged to the
dispersion shell. These peculiarities are shown in section 5.3. An example of group line can be
seen in figure 5.1. In this image the group line is bigger than the supposed ω’s interval.

5.1.1 Group line as a nonlinear phenomenon

The uncertainty of the group line origin and the different versions about it make difficult its
study. As the group line is a subharmonic of the dispersion relation (i.e. the fundamental
mode), this work proposes that the group line could be obtained by subtracting the different
(k, ω)-components belonging to the wave field, which are located within the dispersion shell.
Therefore, two frequencies of the wave field (ω1 and ω2) and their corresponding wave numbers
(k1 and k2), where ω1 = $(k1), ω2 = $(k2), interact nonlinearly between each other by their
corresponding differences. Hence, the spectral components of the group line (kGL, ωGL) are
derived as
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kGL = k2 − k1 = (kx2 − kx1 , ky2 − ky1) (5.1)

ωGL = ω2 − ω1 (5.2)

being
ω1 =

√
gk1 tanh(k1d) + k1 ·U

ω2 =
√
gk2 tanh(k2d) + k2 ·U

In figure 5.2 the subtraction of the two frequencies of the wave field belonged to the dispersion
relation is represented in green colour and the subtraction coincides with the group line in two-
dimensional. In the most of the cases, or windows under study, the group line can be considered
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Figure 5.2: Example of group line considered as a subharmonic of the dispersion relation. On
the left, the two-dimensional spectrum for a window under study. On the right, the same figure
on the left but with the group line calculated as it is described on the text.

as a subharmonic, but in some directions referred to the wave direction, this assumption is not
possible. In section 5.3 this consideration will be examined carefully.

5.2 Processing of the whole radar images

The whole radar images sequences are evaluated following the same process presented in 4.5 for
the dispersion shell. The figures 4.9 and 4.10 in the chapter 4 are the starting points as well,
because the same data set used before in the previous chapter 4 are going to continuous employed
in this chapter and in the next to estimate the SNR.

At this point, the spectrum of the data set is obtained and the dispersion relation and the first
harmonic has been removed. Then the spectrum of the radar image F̂ (3)

ψ (k, ω) will be subjected
again for another filter to take out the group line, how it was commented previously in section
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Figure 5.3: Extraction of the group line from the spectrum of the radar images. The picture in
the first row, on the left, depicts a cut in the 3D-spectrum for ky = 0 rad m−1 axis, and the
picture on the right represents a cut in the 3D-spectrum for kx = 0 rad m−1 axis. The second
row shows the group line for the same cuts than above row.

5.1. In figure 5.3 it is depicted the extraction of the group line, the dark blue colour in the
upper row represents the positions of the group line that have been removed. Two different axis
transects are shown, being the ky = 0 rad m−1 the first transect represented and the second
transect is ky = 0 rad m−1. In the bottom row it is represented only the group line that have
been extracted for the same transects, where the group line can be observed clearly.

Figure 5.4 represents the group line extracted from the whole radar image spectrum. The
group line is located for low values of ω.

The last step is doing the Inverse Fast Fourier Transform to the interpolated spectrum to
obtain the resulting radar images. The resultant radar signal has a poor intensity level in compare
with the original radar signal. In the figure 5.5 three different radar signal images are presented.
The first picture on the left is the signal of the radar without dispersion shell, without group line
and without the first harmonic, but in this case the interpolation has not been done. The picture
of the centre is the same than the previous one but the interpolation has been carried out. And
the last picture on the right represents the mean of all the 32 images without dispersion shell,
without group line and without the first harmonic, but with the interpolation done. It means,
the mean of all the 32 images for the picture in the centre. Even after doing the complete process,
it is possible to see some waves in the radar imagery.
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Figure 5.4: Group line removed from the spectrum after the filtered process.
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Figure 5.5: On the left, the output radar image in the same instant of time than 4.9 without
doing the interpolation. In the picture of the centre, the output radar image for the same instant
of time after all the process, interpolation included. On the right, the mean of all the 32 output
radar images with interpolation process done.

5.3 Window analysis of the radar images for the group line

This section is a continuation of the section 4.6 in chapter 4 but focus on the study of the
group line. In a briefly way, five ranges are contemplated, from near range (300 m) until far
range (1900 m), covering in each range 700 m. There is a small overlap between two consecutive
ranges, hence the whole range is covered efficiently. The possible azimuths under study are
included in the interval [69o - 285o], and the rest of the angles (it means, from 0o to 68o and
from 286o to 359o) belongs to the blanked areas. The angles sweep done for the azimuth takes
the angles separated 15o from the wave direction provided by the WaMoS II system. For this
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analysis, the blanked parts are not filled by speckle noise, but the blanked areas are ignored.

For each window, the group line is studied and the main characteristic is the mean intensity
contained in the 3D spectrum of the group line.

Firstly, the research about the detection of the group line with the range will be examined.
Then, the group line will be evaluated according to the azimuth.

5.3.1 Range study

How it was commented before in chapter 4, the whole radar image has been demarcated according
to the range in five different regions: R1 (300 m - 1000 m), R2 (500 m - 1200 m), R3 (750 m -
1450 m), R4 (1000 m - 1700 m) and R5 (1200 m - 1900 m).

The figure 4.15 shows this five windows, one in each direction, where the group line is analysed.
The table 5.1 collects the values of the mean intensity contained in the 3D spectrum of the the
group line for each window in different ranges.

Table 5.1: The mean intensity contained in the 3D spectrum of the group line for the different
ranges.

R1 R2 R3 R4 R5
40.98 dB 39.58 dB 38.22 dB 36.93 dB 35.79 dB

R1 R2 R3 R4 R5
35
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Figure 5.6: The mean intensity contained in the 3D spectrum of the group line for the different
ranges under study.

The table 5.1 can be represented as the figure 5.6. In both of them, it can be realised that
the mean intensity of the 3D spectrum the group line is greater in short range R1 and lower in
far range R5. The closer it is, the more intensity group line has. Remembering the figure 4.17
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where the mean intensity of the spectrum in 2D for k in the direction of the maximum (kmax) is
presented, the group line is clearly define in far range R5, however in short range R1, the group
line and the dispersion shell seem united. The main problem in short range is to extract the
group line without taking small piece of energy of the dispersion shell.

5.3.2 Azimuth study

Table 5.2: The mean intensity contained in the 3D spectrum of the group line for all the azimuths
for a fixed range R3.

Azimuths IGL [dB]
76o 37.34
91o 37.27
106o 37.87
121o 38.22

136o 38.10
151o 37.97
166o 38.05
181o 38.08
196o 37.72
211o 36.98
226o 36.67
241o 36.24
256o 36.07
271o 36.01

As it was done previously for the azimuth analysis for the dispersion relation in 4.6.2, the
figure 4.18 represents all these windows where the group line is going to be analysed as well.
Taking into account the same considerations in 4.6.2, the range R3 will be prearranged to carry
out the development in all the azimuths. How it was commented before, for this specific data
set, the wave direction is in the blanked area, so it is considered the coming-from criterion, being
the main direction the azimuth corresponding to the opposite of the wave direction (121o in this
case).

A similar table 5.2 than 5.1 is presented but for all azimuth for the range R3. The
characteristic under study is the mean intensity of the 3D spectrum contained in the group
line. The figure 5.7 represents the values included in the table 5.2. The tendency of curve is
maximum nearby the main direction 121o and decreases from the azimuth belonging to the cross
direction, getting a minimum nearby wave direction 301o.

In the figures 5.9 and 5.10 all the spectra F̂ (3)
ψ (kmax, ω) in the direction of the maximum are

depicted. In all of them the theoretical dispersion shell, in red line, and the group line calculated
as a subharmonic, in green colour, have been superimposed. This shows that the group line can
be considered as a subharmonic of the dispersion relation (ωGL = ω2 − ω1). The intensity of
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Figure 5.7: The mean intensity contained in the 3D spectrum of the group line for all the
azimuths for a fixed range R3.

the group line is greatest in the main direction (121o) and, it is supposed in the wave direction
(301o) as well. The visibility of the group line is defined in the main direction (121o) and, it is
supposed in the wave direction (301o) as well. However, in cross direction the group line is not
defined and the intensity is weak, and even the background is more intense in these azimuths.
Sometimes it is not possible to extract the group line in cross direction, or only removing a small
part of it.
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Figure 5.8: Comparison of the group line for all ranges and all azimuths under study. Each curve
represents one range for all its azimuths.
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This study for all the azimuths has been done for each range, from R1 to R5 and the results
are shown in the figure 5.8. Five curves are presented, each curve represents the results obtained
for each range for all the azimuths under study. It means, the pink curve represents the values
obtained for all azimuths for short range R1, the yellow curve is the study done for R2, the blue
colour describes the results for all azimuths in middle range (i.e. corresponding to the detailed
study presented before), the green colour indicates the values got for range R4 and red colour
for far range R5. The figure 5.8 represents the mean intensity contained in the 3D spectrum of
the group line. For short range R1 the intensity collected is higher than in the rest, and the
behaviour of the curves are similar, being maxima nearby the main direction 121o and decreasing
in cross direction respect to the main direction or the wave direction. Seen the tendency of the
curves, it can be said that the minimum is close to the wave direction.

In chapter 4 the aim of the study is the dispersion shell and in this chapter the target is the
group line. But both them have a comparable energy inside of their spectra. That is why in
figure 5.11 is depicted the subtraction of the mean of the intensities included in the 3D spectra of
the group line minus the dispersion shell. The mean intensity of the spectrum of the group line
is higher than the mean intensity of the spectrum of the dispersion relation. For far range R5

the subtraction is fewer than for short range R1. Besides, all the curves have the same tendency,
where the minima are nearby the azimuths corresponding to main direction and wave direction.
However, the maxima values are close to the azimuths around cross direction.
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Figure 5.9: 2D spectra for the direction of the maximum k for the azimuths between 76o and
166o for the R3 range.
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Figure 5.10: 2D spectra for the direction of the maximum k for the azimuths between 181o and
271o for the R3 range.
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Figure 5.11: Subtraction of the group line minus the dispersion relation.



Chapter 6

Signal to Noise Ratio Behaviour
According to the Azimuth and Rage of
the Radar

This chapter is focus on the behaviour of the Signal to Noise Ratio (SNR) conforming to the
azimuth and the range, in a similar manner than the chapters 4 and 5 for the dispersion shell
and the group line. But firstly the importance of SNR in radar data and images is going to be
shown.

6.1 The significance of Signal to Noise Ratio

The SNR is one of the most important parameter in radar because of the usefulness to estimate
the significant wave height (Hs). In section 3.4.3 the estimation of Hs is calculated with the
linear model as:

Hs = c0 + c1

√
SNR

Where the SNR expression (3.26) takes, for the signal, the energy of the spectral components
of the wave field image and for the noise, the total spectra background energy of the three-
dimensional image spectrum:

SNR =

∫
Ωk,ω

F̃ (3)(k, ω) d2k dω∫
Ωk,ω

F
(3)
BGN (k, ω) d2k dω

But by the moment, there is not a perfect filter to extract perfectly the signal and considering
the rest as noise. This is the reason because the value got for Hs is not so accurate and the
essential motive to try to determine the Hs using artificial neural networks (ANN) from the data
and images provided by the WaMoS II software.

75
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In [12, 32] an estimator of Hs based on artificial neural networks is proposed. The ANN can
implement a proper non-linear function between the input space (sea states parameters) and the
output space (the target, Hs). The estimator takes the corresponding sea state parameters given
by the WaMoS II system, being the most important:

• Peak wavelength (λp): This is the wavelength related to the wave number kp = 2π/λp,
where the spectrum F (k) is maximum.

• Peak period (Tp): This is the wave period associated to the frequency ωp = 2π/Tp, where
the spectrum S(ω) is maximum.

• Mean period (Tm02): This is calculated as:

Tm02 =

√
m0

m2

The parameters m0 and m2 are the zeroth and second order moments of the wave spectrum
(section 2.3.3).

• Wave age (WA): It is a general measurement that expresses the conditions of the waves
and their development. This parameter can be calculated as [33]:

WA =
g

2π · fp · U10

where g is the acceleration of gravity, fp is the peak frequency (fp = 1/Tp) and U10 is the
wind speed measured at 10 m over the mean sea level.

• Signal to Noise Ratio (
√
SNRR): In this case, this SNRR depends on the integration

thresholds. There are four different estimations of SNR, and this magnitude is distinct
than the SNR expected.

The data used are provided by two different platforms supplied by the WaMoS II system:
FINO and Ekofisk. To complement the sea state parameters derived from the WaMoS II sys-
tem, DataWell WaveRider buoys are used as well. The buoys are moored in the vicinity of each
platform saving waves elevation series and other sea states parameters synchronised.

The ANN employed are the Multilayer Perceptrons (MLPs) because they can implement
non-linear functions based on the non-linearity properties of the sea clutter. Firstly, a study to
determine the size and the topology of the ANN is developed, according to obtain the least mean
squared error (mse), the difference between the desired outputs and actual outputs obtained from
the network, and not very high computational load. For this reason, the MLP contemplated
topology is 3 neurons in the input corresponding to sea state parameters, 15 neurons in the
hidden layer and 1 neuron for the output layer corresponding to the Hs.

Secondly, diverse combinations of these sea state parameters as an input vector are generated
to achieve the best solution, the best estimator. In these studies are collected all the possible
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Figure 6.1: Scheme of the Hs estimator based on ANN. Adapted from [32].

combinations among these sea state parameters and it was obtained that the best combination
was SNR, λp and Tm02. Hence, the input vector in n-domain, which represents the time scale of
the sea state temporal evolution, is:

x[n] =
[√

SNR[n], λp[n], Tm02[n]
]

(6.1)

The ANN provides directly the estimation of the Hs as:

HsANN[n] = γ(OUT)[n] = fANN(x[n]) (6.2)

This function γ(OUT) is a combination of matrix and vectors of the bias (b and b) and the weights
(W and w) of the different layers of the ANN. In this concrete case, the γ(OUT) can be expressed
as:

γ(OUT) = purelin
(
w(OUT) ·

(
tansig

(
W(HIDDEN) · x+ b(HIDDEN)

))
+ b(OUT)

)
(6.3)

being tansig(·) a sigmoid tangent activation function in the hidden neurons and purelin(·) a pure
linear activation function in the output neuron. In the Annex B a briefly synopsis related to the
ANN is explained.

Finally, the results obtained for both source of data are optimum, especially for the data from
FINO 1, where the error standard deviation has been reduced and the correlation coefficient has
been increased. These can be seen in the figures 6.2 and 6.3. In both figures a comparison among
the measures of the buoy, the standard method and the ANN-estimator is presented, and it is
possible to see the improvements.
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Figure 6.2: Scatter plot of the Hs measure by the buoy versus Hs estimated by the standard
method on the left, and the scatter plot of the Hs measure by the buoy versus Hs estimated by
the proposed ANN-based estimator on the right for FINO 1 data set.

Figure 6.3: Scatter plot of the Hs measure by the buoy versus Hs estimated by the standard
method on the left, and the scatter plot of the Hs measure by the buoy versus Hs estimated by
the proposed ANN-based estimator on the right for Ekofisk data set.

6.2 Signal to Noise Ratio according to the azimuth and rage of
the radar

Signal to Noise Ratio is one of the most important parameter to be considered. In this case, as
it was commented in the previous chapters, Signal will be mainly the relation dispersion owing
to the waves. Nevertheless Noise will be the background noise. But the main problem is that,
in the spectrum, there are more phenomena caused by the waves, such as the first harmonic
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and the group line. But sometimes, the group line could be considered as a signal or as a noise.
Therefore, some different Signals and Noises will be studied according to these phenomena and
the interpolation. The Signals have been classified according to the group line, theoretical and
adaptive filter and the use of the Modulation Transfer Function (MTF):

• Without considering the group line. In this case, the group line is part of the noise.

– S1: Signal due to the dispersion shell filtered by the three-dimensional pass-band filter
without MTF.

– S2: Signal due to the dispersion shell filtered by the three-dimensional pass-band filter
with MTF.

– S3: Signal due to the dispersion shell filtered by the adaptive filter without MTF.

– S4: Signal due to the dispersion shell filtered by the adaptive filter with MTF.

• Considering the group line. In this classification, the group line is part of the signal waves.

– S5: Signal due to the dispersion shell filtered by the three-dimensional pass-band filter
without MTF.

– S6: Signal due to the dispersion shell filtered by the three-dimensional pass-band filter
with MTF.

– S7: Signal due to the dispersion shell filtered by the adaptive filter without MTF.

– S8: Signal due to the dispersion shell filtered by the adaptive filter with MTF.

The Noises have been classified according to the interpolation and the group line:

• Without considering the interpolation of the removed signal.

– N1: Noise without considering the group line.

– N2: Noise considering the group line.

• Considering the interpolation of the removed signal.

– N3: Noise without considering the group line. Only the dispersion shell is interpolated.

– N4: Noise considering the group line. The dispersion shell and the group line are
interpolated.

The modulation transfer function (MTF) is related to the interaction of the ripple with long
waves and it was mentioned in 3.4.2, where this function is

T (k) = k−1.2

Therefore, there will be different SNR possible combinations (SNRnm = Sn/Nm). In all
these combinations, the first harmonic will be considered background noised, because the total
spectra energy of these components is negligible comparing to the background noise energy [26].
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But not all the SNRnm combinations are possible, because if it is considered one of the Signals
that consider that the group line is part of the noise (e.g. S1, S2, S3, S4), only the Noises
that consider the group line as a noise have been chosen (e.g. N2 and N4). So the possible
combinations employed here are the following:

• Signals that not consider the group line as a part of a signal (S1, S2, S3, S4) and Noises
that consider the group line as a part of a noise (N2 and N4): SNR12, SNR22, SNR32,
SNR42, SNR14, SNR24, SNR34, SNR44

• Signals that consider the group line as a part of a signal (S5, S6, S7, S8) and Noises that
not consider the group line as a part of a noise (N1 and N3): SNR51, SNR61, SNR71,
SNR81, SNR53, SNR63, SNR73, SNR83

6.3 The frequency wave spectrum S(ω)

The number of SNR depending on what is considered Signal or what is considered Noise, give
an idea that the SNR is not constant. What is more, the interpolation is a process to introduce
another aleatory signal in parts of the spectrum that have been removed previously, and this
signal is not constant. Therefore, to check if the method of interpolation works optimally, the
best way is testing the frequency spectrum S(ω) which depends only on the angular frequency
ω, which is associated with the time dependence of sea state.

Being I(kx, ky, ω) the marine radar image spectrum, it will be filtered and the dispersion
shell will be removed. The dispersion relation will be the desired signal named F (kx, ky, ω).
But the spectrum I(kx, ky, ω) can be filtered, removing the dispersion shell and besides, the
empty space left by the dispersion shell could be refilled using a interpolation method, getting
the interpolation noise spectrum N(kx, ky, ω).

In a theoretical way, it is supposed that:

F (k, ω) = I(k, ω)−N(k, ω) (6.4)

It is considered that:
F̃ (k) =

∑
ω>0

F (k, ω)∆ω (6.5)

And the frequency spectrum S(ω) can be obtained as:

S(ω) =
∑
kx

∑
ky

F (k, ω)∆kx∆ky (6.6)

where the samples which obey |k| ≤ ∆kx must be rejected.

Therefore
S(ω) =

∑
kx

∑
ky

(I(k, ω)−N(k, ω))∆kx∆ky (6.7)
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6.4 Processing of the whole radar images

Continuing with the data set presented in the previous chapters 4 and 5, now the focus of the
study is the SNR for the different acceptations described before in 6.2. Therefore, the SNRs
under study are:

• SNR12: Signal due to the dispersion shell and without group line filtered by the three-
dimensional pass-band filter without MTF and Noise considering the group line but not
considering the interpolation.

• SNR22: Signal due to the dispersion shell and without group line filtered by the three-
dimensional pass-band filter with MTF and Noise considering the group line but not
considering the interpolation.

• SNR32: Signal due to the dispersion shell and without group line filtered by the
adaptive filter without MTF and Noise considering the group line but not considering
the interpolation.

• SNR42: Signal due to the dispersion shell and without group line filtered by the adaptive
filter with MTF and Noise considering the group line but not considering the interpolation.

• SNR14: Signal due to the dispersion shell and without group line filtered by the three-
dimensional pass-band filter without MTF and Noise considering the group line and the
interpolation.

• SNR24: Signal due to the dispersion shell and without group line filtered by the three-
dimensional pass-band filter with MTF and Noise considering the group line and the
interpolation.

• SNR34: Signal due to the dispersion shell and without group line filtered by the adaptive
filter without MTF and Noise considering the group line and the interpolation.

• SNR44: Signal due to the dispersion shell and without group line filtered by the adaptive
filter with MTF and Noise considering the group line and the interpolation.

• SNR51: Signal due to the dispersion shell and group line filtered by the three-dimensional
pass-band filter without MTF and Noise without considering the group line neither the
interpolation.

• SNR61: Signal due to the dispersion shell and group line filtered by the three-dimensional
pass-band filter with MTF and Noise without considering the group line neither the
interpolation.

• SNR71: Signal due to the dispersion shell and group line filtered by the adaptive filter
without MTF and Noise without considering the group line neither the interpolation.

• SNR81: Signal due to the dispersion shell and group line filtered by the adaptive filter
with MTF and Noise without considering the group line neither the interpolation.
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• SNR53: Signal due to the dispersion shell and group line filtered by the three-dimensional
pass-band filter without MTF and Noise without considering the group line but the
interpolation is considered.

• SNR63: Signal due to the dispersion shell and group line filtered by the three-dimensional
pass-band filter with MTF and Noise without considering the group line but the
interpolation is considered.

• SNR73: Signal due to the dispersion shell and group line filtered by the adaptive filter
without MTF and Noise without considering the group line but the interpolation is
considered.

• SNR83: Signal due to the dispersion shell and group line filtered by the adaptive filter with
MTF and Noise without considering the group line but the interpolation is considered.

Table 6.1: Signals that not consider the group line as a part of a signal and Noises that consider
the group line as a part of a noise.

Value of SNR [dB]
SNR12 0.14
SNR22 2.30
SNR32 0.10
SNR42 1.83
SNR14 0.13
SNR24 2.22
SNR34 0.10
SNR44 1.78

Table 6.2: Signals that consider the group line as a part of a signal and Noises that not consider
the group line as a part of a noise.

Value of SNR [dB]
SNR51 0.14
SNR61 2.30
SNR71 0.10
SNR81 1.83
SNR53 0.13
SNR63 2.22
SNR73 0.10
SNR83 1.78

In the tables 6.1 and 6.2 the values of the SNR are collected, but they are separated according
if the group line belongs to Signal or Noise. The values of SNR related to the adaptive filter are
written in bold letters. The SNR values got by the adaptive filter are lower than those obtained
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by the three-dimensional pass-band filter. Another observation is that applying the modulation
transfer function, the value is greater, more than 1.5 dB. Looking at the results shown in tables
6.1 and 6.2 it can be seen that, although the individual values of the image spectrum for the
group line spectral (k, ω)-components are comparable with the spectral values corresponding to
the (k, ω)-components within the dispersion shell, the integral of those values does not affect
significantly to the different estimations of SNR. That means that the important contribution
to SNR came from the dispersion shell itself. Therefore, from the point of view of the effect of
the group line in the Hs estimation, the use of

√
SNR is a robust estimator, even for those cases

where the filter is not capable of split completely all the (k, ω)-components related to the group
line.

6.5 Window analysis of the radar images

In this chapter the windows analysis is concentrated in the SNR. To make it easier, the range
and azimuth analysis is going to treat together. Summarising the previous facts, this section is a
continuation of the section 4.6 in chapter 4 and 5.3 in chapter 5. Five ranges are contemplated,
from near range (300 m) until far range (1900 m), covering in each range 700 m. There is a
small overlap between two consecutive ranges, hence the whole range is covered efficiently. The
possible azimuths under study are included in the interval [69o - 285o], and the rest of the angles
(it means, from 0o to 68o and from 286o to 359o) belongs to the blanked areas. The angles sweep
done for the azimuth takes the angles separated 15o from the wave direction provided by the
WaMoS II system. For this analysis, the blanked parts are not filled by speckle noise, but the
blanked areas are ignored.

6.5.1 Range and azimuth study

The figure 4.18 represents all windows where the SNR and the frequency spectrum S(ω) are
going to be analysed. The different SNRs which are under study are explained previously with
detail in 6.4. Hence, the figure 6.4 shows 8 pictures, which correspond to each SNRnm. In each
subplot five curves are presented, each curve represents the results obtained for each range for
all the azimuths under study. It means, the pink curve represents the values obtained for all
azimuths for short range R1, the yellow curve is the study done for R2, the blue colour describes
the results for all azimuths in middle range, the green colour indicates the values got for range
R4 and red colour for far range R5.

If these subplots are analysed in detail, it is got the following results:

• In the subplot of SNR12 and SNR22 the curves are similar, but for SNR22, in which MTF
is used, the level of the values are higher.

• The same happens for SNR32 and SNR42. The curves are similar, but for SNR42, in
which MTF is used, the level of the values are higher.
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• In the subplot of SNR14 and SNR24 the curves are similar, but for SNR24, in which MTF
is used, the level of the values of SNR are higher.

• The same happens for SNR34 and SNR44. The curves are similar, but for SNR44, in
which MTF is used, the level of the values are higher.

• In all the subplot there are two things in common. Firstly, for near range the SNR is
greater than for far range. And secondly the tendency of the curves are the equivalent.
The SNR takes the lowest values for the azimuths around the cross direction, however the
highest values are nearby the main direction (121o) and the wave direction (301o).

Apart of the SNR, the frequency spectrum S(ω) is analysed as well. The idea is to contrast
that the dispersion shell that have been extracted is very similar to the subtraction between
the original marine radar spectrum and the spectrum where the dispersion relation has been
extracted and interpolated.

The figure 6.5 describes the evolution of the S(ω) in main direction (121o) for all the ranges,
from R1, sited up on the left, to R5, sited down on the right. All subplots present a very well
adjustment between the S(ω) of the dispersion shell, in red colour, and the subtraction of the
original marine radar spectrum minus the interpolated spectrum, in green colour. Hence, the
random interpolation in a similar way of the speckle noise here applied, works appropriately.

Now, the S(ω) is examined according to the azimuths prearranging the middle range R3. The
figures 6.6 and 6.7 depict the results. The adjustment is very good for all the azimuths except
for those azimuths around the cross direction from the wave direction. In this case, the azimuth
corresponding to the cross direction is equal to 211o, and in this azimuth the extraction of the
dispersion relation is more complicated because the dispersion relation is not so well defined and
the noise of the background is a bit high in compare with the rest.
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Figure 6.4: SNRnm for all ranges and azimuths.
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Figure 6.5: Evolution of the S(ω) of the dispersion relation (in red colour) and the S(ω) of
the subtraction of the original marine radar spectrum and the interpolated spectrum (in green
colour) according to the range for a prearranged azimuth equal to 121o.
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Figure 6.6: Evolution of the S(ω) of the dispersion relation (in red colour) and the S(ω) of the
subtraction of the original marine radar spectrum minus the interpolated spectrum (in green
colour) according to the azimuths between 76o and 166o for the R3 range fixed.



88
Chapter 6. Signal to Noise Ratio Behaviour According to the Azimuth and Rage of

the Radar

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

7

W [rad/s]

S
(w

)

S(w) for R3 and azimuth = 181º

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5
x 10

7

W [rad/s]

S
(w

)

S(w) for R3 and azimuth = 196º

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5
x 10

7

W [rad/s]

S
(w

)

S(w) for R3 and azimuth = 211º

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5
x 10

7

W [rad/s]

S
(w

)

S(w) for R3 and azimuth = 226º

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3
x 10

7

W [rad/s]

S
(w

)

S(w) for R3 and azimuth = 241º

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

W [rad/s]

S
(w

)

S(w) for R3 and azimuth = 256º

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

7

W [rad/s]

S
(w

)

S(w) for R3 and azimuth = 271º

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

Figure 6.7: Evolution of the S(ω) of the dispersion relation (in red colour) and the S(ω) of the
subtraction of the original marine radar spectrum minus the interpolated spectrum (in green
colour) according to the azimuths between 181o and 271o for the R3 range fixed.



Chapter 7

Analysis of Hörnum Dataset

7.1 Introduction to the study developed

The radar data provided by the Hörnum station are characteristic because of only 180o of the
circumference contains information. The another part is blanked and it is not possible to get
information. According to this fact, the range and azimuth studies, which were evolved for FINO
1 radar data performed before, cannot be applied. In this case, the acceptable part is divided in
three windows avoiding the small blanked areas that can be seen in figure 3.8 on the left and on
the right of the radar.
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Figure 7.1: Radar image provided by Hörnum station and the three windows to analyse.

These three windows have different sizes according to cover the maximum sea surface area.
The figure 7.1 represents the windows under study. The size of the red window is 889.2 m ×
538.2 m. The size of the area for the pink one is 1287 m × 795.6 m. And for the yellow window,
the size is 833 m × 468 m.
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The range cover by the radar is smaller than FINO 1. In Hörnum data, the total distance
covered is 1645 m, being the resolution of range equal to 4.68 m, therefore the radius of range of
the radar is 822.5 m.

The main inconvenient found in these data sets is that the significant wave height is low,
and these marine radar imagery have not got a distinguishable the front of waves. The data set
selected to present this chapter is the file corresponding to the 20th of January 2006, at the time
11 p.m. In the figure 7.2 the sea surface for this set of data is represented. It is not very clear
to sea the front of the waves. The main characteristics provided by the sensors are:

• Mean wave direction (MDIR): 254o

• Significant wave height (Hs): 1.3 m

• X component of the current (Ux): -0.52 m s−1

• Y component of the current (Uy): -1.42 m s−1

• Modulus of the current (U): 1.51 m s−1

• Peak period (Tp): 5.5 s

• Mean period (Tm02): 5.5 s
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Figure 7.2: Image of one of the instants of the time series of the X-band marine radar for Hörnum
data set.

The whole radar images sequences are evaluated and the process followed to manage it is:
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• The WaMoS II system provides the radar images in Polar coordinates, therefore the first
step is transforming the Polar coordinates to Cartesian.

• The three windows under study are taken.

• The Fast Fourier Transform is applied in the 32 images, which compose a data set.

• The dispersion shell, the first harmonic and the group line are extracted.

• The interpolation is carried out in the parts that have been removed, such as the dispersion
shell, the first harmonic and the group line, as it is discussed before in section 4.3.

• The Inverse Fast Fourier Transform is done to obtain the resulting radar images.

• The Signal to Noise Ratio calculation is done considering different factors, how is presented
in detail in the chapter 6.

For these three windows, the dispersion relation, the group line and the SNR are studied.
Besides the main characteristics under study in each window will be:

• The mean intensity of the radar signal.

• The mean intensity contained in the 3D spectrum of the dispersion shell.

• The mean intensity contained in the 3D spectrum of the group line.

• The mean of the 3D spectrum.

• The mean of the 2D spectrum.

• Signal to Noise Ratio for both filters.

7.2 Study of the dispersion shell

The first step is to extract the dispersion shell for the three windows (the red, the pink and the
yellow one).

The results obtained are collected in the following table 7.1, where the characteristics under
study are the same than the chapter 4:

• Isignal: The mean intensity of the radar signal.

• Idispersion: The mean intensity contained in the 3D spectrum of the dispersion shell.

• I3D: The mean of the 3D spectrum.

• I2D: The mean of the 2D spectrum.
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Table 7.1: Results regarding the dispersion relation for the three windows for Hörnum data set.

Windows Isignal [dB] I3D [dB] I2D [dB] Idispersion [dB]
Red window 18.91 -24.10 -2.96 29.33
Pink window 16.46 -23.41 -21.41 24.48
Yellow window 14.86 -29.85 -33.06 27.48

Table 7.1 shows that the mean intensity contained in the 3D spectrum of the dispersion
relation and the mean intensity of the radar signal correspond to the red window are the highest
values. For yellow window, the biggest one, the mean intensity contained in the 2D and 3D
spectra of the dispersion shell is the lowest.

In the figures 7.3, 7.4 and 7.5 the three-dimensional pass-band filter and the spectra of each
window are described. In all of the spectra it is impossible to distinguish the dispersion shell
or the group line. Even the three-dimensional pass-band filters have not a typical shape showed
before. The filter is represented by 4 colours according to the phenomenon displayed, being
the orange colour which represents the dispersion relation, in green colour the aliased of the
dispersion relation, in light blue the first harmonic and in dark blue the aliased first harmonic.
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Figure 7.3: Pictures on the top represent the three-dimensional pass-band filter for the red
window. The pictures on the bottom represent the spectra for red window before being filtering
for the same transects than the first row. The first subplot in the first row depicts a transect
in the 3D-spectrum for kx = 0 rad m−1 axis, the second subplot in the first row represents a
transect in the 3D-spectrum for ky = 0 rad m−1 axis and the third subplot in the first row depicts
a transect for ω.
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Figure 7.4: Pictures on the top represent the three-dimensional pass-band filter for the pink
window. The pictures on the bottom represent the spectra for pink window before being filtering
for the same transects than the first row. The first subplot in the first row depicts a transect
in the 3D-spectrum for kx = 0 rad m−1 axis, the second subplot in the first row represents a
transect in the 3D-spectrum for ky = 0 rad m−1 axis and the third subplot in the first row depicts
a transect for ω.

In the figure 7.6 the three dispersion relations extracted by the adaptive filter are represented.
The first corresponds to the red window, the second to the pink window and the third to the
yellow window. All of them are well defined, however they can be seen in the spectra.

7.3 Study of the group line

The table 7.2 collects the values of the mean intensity contained in the 3D spectrum of the the
group line for the three windows. In this case the group line is maximum in the red window and
minimum in the yellow window.

Table 7.2: The mean intensity contained in the 3D spectrum of the group line.

Red window Pink window Yellow window
IGL [dB] 38.72 33.87 30.46

The values of the mean intensity contained in the 3D spectrum of the group line are greater
than the values of the mean intensity contained in the 3D spectrum for the dispersion shell.
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Figure 7.5: Pictures on the top represent the three-dimensional pass-band filter for the yellow
window. The pictures on the bottom represent the spectra for yellow window before being
filtering for the same transects than the first row. The first subplot in the first row depicts
a transect in the 3D-spectrum for kx = 0 rad m−1 axis, the second subplot in the first row
represents a transect in the 3D-spectrum for ky = 0 rad m−1 axis and the third subplot in the
first row depicts a transect for ω.

How it was commented above, in the figures 7.3, 7.4 and 7.5 it is not possible to see the group
line. However the extraction of the group lines for each window are shown in the figure 7.7. The
first image represents the group line for the red window, the second for the pink one and the
third picture shows the group line for the yellow window.

7.4 Study of the Signal to Noise Ratio

In chapter 6 different kind of SNR was presented and here is going to follow the same procedure.
Therefore, the SNRs under study are:

• SNR12: Signal due to the dispersion shell and without group line filtered by the three-
dimensional pass-band filter without MTF and Noise considering the group line but not
considering the interpolation.

• SNR22: Signal due to the dispersion shell and without group line filtered by the three-
dimensional pass-band filter with MTF and Noise considering the group line but not
considering the interpolation.
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Figure 7.6: Dispersion relation for red, pink and yellow-labeled windows.

• SNR32: Signal due to the dispersion shell and without group line filtered by the
adaptive filter without MTF and Noise considering the group line but not considering
the interpolation.

• SNR42: Signal due to the dispersion shell and without group line filtered by the adaptive
filter with MTF and Noise considering the group line but not considering the interpolation.

• SNR14: Signal due to the dispersion shell and without group line filtered by the three-
dimensional pass-band filter without MTF and Noise considering the group line and the
interpolation.

• SNR24: Signal due to the dispersion shell and without group line filtered by the three-
dimensional pass-band filter with MTF and Noise considering the group line and the
interpolation.

• SNR34: Signal due to the dispersion shell and without group line filtered by the adaptive
filter without MTF and Noise considering the group line and the interpolation.

• SNR44: Signal due to the dispersion shell and without group line filtered by the adaptive
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Figure 7.7: Group line for red, pink and yellow-labeled windows.

filter with MTF and Noise considering the group line and the interpolation.

• SNR51: Signal due to the dispersion shell and group line filtered by the three-dimensional
pass-band filter without MTF and Noise without considering the group line neither the
interpolation.

• SNR61: Signal due to the dispersion shell and group line filtered by the three-dimensional
pass-band filter with MTF and Noise without considering the group line neither the
interpolation.

• SNR71: Signal due to the dispersion shell and group line filtered by the adaptive filter
without MTF and Noise without considering the group line neither the interpolation.

• SNR81: Signal due to the dispersion shell and group line filtered by the adaptive filter
with MTF and Noise without considering the group line neither the interpolation.

• SNR53: Signal due to the dispersion shell and group line filtered by the three-dimensional
pass-band filter without MTF and Noise without considering the group line but the
interpolation is considered.
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• SNR63: Signal due to the dispersion shell and group line filtered by the three-dimensional
pass-band filter with MTF and Noise without considering the group line but the
interpolation is considered.

• SNR73: Signal due to the dispersion shell and group line filtered by the adaptive filter
without MTF and Noise without considering the group line but the interpolation is
considered.

• SNR83: Signal due to the dispersion shell and group line filtered by the adaptive filter with
MTF and Noise without considering the group line but the interpolation is considered.

In the tables 7.3 and 7.4 the values of the SNR are collected, but they are separated according
if the group line belongs to Signal or Noise. The values of SNR related to the adaptive filter are
written in bold letters.

Table 7.3: Signals that not consider the group line as a part of a signal and Noises that consider
the group line as a part of a noise.

SNR [dB] Red window Pink window Yellow window
SNR12 0.12 0.17 0.19
SNR22 1.91 2.13 2.96
SNR32 0.49 0.15 0.38
SNR42 15.72 1.82 7.63
SNR14 0.11 0.16 0.18
SNR24 1.81 2.21 2.82
SNR34 0.42 0.15 0.37
SNR44 13.28 1.85 7.37

Table 7.4: Signals that consider the group line as a part of a signal and Noises that not consider
the group line as a part of a noise.

SNR [dB] Red window Pink window Yellow window
SNR51 0.18 0.27 0.24
SNR61 3.89 4.15 4.49
SNR71 0.62 0.25 0.44
SNR81 19.74 3.77 9.82
SNR53 0.17 0.25 0.22
SNR63 3.56 3.89 4.17
SNR73 0.49 0.24 0.41
SNR83 15.64 3.65 9.20

The SNR values got by the adaptive filter for the red and yellow window are higher than
those obtained by the three-dimensional pass-band filter. However, only for pink window, values
got by the adaptive filter are lower than those obtained by the three-dimensional pass-band
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filter. Another observation is that applying the modulation transfer function, the value is always
greater. The main disadvantage observed here is that the table 7.3 is not equal to 7.4. In this
case, the SNR not depends only on the dispersion relation, the group line must be taken into
account.

The frequency wave spectrum S(ω) is represented in 7.8. The figure shows if the dispersion
shell that have been extracted is very similar to the subtraction between the original marine radar
spectrum and the spectrum where the dispersion relation has been extracted and interpolated.
The first picture is the S(ω) for red window, the second corresponds to the pink window and the
third is the S(ω) for the yellow window. But in all of them, the adjustment is not very good,
there are big differences between the two curves.

0 0.5 1 1.5 2 2.5
-1

0

1

2

3

4

5
x 10

6

W [rad/s]

S
(w

)

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6
x 10

6

W [rad/s]

S
(w

)

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

0 0.5 1 1.5 2 2.5
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

W [rad/s]

S
(w

)

 

 

S(w)
I(K,w )-N(K,w )

S(w)
F(K,w )

Figure 7.8: Evolution of the S(ω) of the dispersion relation (in red colour) and the S(ω) of the
subtraction of the original marine radar spectrum minus the interpolated spectrum (in green
colour) for the red, pink and yellow-labeled windows respectively.



Chapter 8

Simulation of Wave Fields and
Associated X-Band Radar Images

The structure of the phenomena involved in the formation of the radar images of the sea surface
and their related image spectra is still under investigation. There are different mechanism
responsible of the radar imagery that are not well-understood yet. A possible way of analysis is
to investigate all the physical phenomena involved in the backscattering due to the sea surface
roughness using a full electromagnetic approach [13, 14]. This approach requires to model some
physical effects, such as wave breaking and sea surface foam formation, that are responsible of
strong back scatter, which are not well understood either. In addition, the full electromagnetic
approach required the use of solving numerical models that need supercomputation facilities [14].
All of that means that the full electromagnetic approach is not fully feasible yet. A different
approach is using stochastic approach that takes into account some of the most relevant physical
phenomenon involved in the formation of the sea clutter. This approach permits to simulate
radar images for given meteorological conditions. Thus, the use a simulation tool capable of
provide reliable simulations of sea clutter images is useful for two different applications:

• Analysis of effects of different sea surface properties (e.g. wave spectral shape, wind
conditions, etc.) and theirs effects on the sea clutter images (e.g. shadowing, tilt
modulation, etc.) [34].

• Derivation of those sea surface properties from the simulated sea clutter image developing
inverse modelling techniques [11].

• Obtaining of more realistic synthetic sea clutter images for developing of filter involved in
radar applications, such as robust target detection in presence of strong clutter conditions.
Hence, a simulation model based on the most relevant physical phenomena responsible on
the backscatter is a most useful tool than the simplistic approach use on some of the radar
filters that consider that the sea clutter is just a K-distributed random process [35, 36]
(i.e. not important effects, such shadowing or tilt modulation are not considered in the
K-distribution models).

99
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This chapter deals with the application of a simulation scheme based on the stochastic
description of ocean waves and their associate radar images (see chapters 2 and 3) to extract
information about the structure of the image spectrum in the (k, ω)-domain.

8.1 Simulation of sea surface elevation fields

Under the frame of the linear wave theory described in chapter 2, and assuming an Eulerian
description of the free sea surface [31] given the stochastic model (2.5), the wave elevation η for
each sea surface position r = (x, y) at time t can be expressed as [37]

η(r, t) =
∑
k

ak cos (k · r− ω(k)t+ ϕk) (8.1)

where k = (kx, ky) is the wave number vector, ω the angular frequency, which is related to
k through the dispersion relation of linear gravity waves [3], and ak and ϕk the respective
amplitudes and phases of each wave component identified by the wave number k. For practical
purposes, equation (8.1) is computed by using a two-dimensional Fast Fourier Transform (FFT)-
based algorithm [37]. In that case, the sea surface coordinates r = (x, y) are spatially sampled,
with spatial resolutions (∆x,∆y). In the same way, the wave number vectors k = (kx, ky) are
as well sampled with the resolutions (∆kx,∆ky) given by the Discrete Fourier Transform (DFT)
theory. In that case, it is convenient to rewrite the expression (8.1) in the following way

η(r, t) = Re

∑
kx

∑
ky

ck(t) ejk·r

 (8.2)

where the complex coefficients ck(t) are the input of a two-dimensional FFT algorithm for a
given time t, i.e.

ck(t) ≡ ak ej(−ω(k)t+ϕk). (8.3)

Note that, for a given time t, the coefficients ck(t) are distributed in a complex matrix depending
on the sampling values, (∆kx,∆ky), of the wave number vector k = (kx, ky).

As it was mentioned in the above chapter 2, those wave fields described by equation (8.1)
are usually considered as stochastic processes [4], the random variables that lead the stochastic
properties of η in the expression (8.1) are ϕk and ak. Assuming that the wave elevation field η
is a zero-mean Gaussian-distributed variable, the phases ϕk are usually considered as uniformly
distributed random variables in the interval [−π, π), and the amplitudes ak follow a Rayleigh
distribution. The amplitudes ak are derived from the so-called wave number spectrum F (k)

as [37]
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ak =
√
F (2)(k)∆kx∆ky/2 ·

(
α2

k + β2
k

)1/2 (8.4)

where αk and βk are two uncorrelated zero-mean and unit-variance Gaussian variables. Hence,
ak is a Rayleigh-distributed random variable. The division by 2 inside the root squared in
equation (8.4) is necessary to keep the variance of the process η and it is due to the fact of taking
only the real part of at the end of the FFT algorithm. The spectrum F (2)(k) depends on the
meteorological conditions responsible of the wave field generation [3]. To express the function
F (2)(k) in terms of the theoretical parameterizations that lead the spectral properties from a
given meteorological situation, F (2)(k) is factorized as [23]

F (2)(k) = S(ω)D(ω, θ)
1

k

dω
dk

, (8.5)

where S(ω) is the frequency wave spectrum, which gives information of the wave energy
distribution for each wave frequency ω, and D(ω, θ) is known as the directional spreading
function, which represents the wave propagation direction probability density function for each
wave frequency ω (see chapter 2), being θ = tan−1 (ky/kx) the wave propagation direction. The
term 1/k · dω/dk are the needed Jacobians to change from the (ω, θ) to the (kx, ky) spaces [23].
For that purpose, equation (8.5) takes into account the fact that ocean waves are dispersive, and
the dispersion relation (2.3) for ocean waves

ω =
√
gk tanh(kd) + U · k. (8.6)

In presence of a current U = (Ux, Uy), the expression (8.6) has to be rewritten for a properly
derivation of the group velocity vg = dω/dk that appears in equation (8.5). Hence, for a given
wave direction θ and considering a fixed current direction θU = tan−1(Uy/Ux), the expression
(8.6) can be rewritten as

ω =
√
gk tanh(kd) + Uk cos(θ − θU) (8.7)

where U = |U|. Therefore, for a given wave direction θ, the group velocity vg is

vg(k, θ) =
dω
dk

= g
tanh(kd) + kd/ cosh2(kd)

2
√
gk tanh(kd)

+ U cos(θ − θU). (8.8)

To estimate S(ω) in equation (8.5), JONSWAP spectra [38] can be considered for wind sea
conditions, and a Wallops spectra [39] for swell cases. For the directional spreading function
D(ω, θ) the parameterization proposed by Mitsuyasu et al. [40] has been taken into account.
Figure 8.1 shows an example of simulated wave field using the stochastic description of sea states
given by equation (8.1).
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Simulated Wave Elevation Field [m]

Figure 8.1: Simulated wave elevation field derived from a JONSWAP spectrum with fp = 0.12 Hz
and Hs = 4 m.

8.2 Simulation of X-band marine radar images

Once the sea surface elevation due to the wave field η(r, t) is derived by using equation (8.1),
the next step is to simulate the corresponding marine radar images. For that purpose the
different known mechanisms responsible of the backscatter phenomenon of the electromagnetic
fields transmitted by the radar antenna have to be taken into account. The simulation method
of marine radar images associated to a given wave field proposed in this work considers the basic
form of the radar equation given by expression (3.9) [41], where the ratio between the transmitted
power Pt and the received power Pr is given by

Pr
Pt

=
GAeff σ

(4π)2R4
(8.9)

The radar cross section (RCS) is represented by σ and it is factorised as σ = σ0At, where At
is the area of the target and σ0 is the so-called Normalized Radar Cross Section (NRCS). In
this context, the target is the facet of the sea surface illuminated by the radar. The facet size
depends on the azimuthal ∆φ and range ∆R radar resolutions. The simulation method of radar
images assumes the characteristics and operation conditions of a conventional marine radars [41],
i.e. X-band, grazing incidence conditions, HH-polarized, logarithmic amplifier, and incoherent
system with no frequency agility.
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8.2.1 Steps of the sea clutter simulation for marine radar conditions

The method to simulate the sea clutter from a given sea surface, considers the position of the
radar antenna (i.e. (x, y, z) coordinates, where z = 0 indicates the mean sea level), as well as
the azimuthal ∆φ and range ∆R resolutions. Hence, for a flat sea surface, and considering a
rectangular radar pulse, the target area At of a radar beam at range R is At ≈ R∆R∆φ. Figure
8.2 illustrates the radar imaging geometry used for the simulation of sea clutter images. The
basic steps to compute the radar image estimations can be summarised as

Tangent
   Plane   Radar

Antenna

Sea Level

Shadowed
     Waves

Figure 8.2: Two-dimensional scheme of the radar imaging geometry used for the sea clutter image
simulation.

1. Shadowing modulation: This effect appears when high waves hide lower waves to the
radar antenna. The shadowing modulation considers a geometric optics approach, which
can be assumed valid as a first order approach of the backscattering phenomenon for
HH-polarization and grazing incidence conditions at far ranges [11], which is the typical
operational situation of a marine radar. Hence, this geometrical approach does not
take into account higher order backscattering mechanisms, such as the diffraction of the
electromagnetic fields behind the wave crests that are easily measured by other kind of
more sensitive radar systems [42].

At grazing incidence, the X-band radar imagery mechanisms induce a strong modulation in
the radar images. The example shown in the previous figure 3.2 illustrates the shadowing
effect as black areas of the radar intensity image behind the radar imaged wave fronts.
Under these assumptions, for marine radar operational conditions, the local incidence angle
on an illuminated facet of the sea surface at position r = (x, y) at time t is given by the
radar range R(r), the wave elevation η(r, t), and the radar antenna height over the sea
level Hr as (see Figure 8.2)

θ0(r, t) = tan−1

[
R(r)

Hr − η(r, t)

]
. (8.10)
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At the instant t, the facet at point r will be shadowed to the antenna if there is another
facet located at point r′, with range R′ = R(r′) < R(r), with the same azimuthal angle φ
than the point r (e.g. φ(r′) = φ(r)), that has an incidence angle θ′0 = θ0(r′, t) ≥ θ0(r, t).
Hence, the illumination mask m(r, t) is constructed as

m(r, t) =

{
1, if no shadowing occurs
0, otherwise.

(8.11)

The illumination mask m(r, t) contains information about the spatio-temporal evolution of
the shadowing mechanism. Figure 8.3 shows an example of illumination mask m obtained
from the simulated wave field shown in figure 8.1 for a value Hr = 30 m.

Illumination Mask
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Figure 8.3: Illumination mask of the simulated wave field shown in figure 8.1. The illuminated
areas are coded in white. The black areas are shadowed. The radar is located in the center of the
image. The inner circle in black corresponds to the range where a typical marine radar presents
saturation of the backscatter signal.

2. Tilt modulation: This effect depends on the orientation of the radar illuminated facet of
the sea surface to the antenna [11]. Knowing the sea surface η(r, t), the tilt modulation can
be evaluated by using the dot product between the three-dimensional unit exterior normal
vector n(r, t) to the simulated sea surface η(r, t), and the three-dimensional unit vector
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from the facet to the radar antenna, u(r, t) (see figure 8.2). For a given time t, the unit
exterior normal vector to the sea surface n(r, t) is constructed assuming that z = η(x, y, t)

is a differentiable surface in R3, which is a valid assumption for a spatial scale equal or
larger than the facet size. Hence, the wave elevation surface can be described analytically
by the following parameterized vector field η(r, t) ∈ R3

η(r, t) =

 x

y

η(r, t)

 (8.12)

From equation (8.12), the three-dimensional tangent vector fields to the surface η(r, t)

along the x and y coordinates are respectively [43]

τ x(r, t) =
∂

∂x
η(r, t) =

 1

0

∂η(r, t)/∂x

 (8.13)

and

τ y(r, t) =
∂

∂y
η(r, t) =

 0

1

∂η(r, t)/∂y

 (8.14)

Assuming the expression (8.2), the spatial derivatives of η(r, t) used in equations (8.13)
and (8.14) are given by

∂η(r, t)

∂x
= Re

∑
kx

∑
ky

jkx ck(t) ejk·r

 (8.15)

and

∂η(r, t)

∂y
= Re

∑
kx

∑
ky

jky ck(t) ejk·r

 (8.16)

Hence, jkx ck(t) and jky ck(t) are the input for the two-dimensional FFT algorithms to
compute ∂η/∂x and ∂η/∂y respectively. Taking into account the expresssions (8.13) and
(8.14), the vector field n(r, t) is given by

n(r, t) =
τ x(r, t)× τ y(r, t)
|τ x(r, t)× τ y(r, t)|

=
−∇η(r, t) + ez√
|∇η(r, t)|2 + 1

(8.17)

where × denotes the vector product, and ∇ = ∂/∂x ex + ∂/∂y ey is the two-dimensional
gradient operator, being ex, ey, ez the triad of unit vectors along each axis, x, y, z,
respectively.
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Therefore, using the expression (8.14), the tilt modulation T (r, t) is given by the dot
product

T (r, t) = n(r, t) · u(r, t) = cos θi(r, t) (8.18)

where θi(r, t) is the local angle of incidence due to the face orientation to the antenna (see
figure 8.2).

3. Estimation of NRCS, σ0: The estimation of σ0 considers the local incident angle θi(r, t)
obtained from the tilt modulation T given by equation (8.18). Hence, from θi(r, t), and
assuming that the backscattering can be approached by the Small Perturbation Model
(SPM) [44], and taking into account horizontal polarization, the fact of sea water presents
good conductivity for X-band, and the wavelengths of the ocean waves are much larger
than the decorrelation distance of the backscattering ripples that cause the backscattering,
NRCS is approximately σ0(r, t) ∼ cos4 θi(r, t). Hence, taking into account the shadowing
effect, NRCS is given by

σ0(r, t) ∼ T 4(r, t) ·m(r, t) (8.19)

where m is the illumination mask defined in equation (8.11) and T is the tilt modulation
(equation (8.18)). Note that, due to the effect of the illumination mask, equation (8.19)
provides always zero or positive values, σ0 ≥ 0. From equation (8.19), RCS is computed
considering a rectangular radar pulse as

σ(r, t) ≈ σ0(r, t)R∆R∆φ.

4. Speckle noise: To simulate the speckle properties appearing on radar images, a
multiplicative noise exponentially distributed [45] is applied to RCS, σ(r, t) 7→ σ(r, t) ·
s(r, t), where s(r, t) is the realization of the speckle noise for each sea surface position r at
time t.

5. Radar equation: The range and RCS dependence appearing in the radar equation given
by 8.9 is applied to each sea surface position r at time t.

6. Logarithmic amplifier: To simulate the responds of the radar amplifier the radar
equation 8.9 is applied in a logarithmic version. Hence, excluding the variables that are
not known of the radar antenna (e.g. G and Aeff), and taking into account equations 8.18
and 8.19, the received radar intensity signal is proportional to

4 log[cos θi(r, t)] + log[s(r, t)] + log(∆R∆φ)− 3 logR (8.20)

Note that for a logarithmic amplifier, the variables G and Aeff induce only an offset in the
received signal. This offset should not be considered as marine radars are not calibrated
systems and they only provide a set of grey level values.
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7. Digitalization of the data: As marine radars are not calibrated radar systems (i.e. they do
not provide direct information about the received power Pr, but a grey level pattern in the
radar screen), the result of the simulated sea clutter is codified in a range of bits as the
normal output of the video radar signal is sampled by the A/D converter of the WaMoS-II
system. Using the same conditions that the WaMoS-II system install at FINO 1 research
platform, the simulated data are codified in one unsigned byte.

There are still some physical phenomena that are not included in the scheme described
above, like the background noise (see section 4.3.1), nor the dependence on the wind speed
and direction, nor the electromagnetic diffraction mentioned before. In addition, additional
features that appear in the radar imagery, like the hydrodynamical modulation is not considered
either. In addition to those improvements, an exhaustive comparison of the simulated results
with real measurements from WaMoS stations has been carried out. That would improve the
simulation techniques providing more realistic sea clutter simulations. Figure 8.4 illustrates the
corresponding simulated sea clutter image derived from the wave field shown in figure 8.1.
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Figure 8.4: Simulated sea clutter image corresponding to the wind sea state shown in figure 8.1.
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8.3 Example: image spectrum of a simulated sea clutter time
series

This section shows an example of the sea clutter properties that can be reproduced from the
simulation method described above. As an example, a sea state of an unimodal wave field has
been numerically synthesised. The mean direction of the wave field is pointed to 270◦ (pointing
to y < 0 direction). The simulated sea surface area is 4 × 4 km2. And the simulated radar
antenna is located at the three dimensional coordinate (2000, −300, 40) [m]. For the simulation,
a time series of wave elevation sea surfaces composed of 256 time steps, with a sampling time
of ∆t = 2.5 s, was derived. The spatial resolutions are ∆x = ∆y = 7.5 m. Those values
correspond to the spatio-temporal resolution in the FINO 1 WaMoS-II set-up. Figure 8.5 shows
the simulated sea surface (left side of the figure) for the first time step (i.e. t = 0 s), as well
as the wave spectrum transect in the (0, ky, ω)-domain (right side of the figure). For this time
step, the spatial derivatives, ∂η/∂x and ∂η/∂y, used to define the unit exterior vector n (see
expression (8.17)) are shown in figure 8.6.
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Figure 8.5: Simulated wave field with fp = 0.1 Hz and Hs = 3 m (left) and corresponding wave
spectrum transect in the (0, ky, ω) domain, i.e. transect kx = 0 (right).

For the first time step, the corresponding simulated radar image for these conditions and
its related illumination mask are shown in figure 8.7. It can be seen how the shadowing (areas
coded with black colour in the illumination mask) increases as the range R increases as well. It
can be seen that the spectrum of the simulated radar image shown the main properties, such as
the quasi-static patterns, for |ω| ≈ 0, the dispersion relation, the first harmonic, and the group
line. In addition, those features, can be as well identified. This fact indicates that the shadowing
is one of the most relevant modulation mechanisms for marine radar conditions (i.e. grazing
incidence, incoherent radar receiver and HH-polarization).
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Figure 8.6: Spatial derivatives ∂η/∂x (left) and ∂η/∂y (right) of the simulated wave field shown
in figure 8.5.
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Figure 8.7: Simulated sea clutter image (left) and the corresponding illumination mask (right)
for the simulated wave field shown in figure 8.5.

8.3.1 Illumination mask spectrum from real data acquired in FINO 1

In the previous text it was shown how the simulated illumination mask present the most relevant
modulation features for grazing incidence and HH-polarization. This section shows a example
of a real case measured in the FINO 1 platform. For the standard set-up of the WaMoS-II
system in FINO 1, the length of the image time series is composed by 32 consecutive images.
Therefore, in this case the expected frequency resolution is coarser than the examples above
mentioned, which were obtained from the simulation scheme. Hence, figure 8.9 shows some time
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Figure 8.8: Image spectrum (left) of the simulated radar image shown in figure 8.7 and spectrum
of the illumination mask (right). Both spectra are shown in the transect kx = 0, (0, ky, ω)-
domain.

steps of the analysis window of a sea clutter image and the corresponding illumination mask.
The illumination mask has been obtaining by thresholding the values of the sea clutter intensity.
Hence, for those values of the sea clutter higher than 1 byte, the illumination mask m(r, t) is
set to 1, otherwise it m(r, t) = 0. The corresponding spectral transect in the (0, ky, ω)-domain
are shown in figure 8.10. It can be seen that the illumination mask spectrum keeps most of
the relevant features of the image spectrum, such as the dispersion relation, the first harmonic
(which is aliased in this case due to the coarse frequency resolution), as well as the group line.
This indicates that the shadowing scheme described in this section is capable of reproducing
most of the relevant features of the structure of the image spectrum.
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Figure 8.9: Example of sea clutter time series measured in Fino 1 platform (left) and the
corresponding illumination mask (right).

Figure 8.10: Image spectrum (left) and the corresponding illumination mask spectrum (right) of
the image time series shown in figure 8.9. Both spectra are shown in the transect kx = 0.





Chapter 9

Study of the Near-Surface Sea Current
with Different Sensors

This work is focus on analysing X-band marine radar images to study the main characteristics
of the sea such as the dispersion shell, the group line, the Signal to Noise Ratio and the wave
height. But there is another important phenomenon to talk about, this is the near-surface sea
currents.

This carried out study has been the aim of the article [46]. Considering that the remote
sensing sensors and in-situ devices are not perfect, four machine learning regressors base on
artificial neural network has been developed to improve the accuracy of the in-situ devices.
The machine learning regressors are ANN trained by different algorithms such as Levenberg-
Marquart and Extreme Learning algorithms, and other regressors as Support Vector Regression
and Gaussian Processes.

The aim of this paper is taking the accurate current results provided by the in-situ device
and correcting the estimation provided by the remote sensing sensors.

9.1 Sea current

Ocean currents are directed, continuous seawater movement, essential in the characteristics of
the temperature in many of the Earth’s regions. Tides are caused by the force of gravity of the
Sun and the Moon. However, a sea current is generated by forces such as wind, breaking waves,
cabbeling, tides, the Coriolis effect, the salinity and temperature differences. The direction and
the strength of a current are due to interactions with other currents, shoreline configuration and
depth profile.

The current is not constant related to depth, being less powerful in the bottom and stronger in
the surface because of the atmospheric force. A significant part of the atmospheric momentum
and energy fluxes goes into the waves. When the waves disappear, a flux of momentum and
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turbulent kinetic energy from the waves to the ocean is generated. This is illustrated as a surface
stress that accelerates the mean flow and increases near surface turbulent [47].

The current of encounter U = (Ux, Uy), is not a superficial current, but the weighted mean
of the all currents existing in the superficial layer of the ocean [15]. Hence it is a contribution
of different effects as relative velocity between the observer and swell, induced current produced
by tides, the current produced by wind, the current introduced by swell and other currents
associated by oceanic movement.

The main disadvantage of the marine radar to estimate the current of encounter is that the
radar only considers the energy due to the wave field, refusing the spectral noise produced by
the radar when the images are generated. Therefore, the high energy due to the wind sea is not
considered in the estimation because this energy is in high frequencies where the effects of the
radar noise are evident. The marine radar essentially measures the Eulerian current, measuring
the signal in fixed regions in the sea surface.

9.2 The data set to analyse

The data are provided by the German research ice breaker vessel Polarstern. This vessel belongs
to Alfred Wegener Institute for Polar and Marine Research. The length of the vessel is 118 m
and is a double-hulled icebreaker, working even in temperatures equal to -50o C. It can break
blocks of ice whose thickness is between 1.5 m to 3 m.

Figure 9.1: German research ice breaker vessel Polarstern.
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The data used in this research are the measurements campaign over the North Sea (Norway
and Greenland Sea) in May 2015. The data come from different sensors and all of them are
complementary.

• Acoustic Doppler Current Profilers (ADCP): It is a hydroacoustic device that measures
water current velocities over a range of depth applying the Doppler effect. The ADCP
provides the three-dimensional current field information in a particular depth, giving
accurate measurements. In this case, the data were collected as a 20 minutes average
about 25 m water depth below the sea surface.

• WaMoS II System: Otherwise the X-band marine radar, provides the value of the sea
surface current. But this value has a strong dependency on the local wind and the wave
field conditions.

• Wind data measurements: These wind data were recording as well, and they were used to
estimate the current.

9.3 Current field estimations by X-band marine radar

In all this work it has been commented that the marine radar images show the images related to
the movements of the free sea surface. The current provided by the marine radar is the current
or velocity of encounter [7], which is used to determine the dispersion relation. The marine
radar only estimates those currents encounter which take part in the dispersion shell, it means,
those which are generated by the wind that, at the same time, generate waves. The rest of the
currents that are not considered in the dispersion relation, are disregarded. Besides, the current
of encounter is sensitive with geophysical phenomena that cause current fields that could affect
ocean waves, and the relative motion, doing a correction if the measure has taken on board:

Ugeo = Uenc −Ugps (9.1)

being Uenc the current of encounter, Ugps the course information of the GPS of the boat and
Ugeo is the geophysical effects that can be written as:

Ugeo = Uqe + Uwav (9.2)

The geophysical current is due to the Uqe quasi-Eulerian current and Uwav wave factor or Stokes
drift. The quasi-Eulerian current is a combination of different contributions such as internal
motion, wind drifts and tides. This current is a weighted average of the current from the surface
down to the penetration depth of the water particle orbital motions due to the wave. When the
penetration depth increases, the weighted average decreases.

Therefore, X-band marine radars estimate the current of encounter with less accuracy than
the in-situ devices, like ADCPs. This is the reason to use machine learning regression techniques
to correct the current estimation by the radar, in order to get the accuracy measurement provided
by the ADCP.
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9.4 Machine Learning regression techniques

Machine Learning is a part of Artificial Intelligent that allows for creating systems capable
to learn by themselves from a data set without explicit programming and whose purpose is
predicting the future, events, tags, etc. These systems need techniques and algorithms to create
predictive models and patterns. For these techniques the training vector, or predictive variable,
is formed by the measurements of the current at a giving point in the sea obtained by the ADCP.

The regression techniques in [46], which are going to be commented, are:

• Multilayer Perceptron (MLP): It is a kind of ANN used to model nonlinear problems.
It is capable to learn and generalise from input patterns to the known output targets,
minimizing the error between the output generated by the MLP and the corresponding
known output. A brief theory about neural network is collected in the annex B.

• Extreme Learning Machines (ELM): It is an avant-garden and fast learning method which
is based on a feed-forward MLP structure. The most important characteristic is that the
weights in hidden layer are not calculated and for this reason, this layer do not need be
trained. The network weights are setting randomly and then a pseudo-inverse of hidden
layer output matrix is estimated. A summarise of ELM can be found in the annex C.

• Gaussian Process for Regression (GPR): It is a generic supervised learning method use to
solve regression problems. GPR is a kind of continuous stochastic process that defines a
distribution of probability for functions and inferences taking place directly in the space of
functions. In the annex D it is able to find a brief synopsis.

• Support Vector Regression algorithms (SVR): They are a set of supervised learning
algorithms developed by Vladimir Vapnik and his team. They are related to linear
classification and regression problems. A SVM builds a hyperplane in high dimensional
space, where the hyperplane separates in optimal way the samples of different classes. The
SVM searches the hyperplane whose distance between the samples and itself is maximal.
A brief review is collected in the annex E.

9.5 Experimental results

The marine radar data provide spatio-temporal information, whereas the ADCP data give in-
situ information about the temporal average of the current Ui−s for different depths. Machine
Learning gives the opportunity to correct the estimation of the velocity of encounter estimated
by the marine radar to the geophysical current Ugeo. Because of the depth, waves and wind
conditions, generally, the modulus of the current given by the ADCP is lower than the current
expected by the WaMoS system.

The study is focused on the modulus and the phase of the current of encounter. The best
correction for the modulus |Ugeo| and the phase Θgeo

U are obtained by the GPR. The figures 9.2
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Figure 9.2: Θgeo
U correction with GPR.

 

Figure 9.3: |Ugeo| correction with GPR.

and 9.3 show the results with the best correction, the GPR, in phase and in modulus of the
current. But three sea state parameters such as significant wave height, mean and peak period
are used as well to correct the estimations.





Chapter 10

Conclusions

The spectra of the X-band marine radar images have been examined exhaustively. The targets
of this analysis are the phenomena related to waves, which are visible in the radar image spectra
because of their energy distributions. The main energy is located in the dispersion relation
caused by the spatio-temporal dynamics of the waves. Hence, the dispersion shell relates the
dependency between the angular frequency and the wave number describing the shape of the
wave propagation. The spectral energy of the dispersion relation depends on external factors
like the wind strength, this is the main reason that the data selected to carry out the study
had to have high values of significant wave height. This consideration avoid those cases of low
backscatter, with weak dispersion relation, higher harmonics and group line features that cannot
permit to derive conclusive results. The main conclusion are summarised as:

• The intensity of the dispersion relation is high in near range, however it is weaker in far
range.

• The shape definition of the dispersion relation is better in far range than in near range,
because the noise of background is weaker. In addition, for moderate far range the
shadowing modulation is stronger, which contributes to an easier detection of the dispersion
shell.

• In cross azimuthal direction, respect to the wave direction, the intensity is weaker and the
dispersion relation shape is not very well defined, and the background noise is higher.

Therefore, the detection of the dispersion relation is optimal for far range and in mean wave
propagation direction, or 180◦ off the mean wave propagation direction. Therefore, the intensity
of the dispersion relation is weaker, but the shape is very well defined, however in near range the
dispersion relation and the group line are very close of each other, and it is difficult to isolate
both features.

Another important part of energy is located in the group line, in the centre of the spectrum
for small values of ω. The group line is the combination of different contributions, such as
nonlinear phenomena existing in the surface of the ocean, such as the wind, the effects produced
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by the waves breaking, etc. The group line study is not easy because of the closeness with the
dispersion shell, making its isolation difficult. Moreover, the size and the intensity of the group
line is modified by the intensity of the wind, the wave direction and the range in the radar image.
The group line, how it can be shown in this work, can be characterised by

• The group line can be considered as a subharmonic of the dispersion relation, such as the
subtraction of two fundamental modes. Hence, kGL = k2 − k1 and ωGL = ω2 − ω1.

• The spectral intensity of the group line is higher in the near range.

• The shape definition of the group line is better in far range than in near range. The high
intensity level makes difficult to extract it, because the most of the cases the dispersion
shell and the group line are very close located.

• In cross azimuthal direction, respect to the wave direction, the intensity is a bit lower, but
this variability in the intensity is not so pronounced as in dispersion relation case, and the
shape is not very well define, and the background noise is high.

• The intensity of the group line spectrum is bigger than the intensity of the dispersion
relation spectrum.

• In addition, the stochastic simulations of radar images, as well as the real data, show that
shadowing induces the group line features. So, the group line is caused as well by the radar
imagery at grazing incidence, and not only due to geophysical reasons.

The dispersion relation is the desired signal of this study, and the background noise, with or
without interpolation, it is the noise. Depending on considering what is signal and what is noise,
different definitions of SNR can be done. But independently of this, all of the SNR commented
in the work have the same tendency:

• For near range, the values of SNR are greater than for far range.

• The tendency of the curves are equivalent. The SNR takes the lowest values for the
azimuths around the cross direction, however the highest values are nearby the main
direction and the wave direction.

• The estimation of the SNR is not affected by the group line. Although the individual values
of the image spectrum for the group line spectral (k, ω)-components are comparable with
the spectral values corresponding to the (k, ω)-components within the dispersion shell, the
integral of those values does not affect significantly to the different estimations of SNR.
That means that the important contribution to SNR came from the dispersion shell itself.

When the significant wave height is low or the front of waves is vague, the results are not so
good, because the energy of the phenomena is weak and their definition of the shape are not so
clear, being the backscatter noise very high in comparison with the phenomena. For this reason,
the results obtained for Hörnum data set are not so good, whose significant wave height is less
than 1.6 m and the front of waves is not defined.
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Moreover the real data provided by the stations FINO 1 and Hörnum, simulation techniques
have been employed. Radar imagery have been obtained from simulated stochastic wave field
from the sea surface elevation, getting realistic synthetic sea clutter images. The simulations
techniques assume the characteristics and operation conditions of a conventional marine radars,
considering the main sea surface modulation mechanism for grazing incident and horizontal
polarization such as shadowing and tilt modulation, and what is more, they consider logarithmic
amplifier and incoherent system with no frequency agility. The illuminated mask is generated,
being equal to 1 the facet of the sea surface illuminated by the radar, and 0 for the rest. The most
important is that the illuminated mask includes the main contributions of the image spectrum.
It means, in the spectrum of the illuminated mask there are the dispersion relation, the higher
harmonics such as the first harmonic, and the subharmonic group line.





Part III

Appendices

123





Appendix A

Basic Hydrodynamics Theory of Waves

The basic theory of waves is based on the studies of Bernoulli and Euler (in XV III century),
Airy (1845) and Navier and Stokes (1847) [48]. From 1960, the spectrum description of the waves
was a high impact because of the Fourier spectrum analysis [49, 50].

A.1 Fluid fundamental equations

The main fluid fundamental equations are:

• The law of conservation of mass:
The quantity of mass is conserved over time. So for any system closed to all transfers of
matter and energy, the mass of the system must remain constant over time, as system mass
cannot change quantity if it is not added or removed. The main variable is the density
ρ(x, t), where x = (x, y, z) ≡ (x1, x2, x3). Hence, density × volume is constant and it can
be written as:

d
dt

(ρJ) = 0 (A.1)

Where J is the Jacobian of the distortion of the particles happened between the time
instants t = 0 and t, and d/dt can be expressed as:

d
dt

=
∂

∂t
+ u · ∇ =

∂

∂t
+

3∑
i=1

ui
∂

∂xi
(A.2)

Where u = (u1, u2, u3) is the velocity. Hence, J is the volume expansion in a trajectory
and its derivative in time is:

dJ
dt

= J∇ · u (A.3)

So the equation (A.1) can be written as:

d
dt

(ρJ) =
dρ
dt
J + ρJ (∇ · u) (A.4)
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If it is expressed as a partial derivative, it is obtained the general equation:

∂ρ

∂t
+∇ · (ρu) = 0 (A.5)

• The law of momentum conservation:
The total momentum of a collection of objects (a system) is conserved, that is, the total
amount of momentum is a constant or unchanging value. The amount of movement is
caused by different strengths such as fe, force due to the external fields such as gravitational
field, fc contact force and fv due to the viscosity. Hence, the momentum conservation for
fluids is:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ λ∇ (∇ · u) + µ∇u + fe(x, t) (A.6)

Where p is the pressure, the parameters µ and λ are related to the viscosity of the fluid
and ρ is the density.

Both equation (A.5) and (A.6) are nonlinear.

A.2 Euler’s equations. Perfect fluids

Because of the problematic to find a mathematical model to describe the behaviour of the fluids,
Euler simplified the problem considering two clauses:

• Fluids are incompressible: Fluids can not be compressed. This means that J is a constant
equal to 1 and the density ρ(x, t) is a constant in time. For these reasons, it can be written:

∂ρ

∂t
= 0 (A.7)

∇ · u = 0 (A.8)

• Fluids are perfect: Fluids do not suffer the viscous effects, this means perfect fluids have
no shear stresses, viscosity, or heat conduction (µ = λ = 0). The contact force fc is equal
to the pressure component fp = −∇p, so:

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p = fe(x, t) (A.9)

And even it can be simplified considering ρ = 1.

These equations reduce the complexity of the dynamic fluids giving good accuracy to
experimental results.
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λ : Wavelength  

H : H eight  α 

Figure A.1: Airy’s model and the most important parameters of the waves.

A.3 Airy’s theory. Linear wave

The hydrodynamics theory is nonlinear, but Airy’s theory promulgated the simplest one. George
Airy considered these hypothesis to simplify the complexity in hydrodynamics theory:

• Fluids are incompressible and no viscous.

• Considered main forces are the gravity and the pressure, and the superficial tangential
components are negligible.

• The bottom of the sea is deep, the depth is constant and impervious.

• The motion is irrotational, so ∇× u = 0.

• The wave is periodic, regular, two-dimensional and stationary.

• The amplitude is smaller than the wavelength and the depth.

The free surface elevation is considered as a sinusoidal wave with horizontal position x, time
t and z is the vertical coordinate (positive in the upward direction):

z = η(x, t) =
H

2
cos(kx− ωt) (A.10)

The figure A.1 represents the waves that are considered in this theory. The main parameters
are shown as well.

• The wavelength (λ) is the distance between two consecutive maxima.

• The height (H) is the vertical distance between the maximum and minimum.

• The slope (the red line in the figure A.1) can be estimated as tg(α) = 2H/λ.
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• The wave number, related to the wavelength, is equal to k = (2π)/λ.

• The angular frequency (ω), related to the frequency (f) and the period (T ), is equal to
ω = 2πf = 2π/T

• The wave celerity (C ) is the speed of propagation of an ocean surface wave C = λ/T = λ·f .

The accepted hypothesis for this theory involve to consider the equations (A.7), (A.8) and
(A.9) as the basis of the study. Besides it is necessary to know the main equations which manage
the swell propagation in an ideal fluid and the boundary conditions for this problem:

• Laplace’s equation: The mass and the volume do not suffer any variation in time for
incompressible and irrotational fluids. Hence, the velocity potential φ(x, z, t) must comply:

∂2φ

∂x2
+
∂2φ

∂z2
= 0 (A.11)

• Boundary condition in the bottom of the sea: The flow velocities have to go to zero in the
limit as the vertical coordinate goes to minus infinity:

For z = −d ⇒ ∂φ

∂z
= 0 (A.12)

Where d is the depth of the sea.

• The first boundary condition for free surface: The vertical motion of the flow has to be
equal to the vertical velocity of the free surface (η(x, t)):

∂φ

∂z
=
∂η

∂t
+
∂φ

∂x

∂η

∂x
(A.13)

Because of the amplitude of the wave is very small in compare to the wavelength, it is said
that z ≈ 0. Therefore the equation (A.13) can be written:

∂φ

∂z
=
∂η

∂t
(A.14)

• The second boundary condition for free surface: This is provided by Bernoulli’s equation
for an unsteady potential flow:

∂φ

∂t
+
Patm
ρ

+
1

2
(∇φ)2 + gη = 0 (A.15)

In free surface the atmospheric pressure Patm can be considered equal to 0.

For z = 0 ⇒ ∂φ

∂t
+ gη = 0 (A.16)

• Lateral boundary conditions: The waves are regular, so there is a periodicity in time (T )
and in wavelength (L):

φ(x, t) = φ(x+ L, t) and φ(x, t) = φ(x, t+ T ) (A.17)
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Figure A.2: Airy’s linear theory of wave motion breaks down when waves enter shallow water.
Adapted from New South Wales Coastline Management Manual (1990).

Airy supposes that the velocity potential φ(x, z, t) can be calculated like the product of three
independent terms and being a solution of Laplace’s equation:

φ(x, z, t) = X(x) · Z(z) ·R(t) (A.18)

To make this possible, the term R(t) must be regular and considered R(t) = sin(ωt). Therefore,
the velocity potential can be written as φ(x, z, t) = X(x)·Z(z)·sin(ωt) and the Laplace’s equation
(A.11) will be:

1

X

∂2X

∂x2
+

1

Z

∂2Z

∂z2
= 0 (A.19)

If the method based on separation of variables using partial derivatives is applied, the solution
is:

φ(x, z, t) = (A · cos(kx) +B · sin(kx)) ·
(
C · ekz +D · ekz

)
· sin(ωt) (A.20)

The value of the constants are obtained from the boundaries conditions and the solution for
the velocity potential is:

φ =
H

2

g

ω
· cosh (k(d+ z))

cosh (d+ z)
· sin (k · x− ωt) (A.21)

From this equation and considering the equation (A.16), the surface elevation can be
estimated and the result would be (A.10):

η =
1

g
· ∂φ
∂t

∣∣∣∣
z=0

=
H

2
cos(kx− ωt) (A.22)
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And what is more, the wavelength can be calculated by successive iterations from the formula:

λ =
g

2π
· T 2 · tanh

(
2πd

λ

)
(A.23)

The main conclusions got from Airy’s theory are the following and the figure A.2 shows them:

• For deep water (d ≥ (λ/2)), the fluid particles follow circular path, whose diameter suffers
an exponential decrease when the depth increases.

• For intermediate depth (λ/2 > d > λ/20), the particles follow elliptical path and the axis,
the major (parallel to the surface) and the minor, decrease exponentially when the depth
increases.

• For shallow water (d ≤ (λ/20)), the trajectory is elliptical as well but the major axis is
independent with the depth.

This approximation gives very good results, but only when the swell is low, it means the slope
is between the values 0.05 and 0.08. If the crest is higher, it is necessary to use the nonlinear
theory, such as Navier-Stokes for deep water and Cnoidal for shallow water.

A.4 Navier-Stokes’ equation. Viscous fluids

The Navier-Stokes’ theory gives a good description of the real swell. The fluid has its own
volume and takes up Ω domain, where Ω ⊂ R2 or R3. For each point of Ω there is fluid and for
each instant of time t, the fluid particles present a bijective correspondence with the coordinates
x = (x1, x2, x3) ∈ Ω. The fluid can be characterised for these statements:

• Velocity field is the velocity of each particle in each point of the domain x(x1, x2, x3) ⊂ Ω

in every instant of time t : u(x, t) = (u1, u2, u3)(x, t).

• The pressure in the fluid: p = p(x, t).

• The fluid density: ρ = ρ(x, t).

These equations are based on conservation of mass (A.5), the non-compressibilty of the fluids
(A.8) and the second Newton’s law, linked the particle acceleration and the forces, such as gravity,
friction or viscosity. They consider that the fluids are viscous and the value of the viscosity ν is
constant. Therefore, the equations are:

∂ρ

∂t
+∇ · (ρu) = 0 (A.24)

∇u = 0 (A.25)
∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇u + Fε (A.26)
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where ν is the kinematic viscosity and Fε is all the external forces. In cartesian coordinates, this
last expression can be written:

∂u1

∂t
+ u1

∂u1

∂x
+ u2

∂u1

∂y
+ u3

∂u1

∂z
= −1

ρ

∂p

∂x
+ ν

(
∂2u1

∂x2
+
∂2u1

∂y2
+
∂2u1

∂z2

)
+ Fx

∂u2

∂t
+ u1

∂u2

∂x
+ u2

∂u2
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Equation (A.26) is nonlinear and some of the more complex equations in the classical physics,
which cannot be not analytically solved to obtain exact solutions of them.





Appendix B

Artificial Neural Networks

The human brain is capable to interpret the vague information provided by the senses in a very
high speed. Neurons are highly specialized cells that make up the nervous system. The ner-
vous system is proactive and constantly makes assumptions about the environment. Neurons
can communicate with precision, speed and long distance with other cells, even if these cells are
nerves, muscles or glands. But the most important neurons are brain cells, that have functions
related to thinking, learning and memory. A set of physically interconnected neurons or a group
of single neurons that receive signals processed in a recognizable way is what is known as neural
network.

Nowadays, information treatment systems have been developed to work such as human brain,
because of features such as robustness, flexibility, adaptive learning, the way it uses the vague
information, low energy consumption, parallel data processing, very high speed and working in
real time.

Artificial Neural Networks (ANNs) emulate the biological neural network behaviour. ANNs
are the best choice in complicate situations where conventional methods do not get suitable
solutions. ANNs can implement a nonlinear function between the input and output. Therefore,
they are used in a wide range of applications such as pattern recognition [51], sonar, marine
radar [52] (particularly to detection ships [53]), prediction, control and optimization, voice and
images processing, process of noise elimination, etc.

Conventional computation systems work in a sequential way, and they usually have only one
processor to manipulate data and instructions that are stored in the memory. However, ANN is
a parallel system that do not execute instructions and the result is not stored in a memory cell,
but it represents the state of the network when the equilibrium is achieved. Therefore, the power
of the ANN is in its own topology and the connection values (weights) among the interconnected
neurons.
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B.1 Artificial Neural Network (ANN)

Artificial neural networks are information processing systems whose structure and function are
inspired by biological neural networks of the human brain. ANNs do not reach the complexity
of the brain, however there are two similarities between artificial and biological networks: the
first is that the building blocks of both networks are simple computational elements highly
interconnected, and the second is that the connection between neurons determines the function
of the network.

An artificial neuron is equivalent to a circuit that performs a weighted sum of the parallel
input signals and obtains an output whose value is 1 or 0 depending on the result of the sum
relative to a trigger level or threshold. The ANN is an interconnection between neurons in a
determined way.

• Entries pi represent the input signals to the neurons.

• wi represent the weights.

• ϕ is the transfer function that limits the amplitude of the output signal.

wi and pi signals are real, but with the distinction that in biological cells are discrete variables
and continuous variables in the ANN. The output of the ANN is given by three functions:

• Propagation function: Is the sum of each input multiplied by the weight of their
interconnection.

• Activation function: Makes a change on the previous one, and may not exist.

• Transfer function: Applies to the value returned by the activation function (and if it does
not exist on the propagation). It is used to limit the output of the neuron.

Each input signal is multiplied by a weight or gain. This weight may be positive (exciting)
or negative (inhibitor). The sum node adds up all weighted signals. The transfer function or
threshold is applied to the resulting signal to get later the output signal. The output signal can
be expressed such as

y = ϕ

(
m∑
i=1

wi pi + b

)
(B.1)

The signal y can be expressed in matrix notation as

y = ϕ
(
WTp + b

)
(B.2)

where the input and the weights vector are:

p = [p1, p2, ..., pm]T , W = [w1, w2, ..., wm]T (B.3)
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Input Neuron
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Figure B.1: At left, single artificial neuron. At right, its equivalent with abbreviated notation.

After calculating node activation is necessary to calculate the output value, with ϕ transfer
function for that unit, which corresponds to the chosen function to transform the net input into
output value; This function depends on the specific characteristics of each network.

Another way to represent a single neuron is shown in figure B.1 using a different notation.
In this case the input signals are referenced by p1, p2, ..., pR where R is the number of elements
of input vector and b is the gain of the neuron.

B.1.1 Classification of artificial neural networks

Artificial neural networks are classified into different categories according to different criteria:

• Given the network topology, the ANNs can be classified according to the number of layers,
or the number of neurons per layer, or even the type of connection between them. If we
consider the latter option, the classification is:

1. Feedforward: The information is transmitted in one direction, passing from the input
layer to output layer, through hidden layers previously, if they exist.

2. Feedback: It has at least one closed loop, so the information can form loops, and even
establish intralayers connections.

• However, if the number of layers is considered as a criterion, it is distinguished:

1. Single layer: It consists of a single layer of neurons, performing connections between
neurons that form the network. Figure B.2 shows the ANN structure of a single layer.

2. Multilayer: Hierarchies neurons are sited in different layers. At least, it has an input
layer and output layer, and it may have one or more intermediate or hidden layers.
Figure B.3 shows this structure.

• Considering the learning or training system used by ANNs, the classification is defined as:
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Input Single Layer
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Figure B.2: Single layer ANN with S neurons.

1. Supervised: It is needed the input patterns of the network and the desired output
associated with input patterns. It must adjust the value of the weights using a
mathematical formula to minimize error, in order to get the output of the system
as close as possible to the desired output.

2. Unsupervised: It is not needed to display the desired patterns in the output.

B.1.2 Transfer functions

The transfer function calculates the activation level of the neuron according to the total input
and it also denotes the total output of the neuron. The main tasks carried out by the transfer
functions are firstly, limiting the output to ensure that the output values are not too high (this
does not happen in the biological neural networks), and second place, to provide non-linearity
characteristics. The transfer function is chosen according to the specifications of each problem
to be solved. The most common transfer functions are listed below, but in [51] these functions
are explained with more details.

• Step function or hard limiting function (Hardlim): Matches the network output to 0 if the
input argument is less than 0, and equals 1 if the input argument is greater than or equal
to 0 . It is commonly used in Perceptron networks, which are common in making decisions
and classification. Its equation is:

hardlim(n) =

{
1 if n ≥ 0

0 otherwise
(B.4)
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• Linear transfer function or pure linear (Purelin): The output value is equal to the value
entered in the entry. Its expression is:

linear(n) = n (B.5)

• Sigmoidal transfer function or logarithmic sigmoidal function (Logsig): Takes the input
value, that ranging between plus and minus infinity, giving an output bounded value in
the range of 0 to 1. It is often used in multilayer Backpropagation networks. This function
can be written as

logsig(n) =
1

1 + e−n
(B.6)

• Hyperbolic tangent sigmoid function (Tansig): Takes the input value, ranging between plus
and minus infinity, giving an output bounded value in the range of -1 to 1. This function
can be written as

tansig(n) =
2

1 + e−2n
− 1 (B.7)

• Symmetric saturating linear function (Satlins): Takes the input value, ranging between
plus and minus infinity. The output value of the network will be equal to -1 if the input
value is less than or equal to - 1, however, the output value will be equal to the value input
if the input value is greater than -1 but less than or equal to 1, and the output will be
equal to 1 if the input is greater than or equal to 1. Its expression is:

satlins(n) =


−1 if n ≤ −1

n if −1 ≤ n ≤ 1

1 if n ≥ 1

(B.8)

B.1.3 ANN topology

Neurons are the basic elements that form an ANN, but neurons are distributed in parallel on
different layers. The most common structure of an ANN is:

• Input layer: It is made by each of the input patterns. The number of entries is equal to
the number of elements which each input vector or pattern has.

• Output layer: This is the last layer of neurons in the network. The number of neurons in
this layer is equal to the number of outputs of the network.

• Hidden layers: They are located between the input and output layers. The ANN will
posses hidden layers when the number of layers is greater than 1, therefore, if the neural
network has only one layer, it will be the output. The number of neurons in the hidden
layer is variable and they may have different connections between them, and even these
connections will determine the topology of the network.

The nomenclature used to express the structure of a network is R/H/O, where R represents
the number of entries to the network, the H letter indicates the number of neurons in the hidden
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Figure B.3: ANN multilayer with abbreviated notation.

layer, and O is the number of output neurons of the neural network.

In the figure B.1 it is shown a neural network with R number of entries, where
p = [p1, p2, ..., pR] are the individual inputs multiplied by their corresponding weights
w1.1, w1.2, w1.3, ..., w1,R belonging to the weight matrix W and b is the gain of the neuron.
The subscripts of the weights matrix W indicate the connections among elements. The first
subscript indicates the target neuron and the second subscript represents the source of the input
signal to the neuron, for example welement1.3 indicates the connection of the third input with the
first neuron. The output n will be:

n = p1w1,1 + p2w1,2 + · · ·+ pRw1,R + b (B.9)

It can also be expressed in matrix notation for one neuron, where p is a column vector of
R× 1 elements and W is a row vector of dimension 1×R elements, as it is shown below:

n = Wp + b (B.10)

However, for a single layer ANN with S number of neurons in the layer, as it is the case shown
in figure B.2, each R inputs are connected to the S neurons, therefore, the weight matrix has S
rows and its size is S ×R. Besides the column vectors a and b have the dimension S × 1

a = f(Wp + b) (B.11)

Multilayer neural networks are more powerful than single layers networks.
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B.2 Multilayer Perceptron or MLP

The Perceptron was developed by F. Rosenblatt in 1962, according to the studies of Pitts and
McCulloch about biological neurons. The Perceptron is a feedforward network, with only one
layer, transfer functions and learning algorithm. The Multilayer Perceptron or MLP is an exten-
sion of a Perceptron. It consists of an input layer, an output layer and, at least, one hidden layer.
The hidden layer of MLPs makes the conversion of dependent linear functions on independent
linear function. It is one of the most important examples of artificial neural networks with super-
vised learning. The main virtue of a MLP network is that it can approximate universal functions.

Another important property of MLP networks is that they are capable of managing high
dimensional tasks using relatively simple architecture. This set of properties makes MLP
networks in general purpose tools, flexible and nonlinear.

B.2.1 Architecture of Multilayer Perceptron (MLP)

TheMultilayer Perceptron is composed of an input layer, one or more hidden layers and an output
layer. These layers are joined to spread the information forward (feedforward), flowing from the
input layer to hidden layer, and from there to the output layer. The Multilayer Perceptron
accepts real values.

Neurons in the hidden layer use the weighted sum of inputs with weights wi,j as a propagation
rule, and above this weighted sum applies a transfer function, limiting the response. In this study,
it is considered that the transfer function used in hidden layer is a tansig function and in the
output layer is a purelin function. Hence, it can be written:

y(h) = tansig(W(h) p + b(h)) and y(o) = purelin(W(o) y(h) + b(o)) (B.12)

The learning that is typically used in such networks is called Backpropagation. As a global
cost function, it is used the mean square error. That is, given a pair of values (pk, tk) input,
being p the training data and t the associated desired output, it is calculated the sum of partial
errors due to each pattern (referenced with index z), resulting from the difference between the
desired output tk and the output provided by the network with input vector pk:

E(wi,j , θ, w
′
k,j , θ

′
k) =

1

2

∑
z

∑
k

[
dzk − f

(∑
jw′k,jy

z
j − θ′k

)]
(B.13)

The mean square error will be high if the output obtained is very different from the desired
output. In equation (B.13) f represents the activation function of neurons in the output layer and
y represents the output that neurons of the last hidden layer provide. A minimization procedure
is applied on this global cost function, using a descent gradient.

The learning algorithm Backpropagation performs the following steps:
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1. Initialises the initial weights and thresholds for each neuron, being the most common the
introduction of small random values.

2. For each pattern of the training data set:

• The network response is got with that pattern, where the outputs of one layer serve
as inputs to neurons in the next layer, processing them according to the rule of
propagation and the corresponding activation function.

• Associated errors are calculated.

• The partial increases are calculated (addends of the sums).

3. The total increase in the weights and thresholds for all patterns are calculated.

4. Weights and thresholds are updated.

5. The current error is calculated, and return to step 2 if the result is not satisfactory.

B.3 Training algorithms

The network training is done once the weights and profits of the neural network have been
initialised. The network can be trained by function approximation (nonlinear regression), by
pattern classification or pattern association. The training process requires a set of input-output
patterns (pi, ti) to define the correct behaviour of the network. During the training, weights and
profits of the network are adjusted iteratively to minimize the error function of the network.
This error function, for feedforward neural networks, is by default the mean square error or mse
(average error between network outputs and desired outputs).

The most commonly used training algorithms are explained below. They use the gradient of
the error function to determine the adjustment of the weights to reduce the error to a minimum.
The technique Backpropagation is used to determine the gradient, making calculations back
through the network.

1. Backpropagation Algorithm
There are many variations of the algorithm Backpropagation. The simplest solution fits
the profits and weights in the direction in which the error function decreases as rapid as
possible, going in the negative direction of the gradient. An iteration (k) of this algorithm
can be expressed as follow:

wk+1 = wk − αk gk (B.14)

where wk is the current weights vector and profits, gk is the current gradient and αk is the
rate of learning.
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2. Gradient descent with momentum and adaptive learning rate backpropagation
algorithm (GDX)
This algorithm is based on the algorithm of Backpropagation, but it provides a modification
that makes it faster. The implementation of this algorithm is very sensitive to the parameter
value associated with the learning rate αk, since it allows the learning rate αk to change
during the training process. When the value of αk is too high, the performance of this
algorithm may oscillate and becomes unstable. However, if αk is too small, the algorithm
may spend too much time to converge. It is not easy to determine an optimum fixed value
for this parameter, in fact, this optimal value varies along the algorithm execution. GDX
algorithm proposes a variable value of the parameter αk. For each iteration this algorithm
will search for a largest possible value for αk to be stable.

3. Levenberg-Marquardt backpropagation algorithm (LM)
This algorithm tries to exploit the best features of the Newton’s method and descent
gradient algorithm. Newton’s method is faster, and it converges in fewer iterations and is
more accurate than the descent gradient algorithm. However, it requires greater computing
power when it operates and stores data, since for each iteration is needed to compute the
Hessian matrix for the error function used in the neural network. The update of the
coefficients for each iteration is expressed as

xk+1 = xk −A−1
k gk (B.15)

where Ak is the Hessian matrix.
LM algorithm makes the following approaches (if the network uses an error function of
the form of quadratic sums, such as mean square error) to avoid computing the Hessian
matrix:

H = JT J (B.16)

g = JT e (B.17)

where J is the Jacobian matrix (easier to compute than Hessian matrix), g is the gradient
and e are the errors network vector.

The Levenberg-Marquardt algorithm is a hybrid between the Newton’s method and descent
gradient algorithm. Therefore, after each iteration the error function of the neural network
is discussed, if the function is reduced, the Newton’s method will still apply. Instead, if
the error function increases, a method closer to the descending gradient algorithm will be
applied .The dependence of the LM algorithm with Newton’s method and the descending
gradient algorithm can be written down as

xk+1 = xk − [JT J + µ I]−1 JT e (B.18)

In this case, µ represents the coefficient that will give more or less importance to the descent
gradient algorithm. Then, if µ is small, the algorithm used will be close to the Newton’s
method, but if µ is high, an algorithm similar to the descending gradient algorithm will be
applied.
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B.4 Procedure to determine the ANNs

The training process of neural networks consists of four phases. First of all a data collection is
performed, which is used as input vectors to the neural network. Secondly, the neural network is
created, defining the structure, and the number of layers and the number of neurons in them. In
third place, the networks created will be training to learn the ANN to distinguish the two types
of patterns. And finally, the correct behaviour of the trained network will be verified, where new
input vectors, different from training pattern, will be presented to the ANN, to check the output
produced, and determine if the trained network is generalized to any kind of input vectors to
follow the same pattern.

B.4.1 Stage 1: Collection of observation vectors

In this first stage the different vectors are formed. The data used for the analysis are from the
platform under study. Three groups of vectors should be generated. Each group of vectors is
generated to be used in a specific phase with a specific mission. These groups of vectors are
called: training vector, validation vector and test vector or test. The training and validation
vectors are used in the training stage, however the test vector is used in the testing stage.

B.4.2 Stage 2: Creation of the neural network

In this stage the structure of the ANN will be defined. It is necessary to know the number of
layers, the number of neurons that will have each layer, the interconnection between the layers
and the activation function used by each neuron in the network.

The neural network used in this thesis will be a Multilayer Perceptron (MLP) with supervised
learning. The number of neurons will be:

• R neurons in the input layer: These are due to the R input parameters that will used to
analyse the behaviour of the sea.

• S neurons in the hidden layer: This number of neurons has been selected because of the
computational load is not very high and the mse and results obtained for this number are
very similar than the others obtained with more neurons in hidden layer.

• N neuron in the output layer: One neuron for each parameter under study to be determined.

The activation functions used for the hidden and output layer are respectively tansig and purelin.
The training algorithm will be Levenberg-Marquardt because the mse obtained is the lowest in
compare to other training algorithms.
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B.4.3 Stage 3: Training of the ANN

In this stage, the intrinsic parameters used in the neural network are calculated, such as the
weights and gains. These parameters can be initialised to certain or random values. During the
training process these values are iteratively adjusted to minimize the error at the output of the
network. This error is the difference between the desired outputs and actual outputs obtained
from the network. The mean square error (mse) will be used as error function and the objective
is to minimize this error function during training.

In this stage training vectors and validation vectors are necessary. The neural network will
try to learn from the training vectors that serve as input to the neural network. Through training
and learning algorithm used, the network will readjust in each iteration its internal coefficients
(weights and gains) to get the outputs of the network are equal, or as close as possible, to the
relevant objectives of the training vectors.

Validation vectors are used to improve network generalization. The outputs of the network
should match the desired outputs, but without distancing from the objectives of validation
vectors. When the outputs of the network exceed the threshold distance respect to the objectives
of validation vectors, training will be interrupted and it will finish. For this reason, better results
will get in the generalization of the network, achieving a better performance when new input
vectors are presented to the network.

B.4.4 Stage 4: ANN simulation

When the network is trained it can proceed with the simulation or testing phase. In this stage
new input vectors are introduced into the network to analyse their outputs. These vectors are
different to the training and validation vectors.

To evaluate the performance of the network, the error and its deviation must be computed.
The parameters are:

• Mean squared error (mse): Is the difference between the desired outputs and actual outputs
obtained from the network.

• Error deviation: Is the standard deviation of the mean squared error.

• Correlation coefficient (r): Measures the strength and the direction of a linear relationship
between two random variables. If its value is close to 1, the two variables are very similar;
However, if its value is close to 0, the two variables will be very different. In this thesis,
these two variables will be the data provided by the ADCP sensor and the actual output
obtained by the ANN.

r =

∑
(xi − x) (yi − y)

N σx σy
(B.19)
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where x is the average of the desired output, y is the average of the actual output, σx is
the standard deviation of the desired output, σy is the standard deviation of the actual
output and N is the number of elements of the desired output vector.
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Extreme Learning Machines

It is an avant-garden and fast learning method which is based on a feedforward MLP structure.
The most important characteristic is that the weights in hidden layer are not calculated and for
this reason, this layer do not need be trained. The network weights are setting randomly and
then a pseudo-inverse of hidden layer output matrix is estimated.

The essence of the ELM resides in:

• The hidden layer of the net should not be calculated recurrently.

• The train error ‖Hβ −T‖ and the norm of the weights ‖β‖ have to be minimized.

• The weights of the nodes in the hidden layer ‖βi‖ can be generated randomly. Therefore
the weight vectors between the hidden and output layers can be calculated directly with
minimum squared.

C.1 Basic ELM

Once the parameters of the nodes (wi, bi) are set up, they will be fixed. Training the net is
equivalent to find the solution of the lineal system by minimum squared Hβ = T∥∥∥Hβ̂ −T

∥∥∥
min β

= ‖Hβ −T‖ (C.1)

being T = [u1, · · · , ul]T the training output vector.

If the number of hidden nodes (Ñ) are equal to the number of training samples (L), the matrix
H will be squared and H can be inverted when the parameters (wi, bi) are choose randomly. But
the most of time, the number of hidden nodes is less than the number of training samples. Hence
the matrix H is not squared and the (wi, bi, βi) cannot verify Hβ = T. Therefore, the equation
that minimize the system using minimum squared is:

β̂ = H†T (C.2)
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being H† the Moore-Penrose inverse of matrix H [54]

For this algorithm is needed a training set (T), an activation function (g(x)) and the of hidden
nodes (Ñ). The training set is:

T = (xi,ui) where xi ∈ Ren, ui ∈ Re, i = 1, · · · , l (C.3)

The main steps in ELM algorithm are the following:

1. Input weights wi and bias bi (being i = 1, · · · , l) are assigned randomly.

2. The hidden layer output matrix H is calculated. The size of the matrix H is l × Ñ and it
is defined as:  g(w1x1 + b1) g(w

Ñ
x

Ñ
+ b

Ñ
)

...
...

g(w1xl + b1) g(w
Ñ

x
Ñ

+ b
Ñ

)

 (C.4)

3. The output weight vector β is calculated as:

β = H†T (C.5)

The ELM algorithm can use several activation functions and it can be used to train directly
networks. The number of hidden nodes must be estimated and is a free parameter of the ELM
training.

C.2 ELM based on random mapping of the hidden layer

The orthogonal projection method could be used in the ELM:

• H† = (HTH)−1HT if HTH is not singular.

• H† = HT (HHT )−1 if HHT is not singular.

According to the regression theory, a positive number 1/λ could be added in the main diagonal
of HTH or HHT to calculate the output weight vector, supplying stability and better training
generalization. The algorithm is the same than the basic ELM commented before, but the only
difference is the method to calculate the output weight vector:

β = HT

(
I

λ
+ HHT

)−1

T ; β =

(
I

λ
+ HTH

)−1

HTT (C.6)

The output function of the ELM is: f(x) = h(x)β
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Gaussian Process for Regression

Gaussian Process for Regression (GPR) is a generic supervised learning method use to solve
regression problems. GPR is a kind of continuous stochastic process that defines a distribution
of probability for functions and inferences taking place directly in the space of functions. In [55]
can be found an extensive information about GPR, however here a brief summarise is presented.

D.1 Gaussian distribution

The Gaussian distribution is the most usual distribution. The probability function is:

p(y|µσ2) =
1√

2πσ2
e

(
− (x−µ)2

2σ2

)
= N (µ, σ2) (D.1)

The mean value, or mathematical expectation is E(x) = µ, the variance is equal to σ2 and the
standard deviation is σ

The main property is that the addition of Gaussian is a Gaussian as well. If the terms of the
addition is increasing, the addition of the independent aleatory variables tends to a Gaussian

n∑
i=1

yi ∼ N

(
n∑
i=1

µi,

n∑
i=1

σ2
i

)

Another property is that if Gaussian is multiplied by a constant, the product is a Gaussian as
well

c · y ∼ N
(
c · µ, c2 · σ2

i

)
In general, the definition of the multivariable Gaussian distribution is:

p(y|µΣ) =
1

(2π)n/2 |Σ|1/2
e−

1
2

(X−µ)TΣ−1(X−µ) (D.2)

being X the vector of variables and Σ the matrix of covariance among variables.
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D.2 Gaussian Process

A Gaussian process is an extension towards infinite variables collection. Therefore, the Gaussian
process is a distribution of distributions aleatory functions. It means, the Gaussian process is
a stochastic process so that any subset of finite aleatory variables has a multivariable Gaussian
distribution. In general, a finite set of aleatory variables h(x1), h(x2), . . . , h(xm) has the following
distribution:  h(x1)

...
h(xm)

 ∼ N

 m(x1)

...
m(xm)

 ,
 k(x1,x1) k(x1,xm)

...
...

k(xm,x1) k(xm,xm)


 (D.3)

The distribution can be denoted as: h(·) ∼ GP(m(·), k(·, ·)), where m(·) is the mathematical
expectation function and it is a real function, k(·, ·) is the covariance function and it is a Kernel.

In this particular case, the data set is D ≡ xn, un
l
i=1, where xn is the N-dimensional inputs

and un is their corresponding scalar outputs. The target of the GPR is getting the predictive
distribution, so when a new input x∗ is introduced in the system, its corresponding observation
u∗ is obtained based on D. In the GPR method, each observed target value u can be written as:

f(x) = xTw u = f(x + ε) (D.4)

where f(x) is the function value, x is the input vector, w is the vector of weights and ε is the
noise. The model assumes that each observation u differs from the function value f(x) by additive
noise ε. This noise is independent and follows identically distributed Gaussian distribution with
zero mean and variance σ2, therefore noise ε ∼ N (0, σ2). Therefore, it is possible to say that
f(x) ∼ GP(0, k(x,x

′
)). The Gaussian distribution for the noise will be:[

ε

ε∗

]
∼ N

(
0,

[
σ2I 0

0T σ2I

])
(D.5)

To express this model as matrix notation, it is necessary to work with the covariance function
k(x,x

′
). The covariance function will be high when u(x) and u(x

′
) are close in the space, however

the covariance will be low they are separated. The predictive distribution is a multivariate
Gaussian distribution, and can be expressed as:[

u

u∗

]
=

[
h

h∗

]
+

[
ε

ε∗

]
(D.6)

[
u

u∗

]
∼ N

(
0,

[
k(X,X) + σ2IN k(X,X∗)

k(X∗,X) k(X∗,X∗) + σ2

])
(D.7)

being IN the identity matrix of size N. From equation (D.7) it is possible to obtain the main
characteristics from the distribution GPR:
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pGP(u∗|x∗,D) = N (u∗|µGP∗, σ
2
GP∗)

µGP∗ = k(X∗,X)(K + σ2IN )−1u (D.8)

σ2
GP∗ = σ2 + k(X∗,X∗)− k(X∗,X)(K + σ2IN )−1k(X,X∗)

Some advantages are that GPR interpolates the observations, the prediction is a Gaussian
probability and simplicity of implementation. The main drawback is that the flexibility is limited.





Appendix E

Support Vector Regression Algorithms

Support Vector Regression Algorithms (SVR) are a set of supervised learning algorithms
developed by Vladimir Vapnik and his team. They are related to linear classification and
regression problems. A SVR builds a hyperplane in high dimensional space, where the hyperplane
separates in optimal way the samples of different classes. The SVR searches the hyperplane, or
a set of hyperplanes, whose distance between the samples and itself is maximal. An algorithm
based on SVR determines in which category is a new input sample.

The models based on SVR are related to neural network. The main idea of SVR consists on
doing a nonlinear mapping (ϕ : X → F ) with the training samples x ∈ X, towards bigger space
F , where a linear regression can be done.

In a generic classification problem there is a training set with independent samples
(xi, u

i), i = 1, . . . , l ∈ X × U . The vector xi has a probability density function p(x) and the
connection between the samples and their labels ui is represented by an unknown determined
probability density function u|x. The classification system uses a set of functions f(x,w),w ∈W
to give a label ûi = f(xi,w) for an input xi. The aim of the learning process is selecting the
function f(x,w) in a proper way, minimizing the discrepancies between the true labels (ui) and
the labels provided by the SVR (ûi). To evaluate this approximation, a cost function (or loss
function) c(u, f(x,w)). Then the risk function of the SVR having used the function f(x,w) is
calculated as:

Rempirical =
1

l

l∑
i=1

c(ui, f(xi,w)) (E.1)

The risk must be minimizing to get better results.

E.1 Support Vector Regression

The SVR method for regression consists of training a model with a set of training vectors T:

T = (xi,u
i) where i = 1, . . . , l (E.2)
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û(x) = g(x) + b = wTφ(x) + b (E.3)

being x the vector of predictive variables, u(x) in this particular case is the ADCP measures of
the current (ui =

∣∣Ui−s∣∣), û(x) is the estimation of the current provided by the SVR, b the bias
and φ a function of protection of the input space to the feature space (φ : Rd → H).

The cost function accepts a maximum deviation ε of the function g(x) without penalty:

L
(
ui, g(xi)

)
=

{
0 if |ui − g(xi)| ≤ ε
|ui − g(xi)| − ε otherwise

(E.4)

The risk function must be minimizing and it can be expressed as:

R[g] =
1

2
‖w‖2 + C

n∑
i=1

c(ui, g(xi)) (E.5)

where C determines the agreement between the smoothness of the function g(x) and the
deviations greater than the threshold error ε that are allowed.

En error lower than ε is not always possible, therefore width variables (ξi, ξ∗i > 0, i = 1, . . . , n)
are introduced. This model has to be trained optimizing the problem:

min

(
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )

)
(E.6)

subject to:
ui −wTφ(xi)− b ≤ ε+ ξi, i = 1, . . . , l (E.7)

− ui + wTφ(xi) + b ≤ ε+ ξ∗i , i = 1, . . . , l (E.8)

ξi, ξ
∗
i ≥ 0, i = 1, . . . , l (E.9)

Lagrange variables (αi, α∗i , µi, µ
∗
i ) are introduced, and the equation (E.6) will be written as:

Lp =
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i )−
l∑

i=1

µiξi + µ∗i ξ
∗
i

−
l∑

i=1

αi
[
ε+ ξi − ui + (wTφ(xi) + b)

]
−

−
l∑

i=1

α∗i
[
ε+ ξ∗i + ui − (wTφ(xi) + b)

]
(E.10)

The equation (E.10) must be minimized by w, b, ξ∗i and must be maximized respect to
αi, α

∗
i , µi, µ

∗
i . In this case, the dual form of the optimization problem is the following:

max

−1

2

l∑
i=1

l∑
j=1

(αi − α∗i )(αj − α∗j )φ(xi)φ(xj)− ε
l∑

i=1

(αi + α∗i ) +

l∑
i=1

ui(αi − α∗i )

 (E.11)
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subject to:
l∑

i=1

(αi − α∗i ) = 0 where αi, α
∗
i ∈ [0, C] (E.12)

The equation (E.11) expressed in matrix form is:

max

−1

2

l∑
i,j=1

(αi − α∗i )(αj − α∗j )K(xi,xj)− ε
l∑

i=1

(αi + α∗i ) +

l∑
i=1

ui(αi − α∗i )

 (E.13)

The optimization problem is equivalent to the dot product 〈φ(xi), φ(xj)〉, which can be
evaluated by a Kernel function K(xi,xj):

K(xi,xj) = e(−γ · ‖xi − xj‖2). (E.14)

In summarise, the equation (E.3) can be written as a function related to a Kernel matrix
K(xi,x) and Lagrange multipliers (αi, α

∗
i ):

û(x) = g(x) + b =
l∑

i=1

(αi − α∗i )K(xi,x) + b (E.15)

A complete explanation is presented in [56].





Appendix F

Published contributions

The following published contributions have been achieved in the frame of this work:

- Lidó-Muela, C., Carrasco, R. and Horstmann, J., Retrieval of Ocean Surface Wind Fields
from Marine Radar Image Sequences. FR4.9.FR4.9.1, IEEE International Geoscience and
Remote Sensing Symposium. IGARSS 2012. 22-26 July 2012, Munich, Germany. 2012.
pp. 4.

- Vicen-Bueno, R., Lidó-Muela, C., and Nieto Borge, J.C., Estimate of significant wave height
from non-coherent marine radar images by multilayer perceptrons. EURASIP Journal on
Advances in Signal Processing. 2012, vol. 2012:84, pp. 1-20.
Impact Factor (JCR): 0.928.

- Lidó-Muela, C., Cornejo-Bueno, L., Nieto Borge, J. C., Hessner, K., and Salcedo-Sanz, S.,
Robust Estimation of Near-surface Sea Currents using X-Band Radar Measurements and
Machine Learning Techniques. Submitted to Journal of Marine Systems, 2015.
Impact Factor (JCR): 2.174.
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