3,956 research outputs found

    Comparing technologies for conveying emotions through realistic avatars in virtual reality-based metaverse experiences

    Get PDF
    With the development of metaverse(s), industry and academia are searching for the best ways to represent users' avatars in shared Virtual Environments (VEs), where real-time communication between users is required. The expressiveness of avatars is crucial for transmitting emotions that are key for social presence and user experience, and are conveyed via verbal and non-verbal facial and body signals. In this paper, two real-time modalities for conveying expressions in Virtual Reality (VR) via realistic, full-body avatars are compared by means of a user study. The first modality uses dedicated hardware (i.e., eye and facial trackers) to allow a mapping between the user’s facial expressions/eye movements and the avatar model. The second modality relies on an algorithm that, starting from an audio clip, approximates the facial motion by generating plausible lip and eye movements. The participants were requested to observe, for both the modalities, the avatar of an actor performing six scenes involving as many basic emotions. The evaluation considered mainly social presence and emotion conveyance. Results showed a clear superiority of facial tracking when compared to lip sync in conveying sadness and disgust. The same was less evident for happiness and fear. No differences were observed for anger and surprise

    MoveBox: Democratizing MoCap for the Microsoft Rocketbox Avatar Library

    Get PDF
    This paper presents MoveBox an open sourced toolbox for animating motion captured (MoCap) movements onto the Microsoft Rocketbox library of avatars. Motion capture is performed using a single depth sensor, such as Azure Kinect or Windows Kinect V2. Motion capture is performed in real-time using a single depth sensor, such as Azure Kinect or Windows Kinect V2, or extracted from existing RGB videos offline leveraging deep-learning computer vision techniques. Our toolbox enables real-time animation of the user’s avatar by converting the transformations between systems that have different joints and hierarchies. Additional features of the toolbox include recording, playback and looping animations, as well as basic audio lip sync, blinking and resizing of avatars as well as finger and hand animations. Our main contribution is both in the creation of this open source tool as well as the validation on different devices and discussion of MoveBox’s capabilities by end users

    Content rendering and interaction technologies for digital heritage systems

    Get PDF
    Existing digital heritage systems accommodate a huge amount of digital repository information; however their content rendering and interaction components generally lack the more interesting functionality that allows better interaction with heritage contents. Many digital heritage libraries are simply collections of 2D images with associated metadata and textual content, i.e. little more than museum catalogues presented online. However, over the last few years, largely as a result of EU framework projects, some 3D representation of digital heritage objects are beginning to appear in a digital library context. In the cultural heritage domain, where researchers and museum visitors like to observe cultural objects as closely as possible and to feel their existence and use in the past, giving the user only 2D images along with textual descriptions significantly limits interaction and hence understanding of their heritage. The availability of powerful content rendering technologies, such as 3D authoring tools to create 3D objects and heritage scenes, grid tools for rendering complex 3D scenes, gaming engines to display 3D interactively, and recent advances in motion capture technologies for embodied immersion, allow the development of unique solutions for enhancing user experience and interaction with digital heritage resources and objects giving a higher level of understanding and greater benefit to the community. This thesis describes DISPLAYS (Digital Library Services for Playing with Shared Heritage Resources), which is a novel conceptual framework where five unique services are proposed for digital content: creation, archival, exposition, presentation and interaction services. These services or tools are designed to allow the heritage community to create, interpret, use and explore digital heritage resources organised as an online exhibition (or virtual museum). This thesis presents innovative solutions for two of these services or tools: content creation where a cost effective render grid is proposed; and an interaction service, where a heritage scenario is presented online using a real-time motion capture and digital puppeteer solution for the user to explore through embodied immersive interaction their digital heritage

    Speaker-following Video Subtitles

    Full text link
    We propose a new method for improving the presentation of subtitles in video (e.g. TV and movies). With conventional subtitles, the viewer has to constantly look away from the main viewing area to read the subtitles at the bottom of the screen, which disrupts the viewing experience and causes unnecessary eyestrain. Our method places on-screen subtitles next to the respective speakers to allow the viewer to follow the visual content while simultaneously reading the subtitles. We use novel identification algorithms to detect the speakers based on audio and visual information. Then the placement of the subtitles is determined using global optimization. A comprehensive usability study indicated that our subtitle placement method outperformed both conventional fixed-position subtitling and another previous dynamic subtitling method in terms of enhancing the overall viewing experience and reducing eyestrain

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Bringing tabletop technologies to kindergarten children

    Get PDF
    Taking computer technology away from the desktop and into a more physical, manipulative space, is known that provide many benefits and is generally considered to result in a system that is easier to learn and more natural to use. This paper describes a design solution that allows kindergarten children to take the benefits of the new pedagogical possibilities that tangible interaction and tabletop technologies offer for manipulative learning. After analysis of children's cognitive and psychomotor skills, we have designed and tuned a prototype game that is suitable for children aged 3 to 4 years old. Our prototype uniquely combines low cost tangible interaction and tabletop technology with tutored learning. The design has been based on the observation of children using the technology, letting them freely play with the application during three play sessions. These observational sessions informed the design decisions for the game whilst also confirming the children's enjoyment of the prototype

    Human-computer interaction in ubiquitous computing environments

    Full text link
    Purpose &ndash; The purpose of this paper is to explore characteristics of human-computer interaction when the human body and its movements become input for interaction and interface control in pervasive computing settings. Design/methodology/approach &ndash; The paper quantifies the performance of human movement based on Fitt\u27s Law and discusses some of the human factors and technical considerations that arise in trying to use human body movements as an input medium. Findings &ndash; The paper finds that new interaction technologies utilising human movements may provide more flexible, naturalistic interfaces and support the ubiquitous or pervasive computing paradigm. Practical implications &ndash; In pervasive computing environments the challenge is to create intuitive and user-friendly interfaces. Application domains that may utilize human body movements as input are surveyed here and the paper addresses issues such as culture, privacy, security and ethics raised by movement of a user\u27s body-based interaction styles. Originality/value &ndash; The paper describes the utilization of human body movements as input for interaction and interface control in pervasive computing settings. <br /

    Visual Fidelity Effects on Expressive Self-avatar in Virtual Reality: First Impressions Matter

    Get PDF
    Owning a virtual body inside Virtual Reality (VR) offers a unique experience where, typically, users are able to control their self- avatar’s body via tracked VR controllers. However, controlling a self-avatar’s facial movements is harder due to the HMD being in the way for tracking. In this work we present (1) the technical pipeline of creating and rigging self-alike avatars, whose facial expressions can be then controlled by users wearing the VIVE Pro Eye and VIVE Facial Tracker, and (2) based on this setting, two within-group studies on the psychological impact of the appearance realism of self- avatars, both the level of photorealism and self-likeness. Participants were told to practise their presentation, in front of a mirror, in the body of a realistic looking avatar and a cartoon like one, both animated with body and facial mocap data. In study 1 we made two bespoke self-alike avatars for each participant and we found that although participants found the cartoon-like character more attractive, they reported higher Body Ownership with whichever the avatar they had in the first trial. In study 2 we used generic avatars with higher fidelity facial animation, and found a similar “first trial effect” where they reported the avatar from their first trial being less creepy. Our results also suggested participants found the facial expressions easier to control with the cartoon-like character. Further, our eye-tracking data suggested that although participants were mainly facing their avatar during their presentation, their eye- gaze were focused elsewhere half of the time

    Facial and Bodily Expressions for Control and Adaptation of Games (ECAG 2008)

    Get PDF
    • …
    corecore