23,496 research outputs found

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network

    Telemetry downlink interfaces and level-zero processing

    Get PDF
    The technical areas being investigated are as follows: (1) processing of space to ground data frames; (2) parallel architecture performance studies; and (3) parallel programming techniques. Additionally, the University administrative details and the technical liaison between New Mexico State University and Goddard Space Flight Center are addressed

    Parallel implementation of the TRANSIMS micro-simulation

    Full text link
    This paper describes the parallel implementation of the TRANSIMS traffic micro-simulation. The parallelization method is domain decomposition, which means that each CPU of the parallel computer is responsible for a different geographical area of the simulated region. We describe how information between domains is exchanged, and how the transportation network graph is partitioned. An adaptive scheme is used to optimize load balancing. We then demonstrate how computing speeds of our parallel micro-simulations can be systematically predicted once the scenario and the computer architecture are known. This makes it possible, for example, to decide if a certain study is feasible with a certain computing budget, and how to invest that budget. The main ingredients of the prediction are knowledge about the parallel implementation of the micro-simulation, knowledge about the characteristics of the partitioning of the transportation network graph, and knowledge about the interaction of these quantities with the computer system. In particular, we investigate the differences between switched and non-switched topologies, and the effects of 10 Mbit, 100 Mbit, and Gbit Ethernet. keywords: Traffic simulation, parallel computing, transportation planning, TRANSIM
    • …
    corecore