5 research outputs found

    Driving style recognition for intelligent vehicle control and advanced driver assistance: a survey

    Get PDF
    Driver driving style plays an important role in vehicle energy management as well as driving safety. Furthermore, it is key for advance driver assistance systems development, toward increasing levels of vehicle automation. This fact has motivated numerous research and development efforts on driving style identification and classification. This paper provides a survey on driving style characterization and recognition revising a variety of algorithms, with particular emphasis on machine learning approaches based on current and future trends. Applications of driving style recognition to intelligent vehicle controls are also briefly discussed, including experts' predictions of the future development

    Incorporating the standstill distance and time headway distributions into freeway car-following models and an application to estimating freeway travel time reliability

    Get PDF
    Standstill distances and following time headways are two important microsimulation model parameters associated with driver aggression. This paper investigates the distributions of standstill distances and time headways and incorporates these distributions into car-following models to estimate travel time reliability. By incorporating standstill distance and following headway into car-following models as stochastic parameters, a speed-density region can be generated, based on which various travel-time-reliability measures can be calculated. Key findings of this study are as follows: (1) Both standstill distances and time headways follow fairly dispersed distributions. Therefore, it is suggested that microsimulation models should include the option of allowing standstill distances and time headways to follow distributions as well as to be specified separately for different vehicle classes. (2) By incorporating stochastic standstill distance and time headway parameters in car-following models, travel-time-reliability measures can be estimated more precisely and faster compared with using VISSIM

    An Overview on Study of Identification of Driver Behavior Characteristics for Automotive Control

    Get PDF
    Driver characteristics have been the research focus for automotive control. Study on identification of driver characteristics is provided in this paper in terms of its relevant research directions and key technologies involved. This paper discusses the driver characteristics based on driver’s operation behavior, or the driver behavior characteristics. Following the presentation of the fundamental of the driver behavior characteristics, the key technologies of the driver behavior characteristics are reviewed in detail, including classification and identification methods of the driver behavior characteristics, experimental design and data acquisition, and model adaptation. Moreover, this paper discusses applications of the identification of the driver behavior characteristics which has been applied to the intelligent driver advisory system, the driver safety warning system, and the vehicle dynamics control system. At last, some ideas about the future work are concluded

    Modeling and Recognizing Driver Behavior Based on Driving Data: A Survey

    Get PDF
    In recent years, modeling and recognizing driver behavior have become crucial to understanding intelligence transport systems, human-vehicle systems, and intelligent vehicle systems. A wide range of both mathematical identification methods and modeling methods of driver behavior are presented from the control point of view in this paper based on the driving data, such as the brake/throttle pedal position and the steering wheel angle, among others. Subsequently, the driver’s characteristics derived from the driver model are embedded into the advanced driver assistance systems, and the evaluation and verification of vehicle systems based on the driver model are described

    Vehicle Stability Control Considering the Driver-in-the-Loop

    Get PDF
    A driver‐in‐the‐loop modeling framework is essential for a full analysis of vehicle stability systems. In theory, knowing the vehicle’s desired path (driver’s intention), the problem is reduced to a standard control system in which one can use different methods to produce a (sub) optimal solution. In practice, however, estimation of a driver’s desired path is a challenging – if not impossible – task. In this thesis, a new formulation of the problem that integrates the driver and the vehicle model is proposed to improve vehicle performance without using additional information from the future intention of the driver. The driver’s handling technique is modeled as a general function of the road preview information as well as the dynamic states of the vehicle. In order to cover a variety of driving styles, the time‐ varying cumulative driver's delay and model uncertainties are included in the formulation. Given that for practical implementations, the driver’s future road preview data is not accessible, this information is modeled as bounded uncertainties. Subsequently, a state feedback controller is designed to counteract the negative effects of a driver’s lag while makes the system robust to modeling and process uncertainties. The vehicle’s performance is improved by redesigning the controller to consider a parameter varying model of the driver‐vehicle system. An LPV controller robust to unknown time‐varying delay is designed and the disturbance attenuation of the closed loop system is estimated. An approach is constructed to identify the time‐varying parameters of the driver model using past driving information. The obtained gains are clustered into several modes and the transition probability of switching between different driving‐styles (modes) is calculated. Based on this analysis, the driver‐vehicle system is modeled as a Markovian jump dynamical system. Moreover, a complementary analysis is performed on the convergence properties of the mode‐dependent controller and a tighter estimation for the maximum level of disturbance rejection of the LPV controller is obtained. In addition, the effect of a driver’s skills in controlling the vehicle while the tires are saturated is analyzed. A guideline for analysis of the nonlinear system performance with consideration to the driver’s skills is suggested. Nonlinear controller design techniques are employed to attenuate the undesirable effects of both model uncertainties and tire saturation
    corecore