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Fig. 3. A selection of avatars animated with the MoveBox system. a) Person doing live MoCap from Azure Kinect onto a Microsoft Rocketbox avatar. b)
Playback of two avatar animations created to represent a social interaction with MoveBox. c) A crowd of avatars dancing powered by Mocap.

Abstract—This paper presents MoveBox an open sourced
toolbox for animating motion captured (MoCap) movements onto
the Microsoft Rocketbox library of avatars. Motion capture is
performed using a single depth sensor, such as Azure Kinect or
Windows Kinect V2. Motion capture is performed in real-time
using a single depth sensor, such as Azure Kinect or Windows
Kinect V2, or extracted from existing RGB videos offline lever-
aging deep-learning computer vision techniques. Our toolbox
enables real-time animation of the user’s avatar by converting the
transformations between systems that have different joints and
hierarchies. Additional features of the toolbox include recording,
playback and looping animations, as well as basic audio lip
sync, blinking and resizing of avatars as well as finger and hand
animations. Our main contribution is both in the creation of this
open source tool as well as the validation on different devices
and discussion of MoveBox’s capabilities by end users.

Index Terms—Avatars, Animation, Motion Capture, MoCap,
Rigging, Depth Cameras, Lip Sync

I. INTRODUCTION

Avatars are of increasing importance for social research

and social Virtual Reality (VR) applications [1]. Avatars are

needed to interact with others inside social virtual environ-

ments (VEs), and are the basis for creating realistic stories

inside VEs [2]. While some avatars may represent intelli-

gent agents that synthesize their motion from prerecorded

motion-capture (MoCap) [3], others may be a real-time virtual

representation of real people [4]. These self-avatars are a

representation of a user within head mounted display (HMD)

worn VR and are fundamental to social-science embodiment

research [5]–[8].

One of the main challenges in creating realistic avatars and

self-avatars is the need to animate them so that their motions

replicate the user’s motions [9]–[11]. Previous research and

development has develop a variety of sensors, tools and

algorithms for animating avatars. A hindrance to this work

has been a common set of open source data and tools. This is

partly addressed by the Microsoft Rocketbox library [12].

Animation of avatars is often performed through motion

capture (MoCap) systems that capture user motions in VR.

MoCap is the processes of sensing a person’s pose and move-

ment. Real-time motion capture of users is usually limited

to measuring the position and orientation of the user’s head,

measured by the HMD, and the position and orientation of

the left and right palms, measured by hand-held trackable



controllers. Controllers may include a set of input buttons and

triggers, as well as additional capacitive sensors for recovery

of the finger motions in the vicinity of the controllers. The

tracking may be done using grounded sensors or beacons such

as light emitters, cameras, or magnetic sensors [9].

A common technique to extrapolate limited sensing to a full

body animation is through Inverse Kinematics (IK) [13], [14].

IK works best for joints between known locations and thus

poses a challenge for joints that are far from the head and the

hands, such as hips, legs or feet. To enable animation of the

feet, IK usually applies heuristics such as generating walking

steps based on the global movement of the user’s head, or

using pre-recorded animations.

High quality, non real-time animations are captured using

professional motion capture systems. In systems such as

Optitrack and Vicon multiple high frame rate cameras are used

to capture a professional actor’s performance. The resulting

motions recorded by such systems are of high quality and

can be used in projects such as motion picture productions

and AAA games. However these systems are expensive and

require complex setup, which makes them inaccessible for

many researchers, artists, small content creators, and users.

Furthermore, once a motion is captured, there are still diffi-

culties in applying the motion to the desired avatar. Different

motion capture and avatar systems may represent the skeletal

structure in different ways, with variations in the number

of joints and the topology of bones [11]. Large productions

employ artists and technicians familiar with each system to

ensure the pipeline from capturing to rendering will perform

as needed. However there is a need for a simpler pipeline for a

range of other use cases, for example by researchers in fields

such as psychology or sociology wishing to use avatars as

tools to test new theories (e.g. [3], [15]).

In this paper, we present an open source toolbox, MoveBox,

that uses a single sensor—specifically a depth camera such as

the Microsoft Azure Kinect or Kinect V2—to record the full

body motion of a user. The captured motion can be applied

in real-time to an avatar in Unity 3D. Envisioning the needs

of researchers, artists, and others for such a tool box, we

have added capabilities beyond the main skeletal animation

using a Kinect depth camera, to help those that want to create

convincing animated avatars without a sophisticated MoCap

production studio. This includes using audio input to generate

approximate lip motion on the avatars, synchronized voice

recording, seamless recording and playback of animations, and

scaling avatars to fit the body proportions of the user. We

support the Microsoft RocketBox avatar library [16], which is

freely available to the research community. It contains humans

of different genders, races, and everyday occupations.

II. RELATED WORK

A. Motion Capture

1) Body Capture: Most existing motion capture (MoCap)

systems are based on capturing the actor performance using

multiple sensors to enable robust capturing of all the skeleton

joints’ positions regardless of joint occlusion from some of

the sensors [9]. The accuracy of the system is dependent on

precise calibration of the relative position and orientation of all

the sensors. An alternative is suits with Inertial Measurement

Unit (IMU) arrays, but these suffer from translational drift [17]

and require more setup time i.e. putting the suit on.

Different companies and researchers have attempted to use

low cost trackers, such as a multitude of Vive Trackers as

a base for motion capture [18]. However, these systems are

targeted to the professional market with larger budgets. Liu

et al. [19] developed a system that uses six wearable sensors,

however even this minimal number is still cumbersome for

smaller productions that need to maintain them charged and

wear them in precise locations on each actor’s body. Ad-

ditionally, their system uses proprietary built hardware and

the software used is not available to the public. Ahuja et al.

[20] suggested a set of spherical mirrors and cameras that

are mounted on the user’s HMD, to capture the user’s motion.

While limited only to people that wear HMDs, the first person

view of the body reduces the quality of the tracking.

Compared to other lightweight body tracking solutions, we

have found Azure Kinect to be more robust to occlusion

partially due to the underlying Deep Neural Network (DNN)

body model that the data is being fit to. Although it is possible

to integrate multiple Azure Kinects in a Unity application, for

this toolbox we aim for a simple system that can be easily set

up. We, therefore, simplified the system to use one single depth

camera; either the Azure Kinect or the older model Microsoft

Kinect V2. While limited to a single point of view, the camera

does not need to be calibrated, be rigged to other cameras, or

maintain temporal synchronization with other cameras, thus

enabling a quick and easy setup.

2) Facial Capture: There are several approaches to con-

struction of facial performance capture for virtual models.

A common approach is camera-based solutions that employ

computer vision algorithms to calculate the three-dimensional

mesh of the face. These might require a camera system with a

depth sensor [21], multi-view cameras [22], or binocular stereo

[23]. Some solutions also employ deep learning techniques to

estimate the mesh [24].

In addition to camera-based solutions, some audio-based fa-

cial animation solutions also exist. Lip-sync libraries typically

estimate the visemes from the phonemes detected in the audio

stream [25] [26]. Some solutions like the SALSA suite [25]

can also synthesize the speech to predict emotions, and apply

appropriate facial animations from this prediction.

It is important to note that if the user of the MoveBox

system wears a VR headset, then their facial features might

be obscured.

B. Character Engines

Motion capture systems that interface with avatars for end

users are critical to the adoption of more human-like avatars

for research and social VR [27]. Previous work in the area of

character engines that support MoCap, like HALCA [28] and

HUMAN [11], [29], have aimed at converting MoCap from

different sources into avatars and robot skeletons. Work by



Gillies and Spanlang comparing real-time character engines

for virtual environments proposed four metrics by which to

evaluate character engines: 1) photo-realism 2) movement

realism 3) interaction and 4) control. [30].

Currently, the most widely used game engines, Unity and

Unreal, both provide industry quality for these four features

if interaction is limited to the triggering of transitions in a

finite state machine. Each game engine has plugins that allow

streaming live motion capture data into an application. Such

data can serve multiple purposes. First, it could be used to

drive a character in a social mixed reality application. Second,

it could be captured and used to implement motion synthesis

algorithms such as motion matching [31]. Third, it could be

used in a data set for Deep Learning [32] such as learning

motions through reinforcement learning.

However, for social mixed-reality applications, live body-

tracking data can be used to drive IK. IK targets can overlay

a base animation generated by an animation graph that is

implemented with a finite state machine such as the Mecanim

Humanoid animation system in Unity. However, this setup can

also be complicated to configure, and it is a drawback for

recording from real-time motion capture systems that plugin

to Unity, specially if they do not readily integrate with the

Mecanim Humanoid animation system.

A common implementation for the situation where there

is only head and hand tracking, is to blend the user motions

with a base animation for the full body. One problem with this

approach is that when the movement of the head triggers an

animation, for example the walk animation, the result can be a

unnatural scuttling of the avatar’s feet. And additional fixes are

needed to have both leaning and walking, for example having

additional feet trackers [33].

III. MOVEBOX: THE TOOLBOX

MoveBox aims to provide several resources to users of the

Microsoft Rocketbox avatars. On their own, avatars are only a

list of vertices and meshes attached to joints. Without simple

methods for implementing animations, it becomes challenging

for users to bring them into their projects. Therefore, the main

goal of this toolbox is to enable users to create animations

for Microsoft Rocketbox avatars on their own. This will help

democratize the use of the library and of avatars in general,

and ensures that the use of avatars is not limited to those with

professional grade animation equipment.

Figure 4 provides a schematic of the functions and features

of MoveBox. MoveBox runs on the input of depth sensing

cameras that provide skeletal tracking to perform the full body

animation of the Microsoft Rocketbox avatars. It also uses

audio input for creating a basic lip sync speech animation,

and procedural control for minimal facial idling such as eye

blinking [34]. Additional MoveBox features include recording

and playback of MoCap animations and resizing of avatars.

A. Implementation

1) Real-time Motion Capture: MoCap data is input from

either the Azure Kinect or Kinect V2, both of which are

Fig. 4. Schematic of the functions and features of the toolbox.

capable of tracking, at at 30Hz, the three-dimensional data

via their respective depth cameras. These cameras were se-

lected mainly because their software development kits (SDKs)

provide body tracking features. However, each of them have

different systems of coordinates and bone structures, which

can make the conversion and calibration between the tools

and the avatars somewhat complex.

Therefore, once the body-tracked data is read into our

system, we process that data in order for it to be compatible

with the skeletal structure of the Rocketbox avatars (Figure 5).

Fig. 5. LEFT Real-time body animation. In red the input (either in Azure
Kinect or Kinect V2). On the side the reconstruction of the motion in the
Microsoft Rocketbox. RIGHT: improvement of the Kinect V2 animation based
on the original roll data of the avatar. a) Pitch and yaw rotations are correctly
recovered by Kinect V2. b) however by default there is no consistent roll
information. c) MoveBox recovers the original roll of the avatar to at least
ensure an stable and valid reconstruction. See supplementary video.

To do so we extract each body frame of data from Azure

Kinect or Kinect V2 at a rate of 30 frames per second. Each

instance of a body frame contains data about several joints

in the human body. Poses of avatars are represented by their

skeletal structure, where each joint has its 3 or 6 degrees

of freedom (DOF) transformation (rotations and sometimes

position) from its parent in the skeletal structure. In total the

Microsoft Rocketbox avatars have 53 body bones and 28 facial

bones. However, neither Kinect V2 nor Azure Kinect provide

that much information (see more details on the apparatus



section). Hence the need to convert the different skeletal

structures and poses.

The data measurements that we are most interested in are

position and orientation, which are represented as a three

dimensional (x, y, z) coordinate and a four dimensional quater-

nion (w, x, y, z) coordinate respectively.

Position simply measures where in the 3D space each joint

is located during a particular frame, whereas the orientation

measurement returns the relative rotation of each joint.

On system awake the position and orientation of every

tracked joint in the avatar (25 in Kinect V2, and 32 in Azure

Kinect) is stored for later reference by the animation rendering

script. The skeletal structure of avatars and tracking systems

are rarely the same. This is true for the RocketBox avatars

and the Kinect trackers. Each frame the Kinect joint data is

captured and then mapped to the corresponding joint in the

RocketBox avatar skeleton in real-time.

After mapping the data to a Microsoft Rocketbox compat-

ible format, the animation is rendered by looping through

every joint and updating its position and orientation based

on the current frame’s values. In order to ensure that proper

orientation of avatar limbs is maintained, a reference is kept for

each joint’s parent joint so that absolute position and rotation

(qabsolute) values can be calculated via quaternion arithmetic:

qabsolute =
∏k

i=root qi

Finally, the rotations between frames are interpolated using

exponential smoothing. This smoothing is necessary to account

for the difference in frame rate between the input cameras,

often at only 30Hz, and the display, possibly at the 90Hz

rendering frame rate of most VR HMDs.

2) Motion Recovery from Existing Videos: Movebox in-

cludes an external tool for 3D multi-person human pose

estimation from RGB videos. We utilized a deep-learning

based approach open sourced as VIBE [35], which trains a

temporal model to predict the parameters of the SMPL body

model [36] for each frame while a motion discriminator tries to

distinguish between real and regressed sequences. The output

of the model is a sequence of pose and shape parameters in the

SMPL body model format. To animate RocketBox avatars with

predicted 3D poses, the toolbox first extracted the joints data

from pose parameters, computed the transformation between

SMPL and RocketBox skeleton structures, and then mapped

to the corresponding joint in the RocketBox avatar skeleton as

shown in Figure 6.

Despite this video extraction does not work in real-time, it

provides a good alternative and can demonstrate to be a critical

feature to allow the recreation of scenes from archival footage

or other content that has been recorded in real life, helping to

transfer them to VR. This type of footage usage can be of great

advantage to researchers on Immersive Journalism [37], where

they want to recreate scenes. But also for anthropological and

social studies, in which for example a bystander effect to a

bar fight needs to be recreated [15].

3) Lip Sync: One common challenge with avatar anima-

tions is the incorporation of facial animation. Even in pro-

Fig. 6. 3D Multi-person pose estimation from RGB videos. (a) Predicted
SMPL Models overlay on the video. (b) Animating Microsoft Rocketbox with
predicted 3D pose. (c) non optimal results in videos where 1/3 partial body
occluded, or half body occluded.

fessional settings facial MoCap is often done separately from

body capture.

Some solutions for general users leverage RGB data from

regular cameras and computer vision tools that already have

facial expression recognition built-in, such as OpenPose [38].

This could be translated to the bone structure of RocketBox,

or to drive additional blendshapes.

However, the use of cameras for facial animation is chal-

lenged when users are wearing an HMD in VR. There have

been solutions to instrumentalize HMDs [39], but these are

not universal for end users of the library. In that line a much

simpler solution is to use audio input to generate less accurate

but meaningful lip synchronization [34], that will nonetheless

work even if users are wearing an HMD.

The Lip Synchronization feature in MoveBox retrieves

audio information from the microphone, or an audio file, and

animates the mouth of the avatar to open and close in real-

time. It uses the spectral frequency of the microphone input to

proportionally move two joints on the rigged face: the jaw and

the upper lip. The result, although less impressive than using

blendshapes with phonemes, gives a compelling experience.

Fig. 7. (a) Real-time lip sync can be enabled using Movebox. (b) Movebox
add-on to use real-time hand tracking with Oculus Quest. (c) Avatars can be
resized to match the real size of the user. See supplementary video.

4) Hand and finger motions: Enabling avatar’s hand move-

ment can increase fidelity of expression. New devices such as

the Oculus Quest and HoloLens 2 are providing finger tracking

information in real-time. The expectation is that more devices

will eventually include such finger tracking enabling better



hand interactions. Our toolbox has an ad-on feature to apply

device’s hand tracking info on Rocketbox avatar’s hand bone

and 15 finger bones with few easy drag and drop actions on

Unity editor, and hence animate the hands while in VR (Figure

7). This is an important feature as fingers and hands are very

important for social interaction.

5) Joint Comparison : For many extended MoveBox fea-

tures, such as enhanced animation looping or masking, we

implemented a correlation algorithm between body parts of

the same skeleton in two different frames or rotation states.

A similarity index is calculated between two body states,

based on the array of quaternion rotations for every joint in

the body.

The product of a quaternion q and its inverse q−1 is the

identity (1, 0, 0, 0), which has a vector part with a magnitude

of zero.

qq−1 = (1, 0, 0, 0)

The magnitude of the vector part of the quaternion product

of q1 and q−1
2 is zero when q1 and q2 are identical, and

increases as the similarity between the two quaternions de-

creases.

Based on this equation, a similarity index (Si) for a pair

of body positions (with a body position defined by its set of

joint rotations) can be defined as the sum of the magnitude

of the quaternion product of one joint rotation quaternion and

the inverse of the other for each joint or

Si =
∑n

j=0

√
x2
j + y2j + z2j

where j is the joint and xj , yj , and zj are the second, third

and fourth parts of the quaternion qPj = (wj , xj , yj , zj) and

qPj = q1j ∗ q−1
2j and quaternions q1j and q2j are the pair of

rotations for the joint j.

This ability lowers the barrier for a range of applications:

an autocorrelation of positions among a set of frames in a

recorded animation can enhance looped playback so that a loop

appears more continuous; comparison of prerecorded body

positions to user body positions captured on camera could

enable the smooth integration of real-time movements with

prerecorded animations, effectively creating a mask of motions

on certain bones. For example, a creator might want to use a

recorded body motion but implement a brand new lip sync.

This implementation of comparisons can enable a set of key

features in the toolbox, including masking animations and the

improved looping tool, as described below.

B. Features

1) Recording and Playback of Animations: An important

feature of the toolbox is that it enables users to record the

animations they create via motion capture and replay them

across any of the Microsoft Rocketbox avatars. This will make

creating many different characters that rely on similar motions

much easier, as a user can simply create one animation and

have it replayed on multiple avatars. It also helps speed up the

creation of scenes with avatars as it is very easy to visualize

the final output and/or record an alternative animation.

2) Animation Looping: The recording feature enables con-

trol, cropping and looping of animation clips upon playback.

The applications of animation recording include the creation

of multi-avatar scenes by a single creator, which are then

improved by the ability to loop recordings which allows

continued playback for an undetermined duration of time.

To enhance playback quality, a similarity looped animation

is made available for more continuous loops. This is done

by trimming the clip at a pair of frames, one near the

beginning and one near the end, with similar body positions.

An optimal pair of frames can be found by implementing the

Joint Comparison technique discussed in Section III-A5 along

the series of recorded frames.

3) Masking: The use of motion masking already available

in Unity is also streamlined in MoveBox, so that users can

use multiple animations for the same avatar. For example a

body animation and an independent lip sync animation can

both be applied to the same avatar. Automatic masking is also

discussed in Section III-A5.

4) Resizing Avatars: The Rocketbox avatars can be scaled

to a custom size to match the user’s size. The ability to

use an appropriately sized avatar improves accuracy of body

positions and decreases the risk of avatar limb crossover. When

triggered, the resizing feature takes the three dimensional

positions of the user’s foot and head bones, which are captured

by the Azure Kinect or Kinect v2 camera, to measure the

user’s height. The Rocketbox avatar is then resized, by its

scale component, to match the user’s height (Figure 7).

IV. VALIDATION

To demonstrate the result of utilizing MoveBox for the Mi-

crosoft Rocketbox avatars, we performed a series of MoCaps

with Kinect V2 and Azure Kinect inside Movebox, as well as

compared the system to other tools such as Cinema4D.

A. Apparatus

1) Kinect V2: Kinect V2 is RGB-D camera based on Time-

of-Flight (ToF) that provides dense depth estimations (up to 2

million points per frame) together with color images at a high

frame rate (30Hz). This sensor considerably pushed forward

several research fields such as: 3D reconstruction [40], [41] or

gestures [42]. The natural frame rate of Kinect is only 30Hz,

which may blur very fast motions but is quite good for most

natural motions of users.

Body tracking SDK calculates the position of 25 joints and

can count up to 6 people simultaneously. To compensate for

single point of view and resulting occlusion, Kinect imple-

mented a data-driven approach based on a large data-set of

motions, and fits the most plausible full body motion to the

visual part of the body [43].

However, Kinect V2 recovers the skeleton only with 2 DOF

per joint, without roll rotations. This device was originally

aimed at consumer use with the Xbox console, in which the

users are always facing frontally to the TV. Either seating in

the sofa in or standing in front. Avoiding roll rotations allowed

the system to deal with a large variation of cloths. But it has



undesirable effects when trying to animate 3D avatars, as we

will see in this section.

2) Azure Kinect: The current Azure Kinect is also a ToF

camera, designed to deal a wider range of motions than Kinect

V2. With a 12MP CMOS rolling shutter sensor it can generate

12 million points every 66 milliseconds.

The body tracking SDK implements a more advanced Deep

Neural Network (DNN) algorithm that includes the raw color

and depth data to estimate the pose of the person from

segmentation of body parts and skeletal tracking. It also

includes temporal consistency checks. All in all, this post

processing provides better joint orientation information as well

as reconstruction of body parts that are off-view. In total it

provides information on 32 joints.

B. MoCap Validation

We ran our toolbox with Kinect V2 and Azure Kinect and

tested how well it performed with upper and lower body

motions as well as 360 rotations of participants, occlusions

and stand downs.

1) Upper Body and Lower Body: Both devices recover the

joints and bones position well. However, Kinect v2 did not

have stable recovery of the roll angle of bones around their

own axis. While this is not visible when animating avatars

with revolution bones (such as a stick figure) it generates

erroneous mapping of the mesh and textures along the roll

axis for anthropomorphic avatars (See Figure 5). By contrast,

the Azure Kinect had better roll reconstruction of the joints

along its own axis.

We implemented a model based solution to the roll rota-

tions in Kinect V2 to always default the orientation of the

joints around themselves to that on the original avatar. As in

the original avatars the relations of rolls between joints are

correct. This at least ensures more stability and valid mesh

deformations at the joints (Figure 5). This improvement is

important because this type of errors on the avatar can reduce

the experience dramatically [44].

Lower Body capture performed well on both devices. And

after doing the resize of avatars to match the participant the

feet were nicely grounded as long as they were on camera

sight. However, further collision systems could enhance even

more the grounding and make it more robust.

2) Facial and Hand animation: Both Kinect V2 and Azure

Kinect suffered from unwanted revolutions on the wrists. To

give stability, our solution was to fix the wrist rotations and set

them to match that of the lower arm. However, MoveBox also

provides hand and finger animation for HMDs that support

hands tracking, such as Oculus Quest or HoloLens 2. This

works well when the user’s hands face toward or away from

the HMD. When the hands face sideways or the fingers

are tangled, hand tracking may lose accuracy. As a fix, we

apply less impact on the avatar’s hands when hand-tracking

confidence level is low.

For facial animation, currently, MoveBox only implements

basic blinking idling and lipsync. But the bone structure of

the faces could result in a much larger data set of facial

expressions for animations.

3) Occlusions and Full body rotations: The two models of

Kinect differ in their resistance for occlusions. While Kinect

v2 may react to a joint occlusion by generating an impossible

pose, Azure Kinect tend to returns a feasible position.

This difference in robustness is due to the design consider-

ations of both devices. Kinect V2 was designed to sense the

pose of a user facing the sensor, which limits the possible

motions that could be captured by the user. Whereas Azure

Kinect, was designed with a general pose recovery based on

a 3D human model that handles such poses with no problem

(see supplementary video).

4) Evaluating the reliability 3D Pose from videos: As

stated above, currently estimating the 3D pose from videos

is designed for offline usage, but it can achieve 30 fps on a

RTX2080Ti using [35]. In addition, since the current trained

model used videos with visible full body as training data, the

predicted 3D pose is reliable only when the full body is visible

as shown in Figure 6 (a,b) (b). However, if the lower legs only

are occluded, then results of upper body may still be usable

(see Figure 6(c)). But if half or less of the body is visible, the

results will be unreliable, as seen in Figure 6 (c).

C. End User Validation

A collaborating university lab is conducting research in sto-

rytelling authoring tools for AR/VR. As part of their research,

several authors are developing stories involving numerous

characters that interact with each other and with the viewer.

They have been using the Microsoft Rocketbox avatars since

their release, first with a Unity asset called Cinema Mocap

2 and now with MoveBox. Working during the COVID-19

pandemic, a single lab member with a both a Kinect 2 and

an Azure Kinect at home records action sequences for all

characters, while collaborators contribute dialogue and creative

direction. In this section we detail their experiences using

MoveBox.

1) Animation Quality: The lab does not have sophisti-

cated 3D content creation or animation expertise. As relative

novices, their experiences using Cinema Mocap 2 vs. Move-

Box are markedly different. The animation smoothness using

MoveBox was much higher than they could achieve using

Cinema Mocap 2. The quality difference was noticeable when

creating animations using Kinect 2 for each tool, but the Azure

Kinect with MoveBox produced the highest quality content.

An additional limitation the lab faced was their inability

to record motions that were not directly facing the camera,

something that is available with Azure Kinect and MoveBox.

2) Lip Sync: Similarly, the researchers did not have support

for mapping avatar mouth movement to audio files before

switching to MoveBox. Being able to add MoCap animations

as well as lip-sync animations from a single toolbox provided

a simplified workflow and removed the need for custom

development.

3) All in one Tool Box: A major benefit noted was the all

in one nature of MoveBox. With the other tool that they had



previously used, the user would have to record their motion,

rig the exported avatar to a compatible skeletal structure,

create an animation controller, and attach the animation clip to

the Rocketbox avatar just to view the output. This workflow

was very inefficient, especially when creating groupings of

multiple avatars each with a unique animation. As shown in

figure nine, MoveBox enables the user to record and playback

animations in very little steps and without the need for any

complicated operations.

4) Creating Stories: Using MoveBox, the creator was able

to record an animation for one character, and view that anima-

tion while recording additional motion for a second character.

This process was repeated numerous times in order to create

larger and more complicated segments. The option to view

previous animations while recording new segments removes

guesswork when synchronizing a multi-avatar sequence.

This mode of recording significantly reduced the amount of

time it took to create multi-avatar. An example of a ten second

animation with three different avatars waving at one another

was measured. It took the lab 7 minutes to record the three

avatar motions with Cinema Mocap 2 and it required several

recording attempts to achieve pseudo-synchronization due to

their inability to view previous animations. With MoveBox,

the lab was able to get similar quality motions in 2 minutes,

with a single attempt needed per avatar to achieve a higher

quality of synchronization across the animation group.

V. DISCUSSION AND LIMITATIONS

The presented MoveBox system represents a first step in

making real-time MoCap technology for the hands of many

users. There are many future additions that we hope to add.

Starting with support of more sensors, from stereo depth

cameras, to even just using a simple color camera, and use

computer vision for recovery of the plausible pose.

The current system was tested recording one person in

a time. While both Kinect cameras are designed to handle

more than one actor, it may increase the complexity and

occlusions in the scene. The current system allows a person

to record a performance in sync with watching a pre-recorded

performance, so many scenes involving multiple users can be

captured this way, but we hope to extend the system for multi

actors, or maybe multiple actors online which can help multi-

user production in these days of social distancing.

By leveraging existing RGB video content, this toolbox

can also be used for motion banking. This also opens the

possibility of using millions of existing videos as a source

for animations and bringing archival footage into virtual

environments.

While the MoveBox system provides good body tracking,

the facial performance capture is limited. Currently MoveBox

has a simplistic lipsync feature that maps the audio spectral

amplitude to the mouth movement. As an immediate next step,

we would like to implement lip sync capability that applies

phoneme information from audio to viseme blendshapes. In

addition to lip sync, we would also like to add expressiveness

through facial muscles.

With a similar approach the toolbox could also incorporate

facial expressions. This should be relatively similar to the rest

of the animation pipeline, as the Microsoft Rocketbox avatars

are equipped with facial rigging. Since the user’s face is

obscured by the VR headset, we cannot use solutions that rely

on facial video capture [24], and must instead rely on idling

animations [34] or facial animation through speech sentiment

analysis [45]. Using RGB information for facial expressions

would limit the use of this toolbox for users of VR. Hence a

more general solution is to have a good idling system for the

face combined with lipsync. This approach has been shown to

enhance the experience and create enfacement on users [34].

Idling animations add randomly generated animations to the

model in order to counter the ”robot stare” that puts many

models in the uncanny valley.

The idling animation could be further improved by per-

forming sentiment analysis on speech and applying facial

animations based on sentiment.

VI. CONCLUSIONS

Up until now, motion capture was one of the hallmarks

for high budget productions. To generate motions that look

realistic while easy to capture, productions invested in high-

end motion capture equipment and spaces, or rented expensive

hours at motion capture studios. Low budget productions,

hobbyists, artists, and researchers, usually had to generate

motions using their animation capability, using code to gen-

erate procedural animation, or hoping to find useful MoCap

recordings that may fit their needs, withing a few data sets of

animations containing past recorded motions.

In this paper we present a publicly available open toolset,

MoveBox, that is aimed to enable every user, even with a

humble budget, to capture as many motions as she needs,

acted according to the project needs. Although the generated

quality is not equal to the motions generated by high-end

equipment, it already enables many more users to access

to motion recordings and to start using avatars into their

experiments.

We envision a future where researchers of many fields

ranging from computer science to psychology, sociology or

other may use MoveBox to power interactive avatars during

VR experiments.
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