12 research outputs found

    Moving object detection and segmentation in urban environments from a moving platform

    Get PDF
    This paper proposes an effective approach to detect and segment moving objects from two time-consecutive stereo frames, which leverages the uncertainties in camera motion estimation and in disparity computation. First, the relative camera motion and its uncertainty are computed by tracking and matching sparse features in four images. Then, the motion likelihood at each pixel is estimated by taking into account the ego-motion uncertainty and disparity in computation procedure. Finally, the motion likelihood, color and depth cues are combined in the graph-cut framework for moving object segmentation. The efficiency of the proposed method is evaluated on the KITTI benchmarking datasets, and our experiments show that the proposed approach is robust against both global (camera motion) and local (optical flow) noise. Moreover, the approach is dense as it applies to all pixels in an image, and even partially occluded moving objects can be detected successfully. Without dedicated tracking strategy, our approach achieves high recall and comparable precision on the KITTI benchmarking sequences.This work was carried out within the framework of the Equipex ROBOTEX (ANR-10- EQPX-44-01). Dingfu Zhou was sponsored by the China Scholarship Council for 3.5 year’s PhD study at HEUDIASYC laboratory in University of Technology of Compiegne

    Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow

    No full text
    Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable

    Real-time detection of moving objects from moving vehicles using dense stereo and optical flow.

    No full text

    Real-time detection of moving objects from moving vehicles using dense stereo and optical flow

    No full text

    Autonomous navigation of a wheeled mobile robot in farm settings

    Get PDF
    This research is mainly about autonomously navigation of an agricultural wheeled mobile robot in an unstructured outdoor setting. This project has four distinct phases defined as: (i) Navigation and control of a wheeled mobile robot for a point-to-point motion. (ii) Navigation and control of a wheeled mobile robot in following a given path (path following problem). (iii) Navigation and control of a mobile robot, keeping a constant proximity distance with the given paths or plant rows (proximity-following). (iv) Navigation of the mobile robot in rut following in farm fields. A rut is a long deep track formed by the repeated passage of wheeled vehicles in soft terrains such as mud, sand, and snow. To develop reliable navigation approaches to fulfill each part of this project, three main steps are accomplished: literature review, modeling and computer simulation of wheeled mobile robots, and actual experimental tests in outdoor settings. First, point-to-point motion planning of a mobile robot is studied; a fuzzy-logic based (FLB) approach is proposed for real-time autonomous path planning of the robot in unstructured environment. Simulation and experimental evaluations shows that FLB approach is able to cope with different dynamic and unforeseen situations by tuning a safety margin. Comparison of FLB results with vector field histogram (VFH) and preference-based fuzzy (PBF) approaches, reveals that FLB approach produces shorter and smoother paths toward the goal in almost all of the test cases examined. Then, a novel human-inspired method (HIM) is introduced. HIM is inspired by human behavior in navigation from one point to a specified goal point. A human-like reasoning ability about the situations to reach a predefined goal point while avoiding any static, moving and unforeseen obstacles are given to the robot by HIM. Comparison of HIM results with FLB suggests that HIM is more efficient and effective than FLB. Afterward, navigation strategies are built up for path following, rut following, and proximity-following control of a wheeled mobile robot in outdoor (farm) settings and off-road terrains. The proposed system is composed of different modules which are: sensor data analysis, obstacle detection, obstacle avoidance, goal seeking, and path tracking. The capabilities of the proposed navigation strategies are evaluated in variety of field experiments; the results show that the proposed approach is able to detect and follow rows of bushes robustly. This action is used for spraying plant rows in farm field. Finally, obstacle detection and obstacle avoidance modules are developed in navigation system. These modules enables the robot to detect holes or ground depressions (negative obstacles), that are inherent parts of farm settings, and also over ground level obstacles (positive obstacles) in real-time at a safe distance from the robot. Experimental tests are carried out on two mobile robots (PowerBot and Grizzly) in outdoor and real farm fields. Grizzly utilizes a 3D-laser range-finder to detect objects and perceive the environment, and a RTK-DGPS unit for localization. PowerBot uses sonar sensors and a laser range-finder for obstacle detection. The experiments demonstrate the capability of the proposed technique in successfully detecting and avoiding different types of obstacles both positive and negative in variety of scenarios

    Corrección de la odometría visual basada en la detección de cierre de lazo

    Get PDF
    En el ámbito de la robótica y la automoción resulta de interés conocer la posición que ocupa el robot en todo momento, así como la trayectoria que este describe, haciendo uso de los sensores a bordo del mismo, para lo cual existen ya en la actualidad diferentes métodos. Este proyecto se focaliza en el uso de cámaras como sensores de percepción del entorno y propone una metodología que permita realizar una odometría visual robusta, aplicando técnicas de corrección basadas en la detección de cierres de lazo en situaciones de localización a largo plazo. Para ello, se va a llevar a cabo una mejora metodológica de algunas técnicas clásicas de visión artificial y se implementarán nuevos algoritmos, con el fin de corregir la deriva que implica el uso de la odometría visual en la estimación del recorrido realizado por un agente. Se pretende obtener una estimación precisa de la posición, orientación y trayectoria seguida por un vehículo, a partir del análisis de una secuencia de imágenes adquiridas a través de un sistema estéreo de cámaras que lleva a bordo, sin tener un conocimiento previo del espacio físico en el que se encuentra, y aplicando las técnicas de corrección necesarias una vez que el vehículo recorra una zona previamente visitada.An essential requirement in the eld of robotics and automation is to know the position of a mobile robot along the time, as well as the trajectory that it describes by using on-board sensors. Nowadays, several methods exist for accomplishing this goal. In this work, we propose a novel approach focused on the use of cameras as perception sensors of the environment, that allows to perform a robust visual odometry, where correction algorithms based on loop closure detection are applied for localization in long-term situations. In order to satisfy the previous conditions, we carry out a methodological improvement of some classic computer vision techniques. In addition, new algorithms are implemented with the aim of correcting the drift produced in the visual odometry estimation along the traversed path. The main objective is to obtain an accurate estimation of the position, orientation and trajectory followed by a vehicle. Sequences of images acquired by an on-board stereo camera system are analyzed without any previous knowledge about the real environment. Due to this, correction techniques are needed when a place is revisited by the vehicle.Grado en Ingeniería en Electrónica y Automática Industria

    Feature-based image patch classification for moving shadow detection

    Get PDF
    Moving object detection is a first step towards many computer vision applications, such as human interaction and tracking, video surveillance, and traffic monitoring systems. Accurate estimation of the target object’s size and shape is often required before higher-level tasks (e.g., object tracking or recog nition) can be performed. However, these properties can be derived only when the foreground object is detected precisely. Background subtraction is a common technique to extract foreground objects from image sequences. The purpose of background subtraction is to detect changes in pixel values within a given frame. The main problem with background subtraction and other related object detection techniques is that cast shadows tend to be misclassified as either parts of the foreground objects (if objects and their cast shadows are bonded together) or independent foreground objects (if objects and shadows are separated). The reason for this phenomenon is the presence of similar characteristics between the target object and its cast shadow, i.e., shadows have similar motion, attitude, and intensity changes as the moving objects that cast them. Detecting shadows of moving objects is challenging because of problem atic situations related to shadows, for example, chromatic shadows, shadow color blending, foreground-background camouflage, nontextured surfaces and dark surfaces. Various methods for shadow detection have been proposed in the liter ature to address these problems. Many of these methods use general-purpose image feature descriptors to detect shadows. These feature descriptors may be effective in distinguishing shadow points from the foreground object in a specific problematic situation; however, such methods often fail to distinguish shadow points from the foreground object in other situations. In addition, many of these moving shadow detection methods require prior knowledge of the scene condi tions and/or impose strong assumptions, which make them excessively restrictive in practice. The aim of this research is to develop an efficient method capable of addressing possible environmental problems associated with shadow detection while simultaneously improving the overall accuracy and detection stability. In this research study, possible problematic situations for dynamic shad ows are addressed and discussed in detail. On the basis of the analysis, a ro bust method, including change detection and shadow detection, is proposed to address these environmental problems. A new set of two local feature descrip tors, namely, binary patterns of local color constancy (BPLCC) and light-based gradient orientation (LGO), is introduced to address the identified problematic situations by incorporating intensity, color, texture, and gradient information. The feature vectors are concatenated in a column-by-column manner to con struct one dictionary for the objects and another dictionary for the shadows. A new sparse representation framework is then applied to find the nearest neighbor of the test image segment by computing a weighted linear combination of the reference dictionary. Image segment classification is then performed based on the similarity between the test image and the sparse representations of the two classes. The performance of the proposed framework on common shadow detec tion datasets is evaluated, and the method shows improved performance com pared with state-of-the-art methods in terms of the shadow detection rate, dis crimination rate, accuracy, and stability. By achieving these significant improve ments, the proposed method demonstrates its ability to handle various problems associated with image processing and accomplishes the aim of this thesis

    カメラ画像と汎用センサの統合による自動車位置推定の研究

    Get PDF
    東京海洋大学博士学位論文 平成29年度(2017) 応用環境システム学 課程博士 甲第479号指導教員名: 久保信明全文公表年月日: 2018-06-20東京海洋大学201
    corecore