
�������� ��	
���
��

Moving Object Detection and Segmentation in Urban Environments from a
Moving Platform

Dingfu Zhou, Vincent Frémont, Benjamin Quost, Yuchao Dai, Hong-
dong Li

PII: S0262-8856(17)30114-2
DOI: doi:10.1016/j.imavis.2017.07.006
Reference: IMAVIS 3633

To appear in: Image and Vision Computing

Received date: 5 April 2016
Revised date: 20 March 2017
Accepted date: 21 July 2017

Please cite this article as: Dingfu Zhou, Vincent Frémont, Benjamin Quost, Yuchao Dai,
Hongdong Li, Moving Object Detection and Segmentation in Urban Environments from
a Moving Platform, Image and Vision Computing (2017), doi:10.1016/j.imavis.2017.07.006

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Australian National University

https://core.ac.uk/display/156738726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

Moving Object Detection and Segmentation in Urban

Environments from a Moving Platform

Dingfu Zhoua,b, Vincent Frémonta, Benjamin Quosta, Yuchao Daib,
Hongdong Lib,c
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Abstract

This paper proposes an effective approach to detect and segment moving
objects from two time-consecutive stereo frames, which leverages the uncer-
tainties in camera motion estimation and in disparity computation. First,
the relative camera motion and its uncertainty are computed by tracking
and matching sparse features in four images. Then, the motion likelihood
at each pixel is estimated by taking into account the ego-motion uncertainty
and disparity in computation procedure. Finally, the motion likelihood, color
and depth cues are combined in the graph-cut framework for moving object
segmentation. The efficiency of the proposed method is evaluated on the
KITTI benchmarking datasets, and our experiments show that the proposed
approach is robust against both global (camera motion) and local (optical
flow) noise. Moreover, the approach is dense as it applies to all pixels in an
image, and even partially occluded moving objects can be detected success-
fully. Without dedicated tracking strategy, our approach achieves high recall
and comparable precision on the KITTI benchmarking sequences.

Keywords: Moving Object Detection, Ego-Motion Uncertainty, Motion
Segmentation

1. Introduction

Over the past decades, many researchers from different fields such as
robotics, automotive engineering and signal processing have been devoting
themselves to the development of intelligent vehicle systems. Making the
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vehicles to automatically perceive and understand their 3D environment is a
challenging and important task. Due to the improvement of the sensor tech-
nologies, processing techniques and researchers’ contributions, several Ad-
vanced Driver Assistance Systems (ADASs) have been developed for various
purposes such as forward collision warning systems, parking assist systems,
blind spot detection systems and adaptive cruise control systems. Currently,
some popular Vision-based Simultaneous Localization and Mapping (VS-
LAM) and Structure-from-Motion (SfM) [1] systems have also been applied
in ADASs or autonomous vehicle, such as the recent popular ORB-SLAM
[2].

However, most of these systems assume a static environment, and thus
have faced some difficulties in inner urban areas where dynamic objects are
frequently encountered. Usually, moving objects are considered as outliers
and RANSAC strategy is applied to get rid of them efficiently. However,
this strategy will fail when the moving objects are the dominant part of the
image. Thus, efficiently and effectively detecting moving objects turns out
to be a crucial issue for the accuracy of such systems.

In this article, we focus on the specific problem of moving object de-
tection. We propose a detection and segmentation system based on two
time-consecutive stereo images. The key idea is to detect the moving pixels
by compensating the image changes caused by the global camera motion.
The uncertainty of the camera motion is also considered to obtain reliable
detection results. Furthermore, color and depth information is also employed
to remove some false detection.

1.1. Related Works

Moving object detection has been investigated for many years. Back-
ground subtraction is a commonly used approach for tackling this problem
in videos obtained from a static camera: then, regions of interest can eas-
ily be detected [3]. Adaptive Gaussian Mixture Models are well known for
modelling the background by recursively updating the Gaussian parameters
and simultaneously setting the appropriate number of components for each
pixel [4]. However, background subtraction cannot be applied to handle the
problem when the camera also moves. Due to the camera motion, both the
camera and objects motions are coupled in the apparent 2D motion field.
The epipolar constraint is classically used for motion detection between two
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views [5]. However, it fails in a degenerate case 1. Other constraints, such as
the flow vector bound constraint [6, 7] have been used together with epipolar
constraint to detect the degenerate motion.

An alternative to detecting moving objects using the fundamental matrix
is 2D planar homography [8, 9]. Homography is used as a global image motion
model that makes it possible to compensate the camera motion between two
consecutive frames. Pixels which are consistent with the homography matrix
are recognized as the static planar background, while these inconsistent ones
may belong to moving objects or to static 3D structure with large depth
variance (parallax pixels). In order to remove the parallax pixels, additional
geometric constraints [8] or clustering strategies [9] may be used.

Compared to monocular vision, stereo vision system (SVS) provides depth
or disparity information using images provided by the left and right cameras.
Dense or sparse depth/disparity maps computed by global [10] or semi-global
[11] matching approaches can be used to build 3D information on the envi-
ronment. Theoretically, by obtaining the 3D information, any kind of motion
can be detected, even the case of degenerate motion mentioned above. In
[12], 3D point clouds are reconstructed from linear stereo vision systems first
and then objects are detected based on a spectral clustering technique from
the 3D points. Common used methods for Moving Object Detection (MOD)
in stereo rig can be divided into sparse feature based [13, 14] and dense scene
flow-based approaches [15, 16, 17].

Sparse feature-based approaches fail when few features are detected on
the moving objects. Then, dense flow-based methods can be used instead.
In [15], a prediction of the optical flow between two consecutive frames is
calculated based on a function of the current scene depth and ego-motion.
From the difference between the predicted and measured flow fields, large
non-zero regions are classified as potential moving objects. Although this
motion detection scheme provides dense results, the system may be prone
to producing a large number of misdetections due to the noise involved in
the perception task. Other improved approaches have been developed [18]
and [16] to limit misdetections, by considering the uncertainties on the 3D
scene flow [18] or on the 2D real optical flow [16]. However, such approaches
roughly model the uncertainty of the ego-motion obtained from other sensors

1The 3D point moves along the epipolar plane formed by the two camera centers and
the point itself, whereas its 2D projections move along the epipolar lines.
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(GPS or IMU). In fact, the camera ego-motion has a global influence on the
predicted optical flow; therefore, its uncertainty should be well considered to
improve detection accuracy.

1.2. Structure and Contributions of This Paper

In this paper, we aim at detecting the foreground moving object from
two consecutive stereo image pairs. An object is considered as moving if its
location in the absolute world coordinate frame changes between two consec-
utive frames. This article is an extension of previously-published conference
papers [19, 20] with a new review of the relevant state-of-the-art, new theo-
retical developments and extended experimental results. In [19], we proposed
a framework to detect moving objects using the Residual Image Motion Flow
(RIMF). In order to improve detection performance, we refined this frame-
work in [20] by considering the uncertainty during the RIMF computation
procedure. Both of these works have never been published together; and
the aim of this paper is to show the global scope of vision-based perception
systems that have been proposed for moving objects detection in intelligent
vehicles applications.

The main additional contributions of the present paper are the following:
first, we propose a dense moving object detection and segmentation system by
using two consecutive stereo frames, which effectiveness is demonstrated on
the public KITTI dataset. Unlike in [21] where moving objects are detected
by tracking based on sparse features, we compute the dense optical flow in
every image pixel. This makes it possible to detect small and partly-occluded
moving objects. Next, compared to [20], we add color together with depth
information into the graph-cuts framework to improve object segmentation.
Then, the 3D density map is used to generate bounding boxes: this strat-
egy proves to be effective to avoid redundancy detection, such as shadow.
Finally, we evaluate our proposed moving object segmentation algorithm at
the pixel level on the KITTI dataset. At the same time, we also test it at
the bounding box level on different real traffic sequences with ground truth.
Its effectiveness is demonstrated with respect to related works [15].

This paper is organized as follows: First, Section 2 gives an overview of
our proposed moving object detection system. Next, moving pixel detection
and motion segmentation are introduced in details in Sections 3 and 4 re-
spectively. Then, we evaluate our proposed system on different KITTI image
sequences. The experimental results and analysis are presented in Section 5.
Finally, the paper ends with a short conclusion and future works.
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2. Problem Setup

As mentioned above, using the epipolar geometry from a monocular cam-
era does not make it possible to detect moving objects when their motion is
degenerate. In order to overcome this issue, a stereo system may be employed.
The binocular images are recorded by a vehicle-mounted stereo system. We
assume that the system is calibrated; thus, a simple rectification [22] can be
used to align the left and right images. We denote b as the calibrated base-
line for the stereo head. Additionally, the left and right rectified images have
identical focal length f and principal point coordinates as p0 = (u0, v0)

T .
Given two time-consecutive stereo images from time t−1 and t, as shown

in Fig. 1, the origin of the world system is assumed to be coincident with
the left camera’s local coordinate system at time t− 1. The Z-axis coincides
with the left camera optical axis and points forwards, the X-axis points to
the right and the Y -axis points downwards. All the coordinate systems are
right handed. The main difficulty of moving object detection is caused by the
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Figure 1: Coordinate frames of the considered stereo-vision system

existence of multiple relative motions – the vehicles’ motion and the other
objects’ independent motions. The position of a pixel extracted from a static
background point is pt−1 = (ut−1, vt−1, 1)

T in the previous frame t − 1, and
its image position pt = (ut, vt, 1)

T in frame t can be predicted by [5, Chapter
9, page 250]:

pt = KRK−1pt−1 +
Ktr

Zt−1

, (1)
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where K is the camera’s intrinsic parameter matrix, R, tr are the relative
camera rotation and translation (the pose), and Zt−1 stands for the depth of
the 3D point X in frame at t− 1.

In order to detect the moving objects in the image, a straightforward
idea is to compensate the camera motion by Eq. (1) first. Then the residual
image, calculated as the difference between the current and previous ones
compensated in motion, highlights both the pixels belonging to moving ob-
jects and the pixels related to motion error estimation. For the sake of clarity,
we first define three different flow-based expressions:

• the Global Image Motion Flow (GIMF) represents the predicted image
changes caused by the camera motion only, that can be calculated using
Eq. (1).

• The Measured Optical Flow (MOF) represents the real dense optical
flow estimated using image processing techniques [23].

• The Residual Image Motion Flow (RIMF) is used to measure the dif-
ference between MOF and GIMF.

The RIMF can be used to distinguish between pixels related to moving
and non-moving objects. In order to calculate the RIMF, the MOF and
GIMF should be computed first. Remark that computing the latter requires
both information on the camera motion (ego-motion) and on the depth value
of the pixels. This paper does not address the issues of computing the dense
optical flow [23] and disparity map [24]: we simply use the results from state-
of-the-art methods. More precisely, we exploit the approach proposed in [25]
in order to compute the dense optical flow and dense disparity map. We
then use them directly as inputs of our system. The whole system can be
summarized by the following three steps:

1. Moving pixel detection. In this step, the moving pixels are detected
by compensating the image changes caused by camera motion. In or-
der to improve the detection results, the camera motion uncertainty is
considered.

2. Moving object segmentation. After the moving pixel detection, a
graph-cut based algorithm is used to remove false detections by con-
sidering both the color and disparity information.

3. Bounding box generation. Finally, the bounding boxes are gener-
ated for each moving object by using the UV-disparity map analysis.
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For a better understanding, a flowchart of the proposed system is given in
Fig. (2), in which the three main steps are highlighted by specific bounding
boxes.

Dense  Optical Flow and 

Disparity Map Computation

Features Extraction, 

Matching and Tracking  

Ego-Motion Estimation 

and Covariance Matrix 

Calculation 

Compute  RIMF and Its Covariance 

Matrix 

Motion Likelihood 

for Each Pixel 

Graph-Cut for Moving Object 

Segmentation  

  U-Disparity Based Bounding Box 

Generation 

Output: Bounding Boxes of  

Moving Objects  

Stereo Vision 

Synchronized and Rectified Images 

 Depth + Color  

Information  

Grid-Based Object Clustering

This part is used to calculate the motion 

likelihood for each pixel.

This part is graph-cut based moving object 

segmentation.

This part is the post-processing to generate 

the bounding box for each moving object.

Figure 2: Framework of the moving object detection and segmentation system.

3. Moving Pixel Detection

As described in Fig. 1, four images are considered: two at time t − 1
and two at time t. The left image It−1,l in the previous frame is considered
as the reference image. The right image in the previous frame, and the left
and right images in the current frame are represented as It−1,r, It,l and It,r,
respectively. Similarly, we define (ut−1,l, vt−1,l), (ut−1,r, vt−1,r), (ut,l, vt,l) and
(ut,r, vt,r) as corresponding image points in the previous and current stereo
frames.

3.1. Ego-Motion Estimation and Uncertainty Computation

Given a set of corresponding points in four images for two consecutive
frames, the relative pose of the camera can be estimated by minimizing the
sum of the reprojection errors using non-linear minimization approaches.
First, the feature points from the previous frame are reconstructed in 3D
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via triangulation and using the camera intrinsic parameters. Then these
3D points are re-projected onto the current image frames using the camera
motion as below:

x̂i
t = f(Θ,xi

t−1) =

[
Prl(K,Θ,xi

t−1)
Prr(K,Θ,xi

t−1)

]
, (2)

where x̂i
t = (ûi

t,l, v̂
i
t,l, û

i
t,r, v̂

i
t,r)

T are the predicted image points in the current
frame and xi

t−1 = (ui
t−1,l, v

i
t−1,l, u

i
t−1,r, v

i
t−1,r)

T are the detected image points
in the previous frames. The vector Θ = (rx, ry, rz, trz, try, trz)

T represents
the six degrees of freedom of the relative pose. Let Prl and Prr be the
image projections of the 3D world points into the left and right images (non-
homogeneous coordinates).

In general, the optimal camera motion vector Θ̂ can be obtained by min-
imizing the weighted squared error of measurements and predictions

Θ̂ = argmin
Θ

F (Θ,x) = argmin
Θ

N∑
i=1

‖xi
t − f(Θ,xi

t−1)‖2Σ, ∀i = 1 · · ·N. (3)

where xi
t = (ui

t,l, v
i
t,l, u

i
t,r, v

i
t,r)

T are the matched points in the current frame
by using tracking and matching strategies [26] and where ‖ . ‖2Σ stands for
the squared Mahalanobis distance according to the covariance matrix Σ.

Although the optimal motion vector Θ̂ can be obtained by minimizing
Eq. (3), its accuracy also depends on the precision of the matched and
tracked features’ positions in the images. Let x = [xt−1,xt] ∈ R

8N represent
all points and xt−1 ∈ R

4N ,xt ∈ R
4N stand for the points at times t − 1

and t, respectively. We assume that all points considered in the optimization
procedure are well-matched pixel features with only additive Gaussian noise:

x ∼ N (μ,Σ) , (4)

where μ = (μxt−1
, μxt

)T and Σ = diag(Σxt−1
,Σxt

) are the mean and the
covariance of the features. The Gauss-Newton optimization of Eq.(3) can
converge rapidly if the starting point is close to the optimal point. A real
vision-based system requires both a robust estimation of the camera motion
and a measurement of the uncertainty associated with this solution. In [27]
and [28], the authors proposed a derivation of the covariance matrix using
the following model:

ΣΘ =

(
∂g

∂Θ

)
−1 (

∂g

∂x

)T

Σx

(
∂g

∂x

)(
∂g

∂Θ

)
−T

, (5)
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where g(x,Θ) = ∂F (X,Θ)
∂Θ

is the gradient vector of F (Θ,x) with respect to
Θ, and where Σx, such as defined in Eq. (4), is the covariance matrix of the
measured features at previous and current frames. The partial derivatives,
∂g

∂Θ
and ∂g

∂x
can be computed according to Eq. (5). Alg. (1) presents how the

ego-motion and its associated uncertainty can be computed.

Algorithm 1 Ego-motion estimation and error propagation

Require: - Stereo image pairs at previous and current frames;
- Covariance matrix of matched features;

Ensure:

- Relative pose Θ (R and tr) and its covariance ΣΘ;

1: � Features extraction, tracking and matching in four images;
2: � Compute the 3D point at previous frame using Eq. (??); �

RANSAC process to remove outliers;
3: for i = 1 do N � N is maximum RANSAC times
4: � Randomly select 3 matched features pairs;
5: � iter = 0;
6: while iter< 100 || Gauss-Newton increment > ξ do

7: � Compute Jacobian matrix and residual matrix;
8: � Update Θ using Gaussian-Newton iteration approach ;
9: end while

10: � Record Θ and inliers indexes if we have more inliers than before;
11: end for

12: � Refine the final parameters using all the inliers;
13: � Compute the covariance matrix ΣΘ using Eq. (5);
14: � return Θ and ΣΘ

3.2. Moving Pixel Detection

At the beginning of Section 3, the RIMF has been proposed to detect
moving pixels. In order to compute the RIMF, the GIMF should be estimated
first. In addition, the uncertainty of RIMF can also be computed from the
ego-motion and disparity map uncertainties.

3.2.1. Global Image Motion Flow

The GIMF is used to represent the image motion flow caused by the
camera motion. Given a pixel position pt−1 = (ut−1, vt−1, 1)

T in the previ-
ous image frame, we can predict its image location pt = (ut, vt, 1)

T in the
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current frame according to Eq. (1). Theoretically, the image location corre-
spondences of a 3D static point in the current frame can be predicted by its
depth information in the previous frame and the relative motion information
of the camera only. However, this prediction stands only when the 3D point
comes from static objects, and it does not hold for dynamic objects. Finally,
the GIMF g = (gu, gv)

T for an image point (u, v)T caused by the camera
motion can be expressed as:

g = (gu, gv)
T = (ut − ut−1, vt − vt−1)

T . (6)

3.2.2. RIMF Computation

Then, assuming that the MOF estimated between the previous and cur-
rent frame at point (u, v) is m = (mu,mv)

T , the RIMF q = (qu, qv)
T is

computed as:
q = g −m = (gu −mu, gv −mv)

T . (7)

Ideally, the RIMF should be zero for a static point, while it should be greater
than zero for moving points. Simply comparing the RIMF absolute difference
to a fixed threshold does not lead to satisfying results to differentiate moving
pixels from static ones, because points with different 3D world locations
have different image motions. Moreover, the estimated uncertainty, e.g. on
camera motion or pixel depth, have a different influence on the image points.
Ignoring these uncertainties could lead to a large number of false positive
detections. The uncertainty of the RIMF mainly comes from four parts. The
first and the most important one is the uncertainty from the camera motion
estimation because it has a global influence on each pixel according to Eq.
(1). In addition, it affects differently the pixels at different locations. The
second influence part is the error of the depth estimation and the third comes
from the optical flow estimation process. The last one is the pixel location
noise which results directly from the image noise (image rectification, camera
intrinsic and extrinsic calibration, digital image quantization, etc).

3.2.3. Motion Likelihood Estimation

As mentioned above, a fixed threshold does not lead to a satisfying solu-
tion to detect moving pixels. In order to handle this problem, the uncertainty
of RIMF is propagated from the sensors to the final estimation using a first
order Gaussian approximation. As in Eq.(7), the RIMF is a function of cam-
era motion Θ, the pixel location (u, v) at previous frame, the disparity d and
the measured optical flow (mu,mv). The uncertainty of the measured optical
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flow is not considered in this work because it only affects the detection results
locally. Based on the forward covariance propagation framework in [5], the
RIMF covariance can be calculated by using a first-order approximation as
below:

ΣRIMF = JΣJT , (8)

where J represents the Jacobian matrix with respect to each input vari-
able (e.g. the camera motion Θ, the pixel position (u, v) and the dispar-
ity value d in the previous frame) and Σ = diag (ΣΘ,Σo) is the covariance
matrix of all the input variables. The covariance matrix of the camera mo-
tion is ΣΘ, and that of the disparity values in the estimation process is
Σo = diag

(
σ2
u, σ2

v , σ2
d

)
, where σu and σv are the variances that are used

to describe the pixel quantization error of the camera and σd. In [18], the
authors proposed that the uncertainty of the disparity map could also be con-
sidered as an approximate standard Gaussian Distribution and its variance
can be linearly approximated by:

σd(u, v) = σ0 + γUd(u, v), (9)

where σ0 and γ are two constant parameters, and where Ud(u, v) is the un-
certainty on the disparity value at position (u, v). Here, the matching cost
is used as a confidence measure of the disparity value (further details can
be found in [29]). Compared to the variance of each parameter in Σ, the
covariances between the ego-motion parameters, position and the disparity
are negligible and the estimation process is difficult.

Based on the ΣRIMF estimated above, we can compute the likelihood of a
flow vector to be moving. Assuming a stationary world and a Gaussian error
propagation, a flow vector is assumed to follow a Gaussian distribution with
zero mean and covariance matrix ΣRIMF . Deviations from this assumption
can be detected by testing this null hypothesis via a goodness-of-fit. Alter-
natively, the Mahalanobis distance [30] associated to the RIMF vector can
be computed:

μq =
√

qTΣ−1
RIMFq, (10)

where q is the RIMF vector at a certain image location defined in Eq. (7).
Since μ2

q is χ2-distributed, the RIMF motion likelihood ξ(m) of RIMF vector
can be computed according to its μq value.

In Fig. (3), the sub-figures (a),(b) are the motion likelihood images re-
sulting from the Mahalanobis distance μq. Green pixels are detected as static
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and red as moving. In sub-figure 3a, two cyclists come from the opposite di-
rection of the host vehicle and a pedestrian moves in the same direction as
the vehicle and all three have been well detected as moving. The shadow
of the moving car in the glass window has also been detected. In sub-figure
3b, all the moving pedestrians have been detected, but false positives on the
ground are due to MOF errors.

(a) Motion likelihood for frame 16 (b) Motion likelihood for frame 535

(c) Detection with threshold 0.75 (d) Detection with threshold 0.75

(e) Detection with threshold 0.9 (f) Detection with threshold 0.9

Figure 3: Motion likelihood calculation by using MIMF and moving pixel detection using
different thresholds.

4. Multi-Cues for Motion Segmentation

A likelihood threshold can be applied to the motion likelihood image so
as to distinguish between moving and static pixels. However, detection noise
may pervade the process because of the imperfect MOF. Fig. (3) shows some
detection results using different thresholds. For example, the motion likeli-
hood estimation at frame 16 (sub-figure 3a) is good and all the moving objects
have been well detected, no matter which thresholds are used. Despite that
the motion likelihood at frame 535 (sub-figure 3b) is also well estimated, it is
still noisy on the edge of static objects due to crude estimates of the optical
flow. A lower threshold results in both high true positives and high false
positives; conversely, a higher threshold may result in a poor detection rate.
An optimal threshold that suits all situations cannot be determined.

12



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

4.1. Segmentation Problem

To effectively separate the motion foreground from the background, a
segmentation step is adopted here. Usually, the segmentation of image into
moving and stationary parts can be considered as a problem of assigning
binary labels to each pixel: l(x) = 1 if x is moving, otherwise l(x) = 0.
Several constraints should be considered for segmentation. First, pixels with
high motion likelihood should be detected as moving. Second, adjacent pixels
with similar appearance and distance should share the same label; otherwise,
their labels should be different. By considering all the constraints, an energy
function can be built as

E(L) = Er(L) + λEb(L) (11)

where L = {l1, l2, · · · , lp} is a binary vector, p is the number of the pixels in
the image, li is a binary label for each pixel. Here, Er and Eb stand for the
region and boundary terms and λ is used to balance their influences.

The region term Er captures the likelihood that the pixels belong to the
moving foreground or static background. The motion likelihood of each pixel
can be used to build the region term as

Er = −
∑
x∈Ω

{l(x)ξm(x) + (1− l(x))ξs(x)}, (12)

where Ω represents the image domain, ξm is the motion likelihood and ξs is
a fixed prior likelihood describing the belief of points being static. Here we
assume that all the image pixels share the same stationary likelihood ξs since
no prior information is available.

The boundary term Eb is used to encourage similar neighboring pixels to
be assigned the same label. In order to obtain roust segmentation results, we
apply both color [31, 32, 18] and depth information together for building Eb.
Since moving objects usually have a significant depth difference with their
lateral background, the boundary depth similarity can be defined as:

Bd(xi,xj) = exp(−σ(|z(xi)− z(xj)|) + α), (13)

where z(xi) and z(xj) represent the depth values at the point xi and xj.
Note that B( . ) is positive function, monotonically decreasing according
to depth difference, in which α and σ are two parameters that control the
descent speed and peak value respectively. A bigger value gives a higher
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penalization cost to the depth difference, while the value controls the change
of cost with the increase of absolute depth difference. Here we empirically
set α = 0 and σ =

√
2 for all experiments. Similarly, the color similarity Bc

is also measured as Eq. (13) by considering the color difference. Finally, the
boundary term is expressed as

Eb =
∑
Ω

∑
x̂∈N4(x)

(Bd(x̂,x) + Bc(x̂,x))|l(x̂)− l(x)|, (14)

where N4(x) is the 4-neighborhood of a pixel x.

4.2. Graph-Cut for Motion Segmentation

The minimization of this problem can be solved in the graph-cut frame-
work. A minimum cut, or min-cut, is the cut with minimal cost that can
be computed using min-cut/max-flow algorithms [33, 31]. In Eq. (11), λ
is used to balance the influence between the region and boundary terms.
Clearly, the segmentation results heavily depend on the weight parameter
λ. For a low value of λ, the segmentation is mainly on the motion like-
lihood of a single pixel whereas a high value of λ results in only small or
no segment at all. In our experiments, we have tested different values:
λ ∈ {0.25, 0.5, 0.75, 2.0, 5.0}. The segmentation results show that small λ
result in some error detection, while high λ result in small regions (such as in
(d), (e) and (f)). We finally chose λ = 0.5 for our experiments, which gives
good results compared to the other values tested. In order to save computer
memory and to improve the processing speed in the graph-cut algorithm, a
down-sampling technique is used. We take one pixel out of four in both rows
and columns. Fig. (4) displays some of the segmentation results obtained
using our approach.

4.3. Bounding Box Generation

A bounding box should be generated around each moving object. Ad-
ditionally, some erroneously detected pixels (e.g., shadows) should also be
eliminated. In our approach, we mainly focused on a cubic detection space
of 30m (longitudinal), 20m (lateral) and 3m (height) in front of the vehicle.
In this limited subspace, a density map is constructed by projecting all the
detected 3D moving points onto the xOz plane. The density map is associ-
ated with an accumulation buffer. A cell in the accumulation buffer covers
an area of 50 cm × 50 cm on the xOz plane. The weights that the points
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(a) Original frame 16 (b) Original frame 535

(c) Motion Likelihood (d) Motion Likelihood

(e) Motion segmentation result (f) Motion segmentation result

Figure 4: Graph-cut based segmentation in different frames.

add to the density map have a Gaussian distribution, with the maximum
at the center cell and decreasing in the neighboring cells. Because points
become sparser as we move away from the camera, the diameter of the patch
increases gradually with the distance. The size of the patch p is defined by
the following strategy (as shown in sub-figure 5a ):

p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1× 1 cell

2× 2 cells

4× 4 cells

6× 6 cells

z < 10m

10m < z < 15m

15m < z < 25m

25m < z < 31m

. (15)

After obtaining the density map, an empirical threshold is chosen so as to
remove sparse points, that could be misdetected image pixels (e.g., shadow
or objects borders). Here, a patch will be emptied if its amount of points
is below this threshold (e.g. 50). The false alarms at objects boundary are
usually due to the error on the measured optical flow (smoothing constraint).
Sub-figure 5b shows some ROI generation results relying on the grid-based
method. Based on this approach, the shadow can be easily removed, such
as in 5b-(c). In 5b-(c), each color corresponds to one rough clustering in the
disparity map.
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XO

Z

10 m-10

10 m

15 m

25 m

31 m

… …

… …

… …

(a) Grid map in the
XoZ plane.

(b) segmentation result

(c) Grid-based rough object clustering

(g) Density map

(d) U-disparity map

(e) Bounding box generation

(a) Original image

(b) Objects clustering.

Figure 5: Bounding boxes generation from moving pixels segmentation.

4.3.1. U-Disparity Map Based ROI Generation

In each cluster, the bounding box can be generated for every moving
objects for the next recognition step. Region growing is used to remove
redundancies and to integrate part detection using the dense disparity map.
U-V disparity maps [34, 35], which are two variants of the classical disparity
map, are often used for road and obstacle detection. The U-disparity map
has the same width as the original image, which is formed by recording the
number of the pixels who share the same disparity value along each image
column.

In the U-disparity map, an upright object will form a horizontal line
because of similar disparity value. Conversely, each white horizontal line
represents a corresponding upright object. This information can be effec-
tively used to determine the width of the objects. After getting the width
of the bounding box, region growing [36] is applied to the neighborhood of
the clustering group pixels based on the disparity value. The pixels whose
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disparity values are between the minimum and maximum disparity value of
each cluster are considered to belong to the same object. The final bounding
boxes of the moving objects are shown in 5b-(e).

4.3.2. V-Disparity Map-Based Cluster Reduction

According to [37], the real world height of the objects may be estimated
by:

hi = hc +
(yi − y0)z cos θ

f
(16)

Here, hi and hc are respectively the heights of the ith object and of the camera
in the world coordinate frame; θ is the camera tilt angle and f is the camera
focal length; z is the depth of the object; y0 and yi are the horizontal position
and top of the object in the image coordinate. Assuming that moving objects
are not higher than 3m, some obvious false positives may be filtered. For
this purpose, the horizontal position is first computed using the V-disparity
map. Then, the actual height of the objects hi is calculated using Eq. (16).
Finally we retain only the objects whose height is between 0.75m and 3m,
because the height of most moving objects is in this range. Detailed steps
can be found in Alg. (2).

Algorithm 2 Bounding Box Generation and Cluster Reduction

Require: - Objects Bounding box;
- Camera height hc,camera tilt angle θ and camera focal length f ;
- The distance of objects to the camera z;
- Horizon position y0;

Ensure:

-Real world height of the objects hi ;

1: � Compute the U- and V- disparity maps;
2: � According to its disparity value, each moving pixel may be assigned

to different upright objects using the U-disparity map;
3: � Compute the horizontal line defined by y0 and the camera tilt θ from

the V-disparity map;
4: � Calculate the real world height hi of the objects using the horizontal

line y0, the camera height hc and the tilt angle θ as in Eq. (16);
5: � Keep the detected objects for which hi is between 0.75m and 3mm.
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5. Experimental Results

Several real image sequences from the KITTI dataset2 have been chosen
to test the effectiveness of our system. More details about the sensor setup
and data information can be found in [38, 39]. The actual object labels and
locations have been provided in some of these sequences, which can be used
to evaluate our moving object detection algorithm. The video sequences are
acquired from a SVS installed on the roof of a vehicle. Five different video
sequences (fps = 10) in the raw data are chosen for our evaluation. These
sequences are captured in the inner city streets, which includes moving vehi-
cles, pedestrians, cyclists etc. In the inner city sequence, the host vehicle was
driven at a low speed (about 15 km/h) because of complex road conditions.

Before presenting the experimental results, we review our detection algo-
rithm. First, dense disparity and optical flow [25] are computed before the
moving objects detection steps. At the same time, the relative camera pose
between two consecutive frames and its covariance are estimated based on
sparse feature detection and tracking. The standard deviation of the fea-
tures in Eq. (4) is empirically set to Σ = diag [1.0, 1.0] pixel. Ideally this
value should be changed depending on the situation. In order to compute the
variance of disparity in Eq. (9), we empirically set σ0 = 0.25 and γ = 0.075.

5.1. Quantitative Evaluation

Due to the difficulty of finding the moving object detection and segmenta-
tion benchmark in the real traffic scene, we try to construct out own ground
truth based on the existing KITTI dataset.

5.1.1. Moving Object Segmentation Evaluation at Pixel Level

In the “Scene Flow Evaluation 2015 benchmark”, the ground truth of
some moving objects (pixel level) have been provided for the training im-
ages. We can use this dataset to evaluate our depth-aided moving object
segmentation approach at the pixel level. The precision (P ), recall (R) and
F-measure (F ) are usually computed to measure the performance of the sys-
tem; they are defined as

R =
tp

tp+ fn
, P =

tp

tp+ fp
and F =

2R ∗ P
R + P

. (17)

2http://www.cvlibs.net/datasets/kitti/

18



AC
CE

PT
ED

 M
AN

US
CR

IP
T

ACCEPTED MANUSCRIPT

The true positive (tp) amount represents the number of pixels that have
been correctly detected as moving. False positives (fp) are static pixels that
have been mis-detected as moving. False negatives (fn) are the moving
pixels that have not been detected. The training dataset consists of 200
image groups and each group includes four images: two stereo image pairs
at current and next time instant. However, some dynamic objects have been
labeled in this training dataset, such as trucks, pedestrians and cyclists.
Finally, only 164 image groups, where the moving objects have been fully
labeled, have been used for our evaluation.

Some examples of the moving object segmentation results are displayed
in Fig. 6. Table 1 displays the moving detection results with or without seg-
mentation. The results show that it is hard to determine an optimal motion
likelihood threshold with reasonable precision and recall. A lower thresh-
old gives a high recall value while many false positives have been generated.
Inversely, a high threshold will reduce the recall value. By using segmenta-
tion, the detection accuracy can be increased: the recall, precision and the
F-measure are significantly improved compared to when using a fixed thresh-
old. In addition, compared to [20], the segmentation results have been also
improved, likely by adding the color information into the graph-cut frame-
work.

Methods Recall (R) Precise (P) F-measure (F)

Fixed threshold (0.5) 0.7568 0.4993 0.6016
Fixed threshold (0.7) 0.7338 0.6073 0.6646
Fixed threshold (0.9) 0.6315 0.7007 0.6643
Graph-cut with depth 0.7274 0.6997 0.7133
Graph-cut with depth + color 0.7641 0.6959 0.7284

Table 1: Moving objects segmentation evaluation on the KITTI dataset. Different thresh-
olds have been chosen for evaluation, while we set ξs= 0.65 for the whole evaluation.

5.1.2. Moving Objects Detection Evaluation at Bounding Boxes Level

In the “Raw dataset” category, 2D bounding boxes of the moving objects
have been provided for several sequences with tracklets. We also used these
sequences to evaluate our system at the bounding box level. The ground
truth of the moving objects are generated by labeling them manually from
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(a) (b)

(c) (d)

Figure 6: Moving object segmentation on the KITTI ”Scene Flow Evaluation 2015 bench-
mark”. Sub-figures (a),(b) and (c) display three segmentation examples, the detected
moving pixels are drawn in red. In (a), the moving car has been well detected. In (b), the
black one right in front of the camera has not been detected because the car locates nearly
at the point of epipole. In (c), some background pixels have been detected as moving due
to the occlusion in the next frame. In (d), the silvery car has not been detected because
it is out of the detection range.

the tracklets for each frame. Here, only the moving objects whose distance
is less than 30m are considered. We employ the PASCAL challenge [40]
measure to evaluate the detection results:

score =
area(BBg{i} ∩ BBd{j})
area(BBg{i} ∪ BBd{j}) , (18)

where BBd and BBg are the detected and ground truth bounding boxes
of the objects. An object is considered to be correctly detected only when
BBd{i} and BBg{j} share a sufficient overlap area. A threshold score is
set to determine this overlap area: we chose score = 0.5 as in the PASCAL
challenge [40]. The precision, recall and F-measure are also computed to
measure the performance of the system. In this case, tp represents the num-
ber of real moving objects bounding boxes have been correctly detected in
the whole sequence, fp stands for static objects that have been misdetected
as moving, and fn are the moving objects that have not been detected. The
true static objects are not taken into account because our algorithm focuses
on detecting moving objects only. Finally, 6 typical image sequences in the
“City” category of the ”Raw dataset” are taken for our evaluation. Some
detection results of these sequences are shown in Fig. 7.

Fig. 7-(a) shows the detection results in sequence 5. This sequence is
captured around the corner of a quiet city street. The moving van and
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(a)

(b)

(c)

(d)

(e)

Figure 7: Moving object detection on different sequences. Sub-figures (a), (b), (c), (d)
and (e) display the detection results, respectively on sequences 05, 11, 17, 51 and 56 in
the category of ”City” in the raw data.

the cyclist have been detected in nearly all the frames. The good detection
performance benefits from the low camera speed and the relative simple street
environment. The van in the right image has not been detected due to the far
distant. Fig. 7-(b) and (c) give results of sequences 11 and 17 respectively.

In order to highlight the advantage of our proposal to consider the camera
pose and disparity uncertainty, we take the method presented in [15] (which
does not consider these uncertainties) as the baseline. In contrast with our
proposed method, the RIMF is directly used to detect moving objects. We
transform the RIMF into motion likelihood μq as μq = 1−exp(−|q|) and take
this value as the input of the segmentation step. The motion likelihood in-
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creases with the increasing of the RIMF. In order to achieve fair comparison,
we keep all the other steps and parameters as the same as in the proposed
approach.

Method Evaluation 05 11 17 18 51 56

Method [15]
Recall 0.781 0.895 0.961 0.910 0.967 0.949
Precision 0.383 0.675 0.961 0.843 0.556 0.510
F-measure 0.513 0.770 0.961 0.876 0.706 0.664

Our method
Recall 0.898 0.919 1.00 0.933 0.968 0.787
Precision 0.690 0.696 1.00 0.849 0.680 0.768
F-measure 0.780 0.792 1.00 0.890 0.799 0.777

Table 2: Moving object detection evaluation on different ”Raw” data sequences.

Tab. 2 illustrates the quantitative evaluation of the two approaches with
the ground truth on six different image sequences. For a clear comparison, we
have highlighted the best results in blue for each sequence. From the table,
we can see that the detection results have been greatly improved for all the
sequences. Taking the uncertainties into account improves the detection rate
and reduces the false alarm rate.

5.2. Detection Results on KITTI Sequences

Besides the evaluation results mentioned above, we also tested our sys-
tem on other scenarios in the KITTI dataset. Fig. 8a shows the detection
results in the campus sequence (Campus sequence 37). During this sequence,
the camera turned from left to right at a high speed: the vehicle direction
changes nearly of 90 degrees in 4.3 seconds. The experimental results show
that our algorithm can work well in this situation. The cyclists behind the
trees far from the camera can be detected. In Fig. 8a, the red rectangle
highlights the undetected moving objects. The cyclist has not been detected
by our algorithm because it does not appear in the right camera and the 3D
points cannot be reconstructed in the disparity map. Two pedestrians at the
left boundary of the second image have also been included in one rectangle
because they are not separable in the disparity space.

We also tested our algorithm on a suburban highway sequence (Road
sequence 16) and the detection results are displayed in Fig. 8b. On the
highway, both the ego-vehicle and the other vehicles move at a high speed,
about 60 kmh−1. The frame rate of image sequence is 10 frames per second.
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Campus Sequence 37

(a) Results on a campus sequence.

Road Sequence 16

(b) Results on a suburban road.

Figure 8: Detection results on KITTI dataset.

In this case, the dense optical flow approach does not work well because
of the high changes between two successive frames. Then, sparse feature
tracking and matching between two stereo frames can be used for detecting
moving objects. A lower threshold is set in the feature extraction step to
make sure that we can obtain enough features on the moving objects. The
driving vehicles coming from the opposite direction were detected at a range
of 40m, which remains sufficient for an appropriate reaction of the driver.
The white car moving in front of the camera was also properly detected even
as it moves in the same direction as the ego vehicle.

An interesting thing is that the proposed method can also detect forward
moving objects even if it stands in the center of Field-Of-View and has exactly
the same speed with the ego-vehicle, because the MOF is zero in this case,
while the GIMF caused by camera motion is not. Therefore, the forward
vehicle can be detected because the final RIMF is not zero. On the contrary,
the proposed method can also consider the distant background existing in
the center of FOV as static object because both the MOF and GIMF will be
zero in this case.

The last sequence we tested is taken in a crowded street3. The host vehicle

3A video of the detection results can be found at
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(a) (b)

(c) (d)

Figure 9: Detection results on a crowd inner city street.

moves slowly, which makes detecting moving objects easier. Slowly moving
objects can well be detected by our approach, even when they move on the
epipolar plane. Note that the algorithm also detected partially occluded
objects because dense disparity and optical flow maps are used. Some false
negative and false positive detection happen in the real image sequences, as
displayed in Fig. 9, due to reflections on windows in the scene.

5.3. Computational Time

All the experiments have been realized on a standard laptop (Intel i7,
4 Core) with the Matlab R2015a processing environment. When the dense
flow is used, the total average computational time is about 165 seconds for
each frame. The dense optical flow and disparity map calculation step takes
about 150 seconds. Around 10 seconds are spent on the motion likelihood
computation, 4 seconds on the graph-cut based segmentation and 1 second
on the bounding boxes generation. Computing ego-motion and estimating
the uncertainty only takes about 0.25 seconds. Although our Matlab imple-
mentation is not real-time, it is also faster when compared to [41] (7 minutes
per frame) and further accelerations could be achieved by C/C++ imple-
mentation with parallel/GPU computing.

https://www.youtube.com/watch?v=mfSJnCoyLxc.
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6. Conclusion and Future Works

In this paper, an approach has been proposed to detect moving objects
from two consecutive stereo frames. The ego-motion uncertainty is estimated
through a first-order error propagation model that is used to obtain the mo-
tion likelihood for each pixel. Pixels with a high motion likelihood and a sim-
ilar depth are detected as moving based on a graph-cut motion segmentation
approach. Additionally, a fast recognition of moving objects becomes possi-
ble based on the segmentation results. Detection results in several different
real video sequences show that our proposed algorithm is robust with respect
to global (camera motion) and local (optical flow) noise. Furthermore, our
approach works with all image pixels and arbitrarily moving objects (includ-
ing partially occluded) can be detected. Without any tracking strategies, our
detection approach gives a high recall rate and also exhibits an acceptable
precision rate in several public sequences.

However, the computational complexity of the proposed method is an im-
portant concern. This is mainly due to computation of the motion likelihood
for every image pixel and the segmentation using the graph-cut algorithm.
GPU-based algorithms could be used to overcome this weakness [42]. In ad-
dition, the performance of MOD highly relies on the results of dense optical
flow and disparity maps. However, their estimation in a complex dynamic
environment (including other moving objects) often becomes very difficult.
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Highlights

• Dense moving object detection and segmentation by stereo cameras.

• Ego-motion and depth uncertainties are considered for motion detection.

• Color and depth are combined together for improving motion segmentation.

30


