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Abstract 

A driver‐in‐the‐loop modeling framework is essential for a full analysis of vehicle stability 

systems. In theory, knowing the vehicle’s desired path (driver’s intention), the problem is reduced 

to a standard control system in which one can use different methods to produce a (sub) optimal 

solution. In practice, however, estimation of a driver’s desired path is a challenging – if not 

impossible – task. In this thesis, a new formulation of the problem that integrates the driver and 

the vehicle model is proposed to improve vehicle performance without using additional 

information from the future intention of the driver. 

The driver’s handling technique is modeled as a general function of the road preview information 

as well as the dynamic states of the vehicle. In order to cover a variety of driving styles, the time‐

varying cumulative driver's delay and model uncertainties are included in the formulation. Given 

that for practical implementations, the driver’s future road preview data is not accessible, this 

information is modeled as bounded uncertainties. Subsequently, a state feedback controller is 

designed to counteract the negative effects of a driver’s lag while makes the system robust to 

modeling and process uncertainties. 

The vehicle’s performance is improved by redesigning the controller to consider a parameter 

varying model of the driver‐vehicle system. An LPV controller robust to unknown time‐varying 

delay is designed and the disturbance attenuation of the closed loop system is estimated. An 

approach is constructed to identify the time‐varying parameters of the driver model using past 

driving information. The obtained gains are clustered into several modes and the transition 

probability of switching between different driving‐styles (modes) is calculated. Based on this 

analysis, the driver‐vehicle system is modeled as a Markovian jump dynamical system. Moreover, 

a complementary analysis is performed on the convergence properties of the mode‐dependent 

controller and a tighter estimation for the maximum level of disturbance rejection of the LPV 

controller is obtained. In addition, the effect of a driver’s skills in controlling the vehicle while the 

tires are saturated is analyzed. A guideline for analysis of the nonlinear system performance with 

consideration to the driver’s skills is suggested. Nonlinear controller design techniques are 

employed to attenuate the undesirable effects of both model uncertainties and tire saturation. 
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“Good work is no done by ‘humble’ men. It is one of the first duties of a researcher, 

to exaggerate a little both the importance of his subject and his own importance in it.” [sic]  

A Mathematician’s Apology, 1940, G. H. Hardly 

 

    

IntroductionIntroductionIntroductionIntroduction    

 

1.11.11.11.1 MotivationMotivationMotivationMotivation    

Undoubtedly, in the history of transportation, the automobile is one of the most revolutionary 

inventions since the wheel. While the automobile was born more than a century ago, today’s 

modern cars differ vastly from their earlier ancestors. Technology is now improving general 

vehicle safety while reducing both emissions and fuel consumption. Although automobiles have 

many advantages, they can have adverse effects on human health and safety. The World Health 

Organization (WHO) reports that every year, the lives of almost 1.3 million people are cut short 

as a result of road traffic crashes, and without action, it is predicted to increase to 1.9 million by 

2020. Based on a study by the National Highway Traffic Safety Administration (NHTSA), driver 

errors are accountable as the main contributor to these accidents (more than 90% [61]). 

Therefore, vehicle stability analysis has become an important topic of scientific investigation. 

The ultimate goal of vehicle dynamic control can be defined as “reducing the burden placed 

upon driver” (i.e. to increase safety level and ride comfort).  Given that this aim depends on 

human and machine interaction; a combination of psychology, automotive engineering, 

computer science, control theory, etc. is needed to reach the goal.  

Similar to many other research literature, stability analysis of the error dynamics is the main focus 

of this thesis. Note that different situations may result in poor performance of a vehicle, however, 

by the time that the vehicle is on the ground, the car’s states will always remain in a bounded 

region. Even for the worst case scenarios that usually occur on an icy road, the vehicle will 

eventually stop at some point if the input is zero. This emphasizes that one should always be 

careful about using the term “stability” in vehicle handling control research.  
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From a control theory standpoint, the difficulty of vehicle performance analysis is rooted in two 

main problems: 

1. The nonlinear dynamics of a vehicle makes accurate modeling and analysis of a 

vehicle control problem difficult. For example, in the nonlinear handling analysis of a 

vehicle, one of the main issues is in modeling tires. There are several static and 

dynamic models to mimic actual tire behavior, however, they have many tuning 

parameters that mostly are functions of tire aging. The effects of the nonlinear model 

of a vehicle in estimation problem is another major difficulty in this field. Estimation 

of lateral and longitudinal velocity are two of the most important signals for vehicle 

controllers that can be severely affected by changes in a tire model, and these 

changes cannot be captured by a linear model. Even considering minor nonlinearities 

such as the nonlinear model of the steering gear ratio will significantly improve 

vehicle controller performance and the estimation process.  On the other hand, 

although control theory offers rich mathematical tools for steering a system to a 

desired state, a general framework to control nonlinear systems is still lacking. 

Ignoring vehicle nonlinearity leads to imprecise modeling, which can result in stability 

issues, estimation errors, and uncertainties.   

2. Human‐machine integration control still encounters vital problems, many of which 

have resisted advances. A driving process is composed of the driver (human or robot), 

the vehicle, the environment, and the controllers. It is clear that behavior of a closed 

loop vehicle with a driver as an active (in lateral and longitudinal motion), or a passive 

(vertical motion) element is different than the behavior of an open loop vehicle 

dynamic. The driver prompts the vehicle to follow the desired path with a desired 

speed by manipulating the main inputs: steering wheel angle and brake/accelerator 

pedals. Hence, it is easy to conclude that the system’s architecture represents two 

interconnected subsystems. As such, the closed loop vehicle system has two control 

loops with separate decision‐making and actuation tools. The first controller (driver) 

defines the control goal of the vehicle while the second one (vehicle controller) helps 

the driver obtain the desired behavioral response. The outputs of the first controller 

are observable for the vehicle controller, but its structure is unknown. In the vehicle 

dynamics literature, usually, the vehicle controller is designed without regard to a 

driver in the loop. The main aim of this thesis is to include the driver in the vehicle 

controller design to counteract the negative effect of driver’s delay and dangerous 

driving styles in the overall vehicle control system. 
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A general closed loop diagram of a driver‐vehicle system is depicted in Figure 1‐1. In this 

schematic, the driver is not considered in the control loop design. Instead, the driver’s block 

outputs (i.e. torque and steering angle) are treated as input command signals to the vehicle 

controller. Note that � is the steering wheel angle and � is the torque requested by the driver. 

 

 

 

 

 

 

 

 

Figure 1‐1 closed loop vehicle control schematic 

 

This is the core of almost all commercial vehicle controllers, where the desired values for the 

conventional – (semi) autonomous ‐ controller are always a function of the driver’s request. Given 

the appropriate desired values, the controller can adjust the vehicle input torque and steering 

angle to maintain the vehicle’s high‐performance.  

1.2 Main Objective 

To the best of author’s knowledge, there is no commercialized or currently developing controller 

that actively considers the effect of a human driver without using a desired path and 

environmental information. However, one can argue that advanced gearshift transmissions 

consider the effect of the driver and predict future requests. It should be noted that the structure 

of the control system in a transmission control problem is far simpler than vehicle handling, and 

transmission model accuracy does not have crucial effect on vehicle performance. On the other 

hand, there are many indicators (such as the pedal position signal acceleration and vehicle 

current engine torque) that a controller can use to estimate the driver’s intention while there are 

only two options (to gear up or down) for the driver model. Basically, the results in this area lend 

themselves toward more classification and clustering than dynamic modeling. Even in smart 

transmission control structures, the author could not find any solid results that guarantee a 

successful driver intention prediction.   

    

� ,  T 

+    ���������� 
�� ���� + ���� ������� 

Environment 
 

�������������  
   ���������� 
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As a part of closed loop control loop, the driver has to be considered in the design procedure. 

A general approach is to assume a driver model and then design the controller based on this 

information. One approach to this problem is to assume a relatively accurate model describing 

driver behavior and a known driver’s desired path for the vehicle controller. This way, one can 

assume that the reference signals are the road and environmental information rather than the 

driver’s input. This is the main idea of all of the semi‐autonomous vehicles. The schematic of this 

approach is presented in Figure 1‐2, where the controller holds feedback information about 

vehicle states as well as a driver model and the intention of the driver. More precisely, in this 

case, there is a path planning algorithm that generated the vehicle path for the vehicle based on 

the driver model. Then the controller compares the path planning outputs (usually steering wheel 

angle and vehicle wheel torque) with the driver’s request. The vehicle’s lower level controller 

monitors vehicle states and the error from the previous block while generating the appropriate 

control action.  

 

 

 

 

 

 

 

Figure 1‐2 Closed loop vehicle‐driver control scheme (controller has access to the desired road path) 

 

With currently available technology, obtaining information about the driver’s intended path is 

not possible. Although there are different proximity sensors, radars, and motion detectors 

available for implementation, obtaining the driver’s intention requires special tools. One should 

also note that there is a very delicate difference between the desired road and driver’s desired 

path. The desired road information can be estimated by the path‐planning module based on the 

vehicle state and the environmental situation. The driver’s desired path can be completely 

different from the one that is estimated in path‐planning block. This shortfall motivates us to 

seek methods that can improve the overall performance of a vehicle without having predefined 

knowledge on desired paths.  

�������������  
   ���������� 

    
� ,  T 

+    ���������� �� ���� +���� ������� 
  Desired Path 
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The following control structure (Figure 1‐3) is the implementable closed loop control structure 

that contains the driver model. As it is presented, using this method, the controller adjusts the 

vehicle’s reaction without using information of the desired path. The idea here is to take into 

account the fact that the request coming from the driver is dynamic and contains useful 

information for improving vehicle performance. Thus, the controller design can be revised 

according to the extracted information from the driver’s commands. 

 

 

Figure 1‐3 Closed loop vehicle‐driver control scheme (controller has no access to desired road path) 

 

The adaptation of new vehicle control techniques which can apply to currently in‐use vehicles is 

also an important issue in both academia and industry. The proposed algorithm in this thesis 

improves the vehicle safety using only the standard IMU sensor. 

Another important feature of a driver in the loop control study is in semi‐autonomous vehicles. 

Reducing the production costs of advanced sensors – radar, Lidar, and GPS – and precise 

actuators –by‐wire actuators and reliable electric motors – has created new horizons that expand 

vehicle safety boundaries and provide new perceptions of the world for intelligent vehicles.  The 

semi‐autonomous vehicle control tries to prevent vehicle skid while keeping good yaw‐tracking 

and maintaining the vehicle on the desired path. The algorithm must be tuned to handle worst‐

case scenarios. Without considering the driver effect, this results in a conservative control 

algorithm that does not rely on the driver’s expertise level and the vehicle tends greatly 

understeer. Assuming a short‐term model for the driver to predicts the future action of the driver, 

the control algorithm can reduce the conservation. On the other hand, driver’s style learning is 

another potential application of driver in the loop application in semi‐autonomous vehicles 

where the controller gains changes on‐fly based on the driving style identification. Note that 

because only the short term model for the driver is needed, it seems to be more realistically 

implementable. This way, only the current driving style would be used in the controller.  
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Using the driving style of a human driver, the driver‐in‐the‐loop (DIL) controller produces more 

appropriate control action. The DIL‐controller effect is compared with a conventional vehicle 

controller in Figure 1‐4. The conventional controller requests a certain amount of adjustment 

without considering the driver expertise. As it is shown in Figure 1‐4 (a) and (c), since the 

conventional controller does not have any information about the driver’s expertise, for both of 

the expert and novice drivers requests the same amount of adjustment. The result will be 

different when a DIL‐controller is taking care of the vehicle performance. Given that in this case 

the information about the driver’s expertise is available for the controller, the controller request 

will be different when different drivers are steering the car.  Different action of the DIL‐controller 

for expert and novice driver is illustrated in Figure 1‐4 (b) and (d) where the controller is more 

conservative if detects that the driver is novice. Alternatively, for the expert driver DIL‐controller’s 

interventions is less than the conventional controller. 

 

 

 

 

Figure 1‐4: Driver in the loop controller effect 
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A summary of the results and research activities conducted in this thesis is as follows: 

1. A new formulation for integration of driver in the vehicle control problem is proposed.  

2. A new LTI �� controller is designed to stabilize the vehicle dynamics while considering 

the effect of a human driver. The controller is robust to time‐varying delay of the driver 

and bounded model uncertainties.  

3. Considering the parameter varying nature of the driving style, an LPV model for the driver 

in the loop problem is proposed and the corresponding LPV controller is designed.  

4. A new technique is proposed to identify the driver model’s parameter using past driving 

information. The identification method does not require the driver’s future desired path 

or driver’s future intention.  

5. Markov modeling paradigm is used to classify the driver model’s parameters and 

calculate the probability of the corresponding transition matrix. Then, a new theorem is 

proposed to analyze the closed‐loop LPV system and find a less conservative disturbance 

attenuation gain. A new theorem is proposed for the stability analysis of the Markov jump 

linear retarded systems that reduce the conservation of the Jensen inequality.  

6. A new nonlinear analysis revealed that the driver‐in‐the‐loop idea can be easily 

integrated with nonlinear structure. Nonlinear damping, sliding mode, and backstepping 

methods are applied to the problem and the results are compared. 
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1.3 Thesis Outline 

Given that the stability of a closed loop vehicle system without the driver in the loop is not 

complete, an appropriate stability platform is needed for analyzing the driver‐in‐the‐loop 

problem. In earlier works, stability was mostly considered only for the vehicle as a separate plant 

excluding the human driver effect, however, it turned out that this approach could not completely 

deal with the many nuances of closed loop vehicle stability. This issue was adequately defined 

after the introduction of the concept of human‐machine interaction and augmented control 

systems. The focus of this thesis is twofold: firstly, to consider the effects of the driver on the 

vehicle control loop effects, and secondly, to propose a new control structure and design 

corresponding to possible controllers for the closed loop driver‐vehicle system. This calls for 

assuming the availability of a driver model in the analysis that enables us to close the vehicle‐

driver loop.  

The rest of this thesis is organized as follows: Chapter 2 presents a survey of the most important 

existing methods in vehicle dynamic control related to the driver‐in‐the‐loop system as well as a 

summary of relevant publications. It starts with a general overview of vehicle stability techniques 

and proceeds to a review of the most important human modeling methods related to driver 

modeling. In the last portion, the publications on the driver in the loop analysis are reviewed. At 

the end of this chapter, the novelty of the proposed method can easily be inferred.  

Chapter 3 provides details on the vehicle model, the multi‐points preview path follower 

modeling, and driver model that are used in this thesis.  Simulations in this section show the 

effect of closing the vehicle loop with a path follower model. The driver model is assumed to be 

a path follower combined with a delay block. The delay in the driver’s observation and reaction 

is lumped into a block. This delay postpones the steering angle command of the path follower 

model. In the last part, a closed loop vehicle‐driver model is obtained to serve as the base 

dynamic equations in designing a controller. 

Chapter 4 details a robust controller design method where the effect of the delay is taken into 

consideration and handled by using a delay‐dependent robust controller for the Linear Time 

Invariant (LTI) driver‐vehicle model. The lacking information is treated as bounded‐energy 

modeling uncertainty; thus, �� method is used to design an implementable controller. The last 

stage is to consider driver modeling uncertainty. To address this problem, an extension to delay 

robust ��  controller is proposed. Simulations show the effectiveness of the proposed method 

using different vehicle speeds.  

Chapter 5 is devoted to the extending the linear parameter varying case. It is known that the 

driver’s driving style and vehicle parameters are not constant. The driver‐in‐the‐loop robust 



9 

 

controller design idea is revisited accordingly and a Linear Parameter Varying(LPV) controller is 

proposed to stabilize the vehicle. The simulation results of vehicle performance with different 

road friction coefficients shows that the LPV controller outperforms the LTI controller designed 

in Chapter 4. By analyzing the input‐output performance of the system, an estimate of the upper 

bound of the disturbance rejection is also calculated.  

In Chapter 6, the Markov modeling method is used to improve driver style modeling. An 

identification method is used to first find a set of operation modes for the driver, then, using the 

experimental data, the Markov transition probability matrix is obtained. The main advantage of 

this identification method is to perform the identification task in a finite timeframe of past driving 

information. This way, there is no need to have the driver’s desired path or intention for driver 

identification. Taking advantage of this extra piece of information, the robust analysis of the 

closed loop LPV system is revisited and a better estimation (less conservative) of the disturbance 

rejection level is obtained. 

Chapter 7 is devoted to the nonlinear analysis of the driver‐in‐the‐loop system. A more general 

nonlinear model for the vehicle is assumed, and the design is extended to handle vehicle 

modeling nonlinearities along with the driver’s effects.  

Chapter 8 concludes this thesis by listing the main contributions and outlining the steps required 

to extend the work. Finally, the appendix contains the mathematical background and some 

definitions from control theory. 
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“Mathematicians may find a rigorous way of solving a problem through an elegant mathematical 

procedure. However, this procedure may not take into account all of the relevant constraints on 

the problem known by the engineers. Therefore, to solve problems, it is up to the engineer to 

find, where applicable, the available mathematical techniques and to develop them where 

they do not exist.” 

“Frederick A. Leve” APRIL 2015 <<IEEE CONTROL SYSTEMS MAGAZINE>> 

 

  

Literature Review and Background 

 

2.1 Vehicle Stability 

The ultimate goal of vehicle dynamic control can be defined as “reducing the burden placed 

upon a driver”, i.e. increase the safety level and ride comfort.  Advancements in automotive safety 

systems such as slip controllers and electronic stability control have resulted in significant 

improvement in overall vehicle safety. Yet, the lack of a proper human modeling strategy to 

guarantee the optimal action, coerces the companies to mostly entrust a separate control 

structure that considers the driver as a command generator rather than a part of a closed loop 

system. This evinces that a key problem is a reliable integrated technique to better serve the 

driver’s ‐ or the autonomous path follower’s ‐ request.  Given that this aim depends on human 

and machine interaction; an interdisciplinary framework combining psychology, automotive 

engineering, computer science, control theory, etc. is needed to reach the goal. To formalize the 

problem, some researchers assume a relatively accurate model describing driver behavior while 

the driver's desired path (intention) is available for the vehicle controller. This way the controller 

has the road and environmental information as the reference signal along with the driver model 

(see [23, 29, 122, 132, 133, 141]). 

The increasing worldwide use of automobiles and the demand for vehicles with better 

performance and safety characteristics has increased the urgency of working on vehicle dynamic 

analyses. Both passive (e.g. shape, vehicle structure, and seats belt) and active control (e.g. ESC1, 

                                                      
1 Electronically Stability Control  



11 

 

ABS2, and DYC3) can save many lives. In order to counteract unstable conditions, many types of 

controllers are devised to improve the overall performance and handling of a vehicle. The driver 

usually drives in normal conditions, where the tires behave linearly and are as a result, mostly 

predictable.  However, in the case of tire saturation, a typical driver cannot guarantee the best 

performance of the vehicle. On the other hand, when a vehicle is on a road with low friction 

contact, the generated force from the motor cannot transfer to the road, so the normal thrust 

force is not produced. These are example situations where a controller can help the driver. 

Probably the most well‐known controller for a vehicle is the ABS stabilizer, which tries to hold 

tires in a linear zone by creating a pulse‐like brake pedal pushing. For a  recent survey on 

methods of ABS and Traction Control (TC) see [69].  

A number of studies have considered the effectiveness of vehicle control systems in reducing the 

risk of vehicle crashes. A good review is done by Ferguson ([41]), who summarized the literature, 

reporting that a single‐vehicle crash risk was reduced by 33‐35 percent for cars and 56‐67 

percent for SUVs. Another report given by Lie ([87]) investigates the effectiveness of ESC in 

reducing crashes and injuries in Sweden from 1984 to 2004. A tremendous amount of research 

is now available on vehicle dynamic analyses, however, it must be noted that the effects of a 

driver in the control loop is still an open problem. Figure 1‐1 presents a general vehicle controller 

strategy design where the controller uses driver inputs (steering wheel and pedals as standard 

inputs) and vehicle states to improve vehicle stability behaviour and vehicle performance. 

Kasselmann et al ([74]) first introduced the idea of an active steering (AS) system based on yaw 

rate feedback. However, the most significant work initiated with Ackerman, who tried to 

formulate a mathematical model for the problem ([4, 5]). He separated driver tasks into two 

distinctive categories: “path following” and “disturbance attenuation”. The first task involved 

applying a lateral acceleration to adjust the velocity vector, and the former one was to cancel the 

effects of disturbance torques resulting from crosswind, flat tire, or unbalanced friction on the 

left and right sides.  

For more than 30 years, the �� disturbance attenuation method has been an active branch of 

robust control (see [43, 156]). The approach is now well developed both in frequency and time 

domain and has been implemented in many applications. Given that model uncertainty is 

inevitable in vehicle analysis, robust control is also of growing interest in this field. In the late 90s, 

some work on robust steering control design have been presented based on the  ��  method. 

Considering recent progress in solving the linear matrix inequality (LMI) problem, the ��method 

is now a more effective tool in handling deterministic disturbance models with bounded energy 

                                                      
2 Anti-Braking System  
3 Direct Yaw Control 
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 �� signals ([54, 55, 71, 98, 147]). Using the loop shaping method, most of the works have 

presented digital implementable ([82]) stabilizing feedback controllers that minimize the amount 

of the energy transfer function between disturbances and measurements. A two degree of 

freedom control structure is proposed in [54], which improves the yaw dynamic of a vehicle. This 

method performs model reduction and disturbance rejection by using a special  �� loop shaping 

for path following. The effects of mechanical delays in steering systems is another important 

topic which is considered in the �� active steering control ([57]). Another method, which is widely 

used in steering control, is the sliding mode. This is where the aim is to restrict the state space 

trajectory of the system to a surface titled the “sliding surface” (see [13, 18, 34, 55, 65]). 

Preview control is also a recent method used in lateral motion stability analyses by a few 

researchers.  The success of this method lies in the inherent ability to consider a finite horizon 

knowledge of the desired path in the control design. Using this method, the potential delay in 

the control loop can also be moderated. The formulation is very similar to the time domain robust 

 �� method. However, another assumption is that preview information about unpredictable 

disturbances in a certain future horizon is available. For more information, readers are referred 

to [58] and the referenced therein. 

One of the most important methods for dealing with nonlinearity caused by tire saturation is 

linearizing the vehicle dynamics at different working points and using the Model Predictive 

Control (MPC) method.  This method predicts future vehicle states for a finite horizon by using 

a plant model. Then, the MPC method offers a control input that satisfies the plant’s constraints 

and minimizes a user‐defined cost function. Falcone et al ([39]) proposed an AFS control scheme 

based on the MPC to stabilize the vehicle in different scenarios such as obstacle avoidance, and 

the double‐lane‐change maneuver. The main issues of using an MPC structure are rooted in two 

major vehicle dynamic characteristics. The first issue is the vehicle’s time‐varying behavior due 

to its varying longitudinal and lateral speed.  This issue has recently been approached by some 

scientists working on the MPC for the LPV method (see [14],  [48] and the references therein). 

The other important barrier in using an MPC method is the driver’s input. It is known that a 

vehicle controller is usually active during harsh maneuvers due to the high rate of changes in 

driver inputs (pedal positions and steering angle). On the other hand, using predictive methods, 

one needs to assume that the driver’s inputs do not change significantly in the prediction horizon. 

This is in contrast to the real situation and decreases the length of the prediction horizon 

significantly. Therefore, most of the time, in a real application, the MPC needs to work with a 

small number of preview points that usually results in a similar outcome to a gain scheduling 

proportional gain controller. One proper approach for tackling this problem is to combine the 

user modeling and control problem more tightly by adding a driver model that predicts the 
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driver’s behavior in the prediction horizon. This way the MPC controller can use the predicted 

values to serve the driver better. This has been a very attractive area of research in recent years 

(see [23, 33, 84, 117]).  

Stochastic modeling of a driver has been an important approach in closed loop vehicle behavior 

analyses (see [23, 85, 91, 92, 121, 122, 138]). Markov modeling is shown to be a promising 

approach to mimicking a driver’s behavior in some situations.  Similar to other modeling 

methods, the idea here is to see if the next action can be inferred from the current state of the 

driver. The main assumption is that a driver’s decision can be modeled as a series of internal 

states which represents a memory‐less random process that depends only on the current status 

of him/her and not on the previous decisions. In this case, the standard parameter identification 

process works based on temporal pattern observations and comparing the model output with 

the system measurement. Markov modeling is used in [33] as an online learning module to mimic 

the driver’s behavior. Then, the model is used to predict the future decision which is then fed 

into a stochastic optimization technique that tries to maximize fuel efficiency.  

Torque vectoring is another method, which results in the stabilization of the vehicle by adjusting 

the independent drive torque for all the wheels. A particular development in this method is 

improving the stability of the vehicle to preserve the longitudinal acceleration performance of 

the car [88]. This method, however, is best suited for electric vehicle designs where each torque 

wheel can be controlled easily. 

2.2 Human and Driver Modeling 

Human behavior modeling is one of the main challenging goals of many sciences. It relates to 

nearly every field of study: from biology, to engineering, and psychology. “Human factors, also 

known as human engineering or human factors engineering, consist of the application of 

behavioral and biological sciences to the design of machines and human‐machine systems” [130]. 

Although it seems extremely difficult – if not completely impossible – to model a human’s 

behavior, there are special cases where the behavior of a human can be modeled or predicted 

under certain conditions. In this context, modeling means something that can be calculated and 

consequently simulated.  

The modes of a human model can be organized to describe both short‐term and longer‐term 

behaviors. Consider the automobile driving task, the longer‐term behaviors of a driver can be 

passing, following, and turning, while shorter‐term behaviors could be turning the steering wheel 

or changing the brake/gas pedal position. According to [115], there are four steps in human 

action when s/he is interacting with a machine: sensory measurements, information analysis, 

decision making, and action implementation (Figure 2‐1). In the driver/vehicle case, although this 
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scheme helps us understand overall information processing, there are still difficulties in 

measuring some of the factors. On the other hand, the relationship between measurements and 

the driver’s actions (which are done in brain), have not yet been fully investigated.  In the rest of 

this section, a brief review on many researchers’ findings regarding this relation is presented.  

 

 

 

 

 

As mentioned in [126], a good driver model needs to be in harmony with science’s achievement 

on sensorimotor and cognitive control in real drivers, accurate (predictive) enough, and simple 

enough to implement in real‐time. Tustin is the first one to have proposed a mathematical model 

for describing human behavior. He published a scientific paper about approximating human 

behavior on a typical tracking task using a linear system [144].  Since 1960, mathematical driver 

modeling and corresponding parameter identification techniques have become an active field of 

study ([90, 104, 120]). McRuer et al, in [100] proposed the following  quasi‐linear dynamic model 

for human driver‐car interaction, where a second order differential equation is combined with an 

output delay reaction time factor:  

�(�)=
�(��� + 1)

(�� � + 1)(��� + 1)
���� (2.1) 

  

here �� is reaction time, �� is neuromuscular delay, and the other parameters depend on the 

plant interacting with the human. They also proposed a catalogue for different situations, where 

based on the plant that human is interacting with, the behavior of a human can be predicted. 

The main flaw of the quasi‐linear model above is that adaptation is not considered in modeling 

and the model highly depends on predefined parameters.  As a result, McRuer and Krendel 

integrated human and machine modeling in their “cross‐over model”, which contains only cross‐

over frequency information and dead time delay. Therefore, they relaxed the restrictive 

assumption of the quasi‐linear model ([101]). In Figure 2‐2, a simple driver vehicle loop is shown, 

where ��(�) is the driver transfer function, ��(�) is the vehicle transfer function, � is the lateral 

position error, and � is the steering angle. This method is mainly proposed by experimental 

observation from different tests performed on a variety of drivers.  

������� 
����������  

���������� 
�������� 
������ 

�������� 
��������� 

Figure 2‐1. Information processing depicting human and machine interaction. 
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Recent improvements on this model are reported by Apel in [8]. From this point onward, a lot of 

work has been done to resolve the problem of human modeling. 

Understanding how a driver steers a vehicle attracted the attention of researchers during the 

early 1940s ([12]). According to different applications, a variety of driver models are proposed.  

Driver models have already been surveyed in some papers (see [1, 97, 120] and the references 

therein), however due to space restriction, only a few of them are reviewed here. 

There are three main tasks in the driving process: navigation (route selection), path planning 

(recognition, decision‐making, and path selection), and control (steering, braking, and 

acceleration). On the other hand, there are two approaches to driver modeling; one is using 

(non)linear differential (algebraic) equations and subsequently obtaining transfer functions, 

optimal (model predictive, adaptive, fuzzy, neural‐based) controllers, or online identified 

deterministic (stochastic, hybrid) models. The other one is using descriptive methods. 

Driver models also can be categorized according to their applications. For example, the “virtual 

test driver” is modified for component design or closed loop vehicle behavior (especially stability) 

analysis. A path following vehicle with a given (or driver tunable) speed is the main goal of this 

model. Since many human characteristics, such as emotional status, fatigue, and learning 

processes are not considered; the model performs the given tasks more similarly to a path 

follower robot instead of a real human test driver ([68]). Even though vehicle motion may not 

change in the model, the input commands of the steering wheel and pedals can be different in 

real driving. Recently, some literature has focused on improving learning patterns, where multi‐

internal models are considered. Each step is based on driver identification and a certain level of 

capability for the driver is selected ([75]). The given model has the potential to offer an approach 

to modeling different driver’s skills; this is achievable through considering a nonlinear vehicle 

model, which simulates car’s behavior with tire saturation as well. 

Figure 2‐2 Simple driver – vehicle in a closed loop system 

+ ��(�) ��(�) 
��  � � ��  
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Virtual driver models generally work based on the same concept of preview point modeling. 

They use the fact that the driver looks a distance,  �, ahead of the vehicle and tries to compensate 

the lateral position of the vehicle. Note that the driver’s behavior on longitudinal motion control 

of the vehicle is another branch that mostly tries to model the driver’s capability to optimize the 

longitudinal speed. A simple single road preview point model is presented in Figure 2‐3 where 

the driver endeavors to minimize the lateral position error (Δ�).  

                                   

Figure 2‐3 Virtual driver model based on preview point 

MacAdam presented a driver model based on optimal control theory [96].   Using the state space 

representation of a vehicle dynamic model, the author set up an optimal controller, which tries 

to minimize the lateral position error with a desired path, while expending minimum effort 

(optimal steering angle). In order to improve the model accuracy in [146], Peng et al proposed 

to use an inverted vehicle model to add a learning process. They proposed the use of an ARIMAX4 

identification process for recursively identifying the model parameters.  

The identification method, on the other hand, is a powerful alternative for driver modeling (see 

[26, 27, 90, 104, 114, 137, 138]).  Chen et. al used ARMAX modeling ([26]) to find a time‐varying 

model driver behavior. This work was extended in ([27]) where MRAC5 is used to identify the 

driver and use the information in the adaptive control structure.   

A complete version of the idea that a driver uses multi preview points to steer the vehicle was 

first reported by Sharp and Valtetsiotis in [129]. They proposed an optimal driver (an ideal path‐

follower) for a linear time invariant (LTI) vehicle model (constant speed), which converts the path 

preview sample values into steering wheel angle commands that adjust the vehicle’s position to 

the desired path. The driver looks ahead with the length of � = ���� and selects �� positions 

along the future trajectory of the vehicle with the current yaw angle.  S/he also considers the 

                                                      
4 Auto Regressive Integrated Moving Average with eXternal inputs 
5 Model Reference Adaptive Control 
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corresponding points on the desired path (not necessarily perpendicular to the optical lever), 

thus �� lateral position errors are obtained. The first error is in an exactly lateral position to 

counterbalance the vehicle from the desired lateral position. The driver steering input can be 

written as follows: 

� = �� (� ��)+ � ����

��

���

 (2.2) 

where ��  and �� are control gains. By taking advantage of the discrete linear quadratic regulator 

(LQR) method, one can also define the driver’s skill in path‐following tasks by adjusting regulator 

coefficients (tightening and loosening control for different balancing in accuracy of the follower 

and control effort) and finding analogous control gains. Figure 2‐4 illustrates a schematic of 

driver modeling with multiple preview points concepts; where the driver’s desired yaw angle is 

�� and �� is the ��� error between the desired and current lateral position, respectively. Further 

explanation is provided in chapter 3. Approaching more complex and complete driver models, 

Frezza et al, in [45] proposed another hierarchical optimal methodology for driver modeling. This 

nonlinear model has three levels of decision making for task planning, strategy for trajectory 

planning, and motion control.  The proposed model is based on a geometric nonlinear control 

for non‐holonomic vehicles. This is the same driver that is used in the commercial software titled 

ADAMS.  

                         

Figure 2‐4 multi preview points driver model 

 

Desired path availability is the assumption of almost all driver models. This can include road 

curvature, preview points, or any other vision information, any which is assumed to be available. 

� 

� 

Desired 

�� 

� 

Actual 
Path 
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In general, this path needs to be optimized, however, it may be optimized with different criteria 

in different models. According to [120], reaching the destination as fast as possible without 

violating ride comfort (time‐acceleration optimal),  with minimum energy dissipation, with the 

shortest maneuver, or with a certain engine (vehicle) speed are some of the driver criteria. The 

optimality of the solution and the risk level of each driver is also an important uncertainty as 

pointed out in [72]. The main goal of all of the discussed models is to propose a model to mimic 

a normal driver’s behavior. Although in some of these models, parameter variation may lead to 

some level of experience in the driving task, the problem of expert driver modeling has only 

recently been taken into consideration ([90, 142]).    

2.3 Driver‐Vehicle Interaction 

Open loop vehicle stability analysis has been investigated for a long time even though the driver 

is an inescapable component that can destabilize the system. Novice drivers do not have much 

information about the nonlinear behavior region of the vehicle (tire). Hence, in certain situations, 

they would fail to respond in an appropriate manner to control the unstable plant and might 

even make the closed loop system behavior worse.  In order to reach the ultimate level of safety 

and comfort in a driver/vehicle system, the controller needs to “know” the driver operator. 

Currently, there are different technologies that have reached a level of maturity ensuring the 

manufacturers ability to implement them safely. Intelligent cruise system, lane keeping, and lane 

departure avoidance systems are just a few samples of driving assist systems. Despite of all this 

development, the driver (human)‐vehicle interaction is still at a low level of automation.  

As Inagaki reports in [66], the assistant controller can be tuned better if it has information about 

the driver’s states and intentions. Therefore, since the control system in driver assistance systems 

react faster and more precisely than the human drivers, they have an incredible potential to 

dramatically improve the vehicle’s stability margin.  A simple example is in applying automatic 

braking before the driver’s action delay. This can be accomplished by having information about 

the road, the environment, and by predicting the driver’s intentions. Using this intelligent system, 

not only is the overall vehicle safety improved, but the driver also feels more comfortable. Almost 

concurrent to Inagaki, Abe et al reported an analysis on driver effects in closed loop vehicle 

behavior in [2]. A simple PID6 controller is assumed as a model for the driver, which simply uses 

lateral position error to provide a steering angle and handle the car. Taking advantage of the 

frequency domain, a nice analysis is also done to consider the effects of the driver’s delay.  

                                                      
6 Proportional Integral Differential  
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As mentioned in [86] and [67], to date, the following four main questions have not been properly 

answered in closed loop vehicle control theory: 

1. Which part of the driver’s cognition needs to be enhanced? (for example, vision 

enhancement) 

2. What kind of action is required by the controller, and when should it be applied? (Such as 

visual displays for information or warning, and voice navigation systems). Note: a protocol 

has been approved on how and when to provide information to the driver, which answers 

part of the question ([105]).  

3. What is the best approach to implement the control action? 

The most important solutions involve using a driver‐centered automation strategy ([149]) to 

make the driving process smoother and easier for the driver, or evaluating the driver’s behavior 

and switching to fully autonomous vehicles when needed (especially in lane change avoidance 

and obstacle avoidance).  

4. How much can a controller overtake handling of a vehicle? 

Many scientists have considered the more general question of: to what extent can a machine 

take over human’s life? [64]. However, from an automotive theory standpoint, the problem is 

mostly answered by using a weighting function, which determines the importance of the driver 

and the controller input.  

The last problem can be categorized into two types: closed loop cooperation and closed loop 

conflict. For the conflict case, the problem is more visible for the active‐steering controllers, when 

the controller and driver are counteracting each other in a certain situation. A controller can 

provide better decisions regarding vehicle stability and crash avoidance. In [46], Fujioka proposed 

a simple algorithm that weighs the steering angle of the driver and the virtual driver (steering 

controller) according to the following situation: 

 

� = �������� + (1 �)�������� (2.3) 

  

when � = 1, the system becomes a manual driving system. A fully automated system occurs 

when � = 0. Using a continuous function to define �, based on the current vehicle situation 

(Gaussian function in this paper), the problem can be addressed. However, finding the threshold 

for implementable conditions is still an open problem. The conflict shows up when the vehicle is 

commanded by two different controllers, the driver and the controller, at the same time ([24, 110, 
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111, 123]).  The driver request may be different from what the direction of controller action. One 

example can be when the controller is very conservative and an expert driver is driving the 

vehicle. Chen et al proposed an “ideal model” for the driver that can be used to analyze human 

driver behavior. In cases where it is required (based on the differences between ideal model and 

human driver), the vehicle assist controller will be activated. For cases where there is a conflict 

between the controller and the vehicle driver, a weighting method is suggested to handle the 

conflict. Following that, Na et al designed an AFS controller assuming that the desired path 

information is available. Then, considering the predictive preview gain driver model, the problem 

of a conflict in the joint driver/controller path is presented ([111]). In [110], the driver and controller 

are denoted as two players of a dynamic game with the aim of maximizing stability conditions 

for the vehicle. In this scheme, the decision of each controller depends directly on the other 

controller’s choice. The problem will be more apparent in an obstacle avoidance scenario: the 

faster controller detects the obstacle and tries to deviate the vehicle’s trajectory whilst, due to 

the human neuromuscular delay, the driver still insists on sticking to his decision about the 

vehicle’s direction. Using the Nash equilibrium point, the problem of strategic interaction 

between the controller and the driver is addressed in these works. Linear quadratic (LQ) game 

theory, and non‐cooperative MPC are used for modeling driver‐controller interaction problems.  

For a cooperation scenario, the same idea is used in Tamaddoni et al, [141] to define the driver’s 

steering angle and the direct yaw controller’s (DYC) decision as two game agents. These agents 

use the same desired path and cooperate to improve vehicle stability. The main difference in this 

paper is that both the controller and the driver have the same aim while the DYC controller can 

effectively cooperate with the driver, especially for disturbance rejection. Another good example 

of the controller and driver cooperation is ABS. This actuator works well for vehicle skid 

prevention, which improves both the longitudinal and the lateral motion of a vehicle. However, 

by providing a pedal vibration feedback for the driver, the vehicle control system asks the driver 

to apply the brakes continuously rather than pumping.    

Active trajectory planning is an effective method to relax the restrictive assumption of knowing 

the desired road path. This branch is also called “path planning” and has emerged as a hot topic 

since using an online approach. As a result, realistic control implementation can be addressed 

([52, 89]). As Anderson et al reported in [7], there are researchers who have tried to propose a 

planning algorithm using different methods. The unique aim of all of these methods is to plan a 

safe vehicle path especially in obstacle avoidance conditions. The main importance of these 

approaches is that they do not rely on presumed desired path information, which make these 

methods implementable in a real situation. The authors continued with proposing an active 

safety framework that activates in hazardous situations and performs path planning, risk 
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assessment, and applies appropriate control actions to modify vehicle behavior. The only 

important external information available for the controller is the location of the edges of the 

drivable road (which are assumed to have been extracted from a forward‐looking sensor).  

2.4 Driver‐in‐the‐Loop Control  

Based on the amount of measurable information on the driver's desired path, the driver‐in‐the‐

loop control problem can be categorized into two main types. Most of the work in this field 

assumed that full information about the target path is available to the controller. However, there 

is another case in the closed driver/vehicle loop that has no information on the desired road 

available for the controller. To the best of the author’s knowledge, nobody has addressed the 

control design problem for the driver/vehicle loop while path information is unknown. A 

schematic of the full‐information control process is shown in Figure 1‐2. In the case of full 

information, besides present and past information, finite future previews can also be used to 

determine the control action. For example, assuming knowledge on the desired path for the 

controller AFS is used in [148]. Preview control, as an alternative method in this category, is also 

proposed in [125] and [58]. Some research goes even further to propose electronic stability 

controllers that can guarantee lane keeping of race cars at the limit of their tire adhesion ([63, 

80, 81, 140]). As an example, Talvala et al ([140]) presented a Lyapunov based stability condition 

and corresponding active steering controller for the vehicle’s lane keeping with highly saturated 

tire behavior. The desired path for this controller is assumed to be available from a GPS 

integrated with an inertia navigation system (INS). One step ahead of this concept is designing 

fully automated vehicles by studying different projects, such as: Google, DARPA7, and Audi TTS8.  

Unfortunately, the reliability of these projects is not still high enough to allow driving without 

human supervision and/or intervention.  

Alternatively, one can consider road information as an unknown uncertainty in the system. 

Considering recent progress in solving LMIs, the ��  methods are now more effective in handling 

deterministic disturbance models with bounded energy  ℓ� signals (see [82], [98]) . Regarding the 

robust control of a vehicle, recently some approaches have reported promising results in vehicle 

dynamic analysis (see [6, 49, 113, 151, 159] and the references therein).   

In [113], a robust control method is proposed for the linear parameter varying (LPV) vehicle model 

that provides differential brake moments and front steering angles to improve vehicle stability. 

In the problem formulation, a driver model also is considered, where for certain bounded 

uncertainties (using a proposed controller), vehicle stability is guaranteed. The proposed method 

                                                      
7 Defense Advanced Research Projects Agency 
8 http://news.stanford.edu/news/2010/february1/shelley-pikes-peak-020310.html 
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addresses a wide range of uncertainties in vehicle and driver modeling. However, the controller 

design availability of a predefined trajectory is assumed. Gaspar et al, in [49], modeled vehicle 

stability as an ��   problem, and addressed the problem using the corresponding robust control 

approach. Following these works, recently, Wu et al, proposed an integrated chassis control 

method which considers the driver‐in‐the‐loop effects [151]. The authors took advantage of the 

�� framework and considered the driver and the vehicle uncertainties, as well as proposed a 

method for robustly integrating active steering, longitudinal force compensation, and active yaw 

moment control. Also, an approach to designing the LPV controller for the integrated AFS and 

TV control is proposed and results are discussed in [159], however, the effect of the driver‐in‐

the‐closed‐loop behavior is ignored. 

On the other hand, in order to relax the assumptions about the availability of the desired road 

preview for the control block, online identification of the driver’s behavior can be used to 

generate a time‐varying model of the driver and apply it on the overall control scheme ([123], 

[42]). In [123], an online method is proposed for driver model identification in the control loop 

and then, a direct yaw control (DYC) algorithm is adapted based on the identified model. This 

approach, demonstrated in Figure 1‐3, has rarely been considered by researchers. For a driver‐

in‐the‐loop analysis, the controller only has access to the driver model, driver inputs, and vehicle 

states. 

2.5 Time Delay in Vehicle Analysis 

    Time‐delay systems come from inherent time‐delays in the components of the systems, or 

from the deliberate introduction of time‐delays into the systems for control purposes. This 

phenomenon can be recognized in engineering, biology, physics, and ecology. It is well‐known 

that time delay systems can be easily presented in a certain class of functional differential 

equations. A simple discrete delay element can be presented as follows in (Figure 2‐5): 

 

�(�)= ���(�)= �(� ) (2.4) 

 

                             

Figure 2‐5: A simple delay operator 

��  

� � 

0 �  �
+
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The existence of delay in a system usually causes performance degradation in the overall control 

loop, and in some cases, it even makes the overall system unstable. Consider the following 

continuous time state space representation of a system: 

 

�
�(�) = ��(�)+ ��(�)

�(�)= �(� �)
 ,  �(�)= �(�),  � ∈ [ �, 0] (2.5) 

  

where � > 0 is a constant delay, � is the system state, and �(. )∈ �([ �, 0], ��) is the functional 

initial condition. It is known that the time‐delay systems are infinite ‐dimensional systems and 

the minimal information to define them properly in a function defined over the interval [ �, 0]. 

By applying two simple controllers of ��(�) = ��(�), ��(�)= ��(�), two main categories of 

delayed systems are obtained: retarded delayed systems:  

 

�(�) = ��(�)+ ���(� �) ��� �������� ����: �(�)= � ���(� ��

�

���

)�  (2.6) 

and neutral delayed systems:  

�(�) ���(� �) = ��(�) ��� ������� ����: � ���(� ��

�

���

) = � ���(� ��

�

���

)�  (2.7) 

  

In this proposal, the main focus is on are mostly dealing with retarded delayed systems. A 

thorough literature review of delay analysis and controller design is reported in [12, 21, 103].  

There is a certain time period (time varying) required for a human driver to react properly in 

response to an observation. Although there are some publications reporting driver‐in‐the‐loop 

control results, little consideration has been given to the delayed driver‐in‐the‐loop control. 

Additionally, it is well‐known that the existence of delay in a closed loop might be a contributing 

source of poor performance or even instability (See [102, 124, 135, 153]). Due to neuromuscular 

limitations, delays exist in the driver’s observation, analysis, computation, and action. The 

significant effect of the neuromuscular system on vehicle control have been recently recognized 

as a very vital field of study, see [119]. There are also many other papers reporting the effects of 

delay on a dynamic system. 
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Treat et al, in [143], have listed some sources of a driver’s delay, such as: careless driving, internal 

distractions (conversations, etc.), external distractions (accidents outside the vehicle), improper 

lookout (passing a vehicle), misjudgment (distance or speed of another vehicle), false assumption 

about another driver’s decisions, and a driver’s neuromuscular delay. In [25], Chen et al, 

published a closed loop driver/vehicle analysis, focusing on driver delays and their effects.  They 

also proposed the control scheme (shown in Figure 2‐6), which is designed as an adaptive smith 

predictor robust controller that is robust enough to model driver uncertainties and known 

constant delays of the driver. 

 

  

 

In Figure 2‐9, ��(�)  is the adaptive controller, ��(�) is the smith predictor controller, ��(�) is the 

driver model transfer function and ��(�) is the linear bicycle vehicle model transfer function. A 

complete closed loop analysis in the frequency domain is presented in this paper, and effects of 

delay in driver is presented properly. However, as it is apparent from the control scheme, to 

provide error signal for adaptive controller of �� , one still needs to know the desired path of the 

driver. A nice delay analysis for closed loop driver/vehicle has been reported by Liu et al, in [93]. 

These authors start with considering a bicycle vehicle model integrated with the nonlinear 

Pacejka tire model. The driver model is a simple model, which involves a loop gain (�), pilot 

visibility (�), and a cumulative driver delay of ��. Hence, the steering input command is described 

as follows: 

 

�(�) = � ���(� ��)+
�

��
��(� ��)�+ ����(��(�)) (2.8) 

  

where �� is the forward speed, ����(��(�)) represents the disturbance due to road surface 

irregularities with a frequency of ��, and �� is the vehicle’s lateral displacement with respect to 

the road’s center line. Then, this driver model is combined with a state space form of the vehicle 

and after applying a linearization method, a retarded differential equation of the form �(�) =

���(�)+ ���(� ��), is obtained. The eigenvalues are computed using Fadeev algorithm [38], 

+ ��(�) ��(�) 
��  ��  

��(�) ��(�) 

Figure 2‐6 Robust adaptive smith predictor control design 
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and based on their values, an instability margin for different cases are calculated.  For example, 

stability analysis in this paper shows the driver’s delay and longitudinal speed as critical for certain 

car specifications and certain driver characteristics (� , �).    

Stability results for delayed systems can generally be categorized into two main groups. The first 

one is to select a positive definite function and take the time derivative along the system solution; 

then, some negativity condition needs to be used for the calculated derivative. Usually, this 

method results in some LMI conditions. There is also another method of tackling the problem 

where the designer chooses a desired derivative function. Then, a function is calculated and 

computed based on the given derivative along the system’s solution, and finally, the positive 

definiteness of the function is investigated. The former method is more complex, however, as the 

derivatives are adjusted based on the given derivative, the solution provides much more 

information about the system behavior. Regarding solving �� control problems for uncertain 

discrete time retarded delay systems, recent results on networked control systems are useful. 

Miscellaneous techniques have been reported to stabilize the system with the lowest 

conservation. In [157], a complete survey on either delay‐dependent or independent methods is 

presented. 

 

2.6 Summary 

Vehicle stability with a driver‐in‐the‐control‐loop has been the main subject of this chapter. 

Human and driver modeling methods have been reviewed and the most important approaches 

were presented. Several papers in the literature discussing driver‐in‐the‐control‐loop problem 

were reviewed. It was also mentioned that an important difficulty in solving this problem is the 

assumption of having access to information about the desired path of the driver. Presuming the 

availability of the desired path and considering different driver models, all of the previous 

research has tried to address the problem by minimizing the error between the driver decision 

and the driver model outputs. However, using current technology, this assumption is not easily 

implementable in the real situations. To the best of author’s knowledge, nobody has addressed 

this problem without assuming knowledge of the desired path information. The main goal of this 

thesis is to propose a general design method for considering a human in the vehicle control loop 

system without using the desired road information.  
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“What we do may be small, but it has a certain character of permanence; and to have produced 

anything of the slightest permanent interest, is to have done something utterly beyond the 

powers of the vast majority of men.” 

A Mathematician’s Apology, 1940, G. H. Hardly 

 

 

Vehicle and Human Driving Models 

The first step analyzing vehicle behavior is understanding vehicle dynamics using appropriate 

mathematical modeling approaches. In normal driving conditions, cars respond to two different 

input sets based on its dynamic: inputs from the driver, which are communicated via the steering 

wheel and pedals (either acceleration, or brake), and environmental inputs such as the wind and 

road excitations. Generally, a vehicle can be described as an interconnected dynamic system 

composed of the vehicle body, the propulsion, the steering angle, and the suspension system. 

On the other hand, a vehicle’s behavior can be judged based on different indices, such as ride, 

handling, performance, and safety. By considering each of these indices, a customized 

simplified/complex model can be adopted ([60, 99, 139]). In the rest of this thesis, the vehicle’s 

handling is studied. As such, this chapter starts with a simplified bicycle model that describes the 

vehicle’s handling behavior through stability analysis.  

3.1 Bicycle Model  

Nearly all natural and technological systems are driven by nonlinear processes. However, in some 

cases, corresponding linearized models describe the behavior of system around a specific 

operating point. This makes the analysis much easier. Considering the generalized form of 

Newton’s second law for a group of small lumped masses, one can have the following equations 

of motions in the �, �, � directions to describe vehicle handling behavior: 

 

� �� = �� �� ���� 

� �� = �� �� + ����

� �� = �� �

 (3.1) 
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where �� and �� are the external forces, ��  is the external moment, � is the vehicle’s mass, �� is 

the inertia, �� is the lateral velocity, �� is the longitudinal velocity, and �  is the yaw rate. The 

above dynamic equations only describe the relationship between external forces and moments. 

A vehicle’s mass, inertia and motions describe that vehicle’s behavior only if the vehicle is 

considered to be a rigid body moving on a plane. 

If the characteristics of the left and right tire are assumed to be the same — the vehicle body is 

symmetric about the longitudinal plane — then the lateral forces can also be considered equal.  

Consequently, the lateral dynamics of the vehicle can be simplified as follows ([76]): 

���� ���� = �������� + ��� �������� 

���� + ���� = ��� + ��� cos�� + ��� sin�� 

��� = ���� cos�� ���� + ���� sin�� 
(3.2) 

 

where �� is the front steering angle. We also have the following relationship between the 

front/rear slip angles: 

�� = ��

�� + ��

��
, �� =

�� ��

��
 (3.3) 

where � is the distance from the center of mass to the front axle, � is the distance from the center 

of mass to the rear axis. Then, assuming that side‐slip is small, the front/rear forces can be defined 

as follows: 

��� = ����, ��� = ���� (3.4) 

  

where ��, �� are the front and rear tire cornering stiffness values, respectively. Hence, this 

prompts us to use the canonical linear, time‐invariant dynamics of the following that describes 

the behavior in a constant longitudinal speed: 

�(�) = ���(�)+ ���(�) (3.5) 
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��(�)

�(�)

�(�)

�(�)

=

��� + ���

���

���� ����

���
� 0 0

���� ����

���

����� + �����

���
0 0

1
0

0
1

0 ��

0 0

��(�)

�(�)

�(�)

�(�)

+

��

��
���

��
0
0

�(�) 

 

where  � = ��� � � ��
�
 is the state vector, and � is the lateral position of the vehicle 

corresponding to a fixed coordination system, � is the steering ratio between the hand wheel 

angle and the road wheel angle, and � is the yaw angle (�� = �) . All of the vehicle states are 

functions of time but their time arguments is suppressed. Figure 3‐1 illustrates the schematic of 

a simple bicycle model. 

                                    

 

The lateral and longitudinal velocities are: 

�
�(�) = � cos � � sin�

�(�)= � sin � + � cos�
 (3.6) 

Note that for small yaw angles (�), the lateral velocity can be simplified as follows: 

�(�) = ��� + ��      (3.7) 

3.2 Path Follower Algorithm 

Steering a car mainly involves adjusting various inputs to the vehicle such as the 

acceleration/brake pedal and the steering angle to make the car follow a desired path. Using the 

steering wheel, a driver matches a road’s curvature while having the ability to maintain adequate 

distance from the edge of the lane. In this report, only the steering behavior of the driver is 

considered. Other control actions of the driver, such as adjusting the required torque by pushing 

the acceleration pedal and brake pedal, will be treated as system inputs. From this point of view, 

�,  � 

� 
�� 

� 

� 

� 

�� 

Figure 3‐1 Simple bicycle model  



29 

 

a driver is a simple path follower who tries to minimize the difference of the vehicle’s position 

and the predefined desired path.  Among several methods in control theory for a path‐follower 

controller, using an optimal controller for this task is further investigated. The model which is 

used here is based on Sharp’s driver model presented in [129]. Sharp’s model is an optimal path‐

follower (virtual driver) that uses multi‐point future preview concepts as well as the LQR method 

to determine preview gains. Preview gains define the importance of both vehicle states with 

respect to feedback signals and errors between the vehicle’s current and desired lateral positions. 

Figure 3‐2 shows the driver’s optical lever and desired path corresponding to each preview point. 

At each sampling time, �, a lateral position error in a fixed reference system – and transformed 

relative system of driver/vehicle – can be defined. Each lateral position error matches a lateral 

yaw angle error as well. Then, the optimal control problem can be formulated. Note that in this 

model, responding to external disturbances, such as cross‐winds, crashes, or animal incursions is 

not considered. 

A shift register updates the lateral position sample inputs for the path follower controller. In other 

words, the controller uses current lateral positioning of the vehicle and �� samples of the future 

positions to produce up‐to‐date steering commands. Subsequently, the current lateral position 

value leaves the problem and a new value for ���
 enters the system. The following model 

describes the shift register dynamic system: 

 

�� (� + 1)= ��� (�)+ ���� (�) 

� =

0 1 0 0
0 0 1 0

0
0

0
0

0 1
0 0

, � =

0
0

0
1

 
(3.8) 
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where ��(�)∈  ��� �� is the road preview state, and ��� is the new value which can be treated as 

white noise. Considering (3.8), the updated system is a discrete‐time single input system. After 

augmenting it with discretized bicycle model (discretized using backward Euler at 200hz)  of (3.5) 

one obtains: 

�� 

� (� + 1)= ��(�)+ ����(�)+ ��(�) 

�� = �
0
�

�, �� = �
��

0
�, � = �

�� 0
0 �

� 
(3.9) 

� (� + 1)= �
�� 0
0 �

��
��

��
�(�)+ �

0
�

����(�)+ �
��

0
��(�), 

where 

 

� = �
��

��
�= �

 �� � �� ������� �����
�������

��� ��� ��� ��� ����
����������� ����������

���� �������

�
�

 (3.10) 

 

This is assuming the driver is akin to a controller with the aim of minimizing path tracking error 

and attitude angle error, as well as concurrently minimizing his/her effort.  Now, defining the 

error term of the lateral velocity:  �� = (�� ��) , and the error term between the yaw angle of 

the vehicle and the desired yaw angle:  �� = (� ��)= (�
�������

���
), the following cost 

function establishes the corresponding optimal control problem: 

Figure 3‐2 : preview points at each sampling time (Fixed and local reference system) 
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����, �� = ����
�(� + �)����(� + �)+ ��(� + �)���(� + �)�

��

���

= �{� �(� + �)��� (� + �)+ ��(� + �)���(� + �)}

��

���

 

(3.11) 

 

where �� is the number of preview points that the driver uses for the steering task, �� =

[�� �� ]� , �� is a positive semi‐definite matrix to describe the system objectives, and �� is a 

positive scalar showing constraints on the command signal.  

It shows that this cost function corresponds to error term and must be penalizes to zero. Using 

the fact that ���(�) can be considered white noise, thus adding new road preview values to the 

system, the optimal problem is minimizing the expected value of (3.11) with the constraints of 

(3.9) under Gaussian noise excitation. When allowing �� to approach infinity, the problem is 

converted to an algebraic Riccati equation (ARE). This takes advantage of the rich mathematical 

theory of the infinite horizon optimal control for LTI systems. An analytic closed form solution 

can be found below: 

 

�(�)= (��
����� + �)����

�����(�)= ��� (�)  (3.12) 

  

����� �� (������)(��
����� + ��)��(��

����)+ �� = 0 (3.13) 

where: 

�� = [�� ��], (3.14) 

 

�� = �����, �� = �
�� 0
0 ��

�, � = �

0 0 1 0 1 0 0 0 0

0 0 0 1
1

���

1

���
0 0 0�, � = 1, 

 

and  �� ,�� are the weighting values for the lateral and yaw path errors, respectively. �� ∈

��×� and �� ∈ ��×�� �� are the state feedback and preview gains, respectively. � is the time step 

interval, �  is the weighting on control effort which is the steering wheel angle, and ��  is the 

terminal weighting condition.  
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Thus: 

�� =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 �� 0 �� 0 0 0

0 0 0 ��

��

���

��

���
0 0

0 0 ��

��

���

��

(���)�
+ ��

��

(���)�
0 0

0 0 0
��

���

��

(���)�

��

(���)�
0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 

hence: 

� ���� = ��(�� ���)�� + �� ��
��� ���

���
�� ��(�� ��� )���

+
��

���
��

��� ���

���
����

��

���
��

��� ���

���
���� = ����

� + ����
�  

Figure 3‐2 presents a general schematic of the path follower and the vehicle‐in‐the‐loop system.  

 

 

Figure 3‐3: Path follower – vehicle closed loop schematic 

Note that the calculation here is with respect to a fixed coordinate system; in real driving 

situations, the driver is steering the car based on his/her local moving position. In the fixed 

coordinate system, there is a fixed � ���� and a driver who has knowledge on the positional 

relationship from the � ���� in an absolute sense. However, in reality, the driver does not need 

any fixed coordinate reference and steers based on the relative position of the vehicle and anew 

the � ���� at each step. The steering angle command, however, must be the same in both 

cases. An assumption is made that the � ����, in its original position in fixed coordination, 

translates such that it passes through the vehicle’s C.G. (See Figure 3‐2). In this case, the global 

value of � reduces to zero.  Thus, the value of ��(3)� will be zero in the feedback control of the 

local system.  

 

      
   Path 

                 Follower Vehicle + 
   Desired Path 
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Now, in order to have an invariant steering angle, the following condition needs to be upheld: 

������������������� = ��(1)�� + ��(2)� + ��(3)� + ��(4)� + � ��(�)

��

���

�� 

���������������������� = ��(1)�� + ��(2)� + ��(4)� + � ��(�)

��

���

(�� �) 

������������������� = ���������������������� → ��(3)= � ��(�)

��

���

 (3.15) 

Similarly, the formulation must be invariant under the rotational shift. Thus, the term 

��(4)� is lost and the ��� preview sample value is reduced by  (� 1)����. 

Consequently, the following relationship needs to be upheld: 
 

����(1)+ ��(4)= �(� 1)�����(�)

��

���

 (3.16)

It is also worth mentioning that the preview points sufficiently far away from the vehicle have no 

effect on the current driver’s decision. This results in the decaying of preview gains to zero for 

far enough points. As mentioned in [128], there are two main limitations in modeling drivers 

within this framework. The first limitation is the time invariance control structure, and the other 

is the assumption that future preview points can be assumed to be white noise disturbance, 

which is too rich in high frequency to represent a real road profile.   

In order to show the effectiveness of the driver model, the 2 degrees of freedom (DOF) bicycle 

model vehicle described in (3.5), with the vehicle characteristics presented in Table 3‐1, is 

considered. Simulation results show the steering behavior and the lateral position of vehicle 

through an ISO double lane change maneuver [136]. In the simulation procedure, one needs to 

calculate the state feedback (��) and the preview (��) gains.  Hence, the first step is to convert 

the continuous vehicle model of (3.5) to discrete time. Weighting matrices of �, corresponding 

to the lateral error, the yaw angle error of the path following task, and � are assumed:  

� = �
0.25 0

0 100
�, � = 1 

These values are chosen such that the model and the real driver agree [118]. The following figures 

show that the model has followed the desired path with high accuracy when the preview time 

is ���. According to [83], the preview distance is approximately 1.5 seconds into the future.  
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Table 3‐1: Vehicle parameters 

Variable Value Units Description 

�� 88310 �

���
 Front‐axle cornering stiffness 

�� 64076 �

���
 Rear‐axle cornering stiffness 

� 0.913 � Front axle to center of mass distance 

� 1.73 � Rear axle to center of mass distance 

� 1673 �� Vehicle mass 

� 2250         ��. �� Vehicle yaw moment of inertia 

� 16  Hand wheel to road wheel angle ratio 

 

The following figures present effects of a pure path follower in the vehicle loop. As depicted, the 

lateral position of a closed loop vehicle, shown by the dotted red line, is compared to the exact 

desired path of the driver. An open loop bicycle vehicle model produces the desired path data. 

The steering angle feeds to the open loop system to produce the desired path. Using this 

method, vehicle limitations are also considered. The path follower produces the steering angle 

for the vehicle based on the desired road preview points. This steering angle feeds into the 

vehicle dynamics. Then, using the vehicle response and upcoming future preview points, a new 

steering signal will be generated by the path follower block. Figure 3‐4 shows the standard 

double lane change scenario and how the path follower steers the vehicle. The lateral position 

error small and for the given speed, with a preview time of � = ��� = 1.5�, the path follower 

performs well.  

 

Figure 3‐4 Lateral position and steering angle of a path follower driven vehicle @T=0.1, ��=120, � � = �� 
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 Note that the number of preview points (��) are highly dependent on the vehicle’s longitudinal 

speed and the desired path curvature. Figure 3‐5 shows the path follower route alongside the 

desired path route during tracking tasks. In the first case on the left side, the future preview time 

is reduced. As a result, the closed loop system did not track the desired path accurately. This 

lateral position error is caused by the decreased preview time. Conversely, the right side figure 

demonstrates that increased preview time improves the closed loop vehicle behavior. In the 

former case, the future preview time is increased to � = 1.5 seconds. 

 

 

Figure 3‐5 Lateral position of a path follower driven vehicle  

@ � � = �� T=0.05, U=120 and @ � � = ��, T=0.05, U=120 

  

3.3 Human Modeling 

There are some fundamental properties for nearly all drivers when studying humans in a vehicle 

control loop or during human‐machine interaction. The most important part is that driver is not 

a linear element. In other words, the reaction time of a driver is a function of human brain 

processes and the neuromuscular action. From the moment an observation is made, analyzed, 

computed by the brain, and an action is made accordingly; a certain time has elapsed (see Figure 

3‐6). Based on this assumption of the linear path‐follower described modeling in the previous 

section, one can assume that the driver has a total time delay of ��, which contains all of the 

delay sources. Considering �� as the number of delayed samples, it is assumed that the action 

of a driver at time � is based on observations made at time: � �� ��.  The reaction the driver 

makes accordingly occurs at time: � ��. Thus, regarding the linear model of path‐follower, it is 

assumed that the driver has a total delay of �� = �� + ��, then �� = �� � (� is sampling time).  
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Augmenting steering (3.12) and the vehicle dynamics of (3.9) describe the closed loop behavior 

of vehicle as follows: 

� (� + 1)= (� + ����)� (�)+ ����(�) (3.17) 

  

where, 

� (� + 1)= [��� ��� ��� ���]�(� + 1)= 
��� a��   a�� 0 a����

a����

 

a�� a�� a�� 0 a����
a����

0 0 0 0 1 0

0 0 1
0 0 0 0 0 0

���

���

���

���

(�)+

0

0

0

1

����  

 

 

 

Figure 3‐6: Total Driver's delay 
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In order to show the effects of time‐delay on the closed loop system behavior, a delay block is 

added to the path follower (Figure 3‐6). In order to introduce a steering angle input delay to the 

overall dynamic, one only needs to change the state space description of (3.17) as follows: 

� (� + 1)= ��(�)+ ����� (� ��)+ ����(�) (3.18) 

  

 

Figure 3‐7: Closed loop driver (path follower + delay) in the loop vehicle modeling 

To show the effects of a driver's delay on the overall system, the behavior of the vehicle in the 

standard double lane change maneuver is simulated. Different driver delays are shown when 

tracking the same desired path with the same longitudinal velocity of 120 ��/ �. Figure 3‐8 and 

Figure 3‐9 show that as the delay increases from 50 �� to 200 ��, the performance of the vehicle 

degrades. For a maneuver scenario with this longitudinal speed, increasing the delay to 250 ms 

makes the overall system unstable. For the simulations, vehicle specifications given in Table 3‐1 

have been used. 

 

  

Figure 3‐8 Effect of delay in driver in the loop vehicle system (Lateral position and steering angle)  

@ � � = �� T=0.05, U=120, delay=50ms 
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Figure 3‐9 Effect of delay in driver in the loop vehicle system (Lateral position and steering angle)  

@ � � = �� T=0.05, U=120, delay=200ms 

 In order to further investigate the effects of longitudinal velocity and time delay, the norm of 

summation of the lateral error is plotted versus the time delay and velocity. Figure 3‐10 shows 

that as the delay and velocity increases, the lateral error also increases. This makes sense in a 

real‐world driving situation.  

�� = 50 → 70 ��   , �� = 200, � = 0.01�, �� = 15 → 20 

 

Figure 3‐10 Norm of lateral position error versus variation in driver’s delay and velocity 

The following section presents driver delay effects using a more accurate car model. The CarSim 

software is employed for vehicle dynamics and driver simulation. The driver model that is used 

in this software has an optimal preview driver, which works on the same strategy that has been 

presented here. The model parameters are adopted based on the vehicle specifications 

presented in Table 3‐1. The time preview is assumed to be 1.1 ������� into the future, and the 

desired path is based on real driving data extracted from driving tests. Figure 3‐12 shows the 
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lateral position of the vehicle that tracks the predefined desired path, and the driver is modeled 

as a pure path follower robot without any delay in sensing and acting. The simulation shows the 

effect of the path follower. Increasing the delay to 200 �� in the tracking task leads to poor 

vehicle behavior. This is illustrated in Figure 3‐11. 

 

 

 

3.4 Summary 

The general vehicle dynamic equations were presented in this chapter. For the sake of simplicity, 

a linearized model of the vehicle for constant speed was used in the analysis and a state space 

form of the equation was presented. Next, using a path follower algorithm, the driver was 

modeled. It was assumed that the driver’s goal is to minimize both the lateral position and the 

yaw angle error between the vehicle state and the desired path. The observation and reaction 

delay of the driver also are lumped into a block and considered in the model. The simulations 

show the deteriorative effect of the driver’s delay in vehicle stability and performance. It can be 

inferred from the simulations that as the driver’s delay and the vehicle’s speed increase, the 

vehicle’s performance decreases. This demonstrates that considering the driver model is very 

important in a vehicle dynamic analysis. 
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“A man who is always asking ‘Is what I do worth while?’ and ‘Am I the right person to do it?’ will 

always be ineffective himself and a discouragement to others.” 

A Mathematician’s Apology, 1940, G. H. Hardly 

 

 

Controller Design with Driver‐in‐the‐Loop 

 

Now that a closed loop driver‐vehicle model is developed, the next step is controller design for 

the system. The main aim of this design is to improve the overall vehicle control considering the 

driver dynamics and delay. Most of the publications in this field are limited to stability control at 

vehicle levels without taking into consideration that the driver also affects the overall system’s 

performance. A few other researchers have tried to solve the closed loop problem by assuming 

accessibility of the future road information for the controller. Here, a new method is proposed 

that guarantees closed loop stability without requiring knowledge of future road geometry. Time 

varying bounded driver’s delay and other bounded uncertainties of driver modeling is also 

considered in the controller design.  Using this control method, an active front steering controller 

is designed.  

4.1 Basic Vehicle Control Problem 

As the safety system in a vehicle detects a large side slip angle or discrepancy between the 

vehicle’s yaw‐rate and the desired value, it generates the appropriate amount of yaw moment 

to correct the vehicle path and keep the vehicle operating point in the linear regime.  

The fundamental aspect of an advanced vehicle stability system is to augment vehicle directional 

stability by inducing the correcting yaw moment on the vehicle. A driver’s steering wheel angle, 

yaw‐rate (measurement), longitudinal and lateral velocity (estimation), and slip‐ratio (estimation) 

are the main signals that a conventional vehicle stability module uses directly in the control 

process. Besides that, the slip controllers are responsible for maintaining the wheel longitudinal 

slip ratio in a small neighborhood of a certain desired value based on road condition and vehicle 

state. A vehicle without traction control suffers from low acceleration and loss of drivability at 

low friction surfaces caused by high tire slip‐ratios. Also, slip‐ratio may degrade the performance 

of the stability controller dramatically. When a driver or autonomous system attempts a harsh 

maneuver, the vehicle might show nonlinear behavior since the vehicle may near the limit of road 
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traction. Since the driver or autonomous system expects a linear response, their action can result 

in a rear spin out or a front plow out. It is very hard for an average driver to regain control in this 

situation. A vehicle controller can adjust the individual wheel torques to change the vehicle’s 

heading in an appropriate fashion. Recent developments in the realm of convex optimization 

open the way toward a reliable yet computationally traceable approach to merge path‐planning 

and driver‐in‐the‐loop problems with vehicle safety analysis.  

4.2 Active Front Steering Controller 

The active front steering controller (AFS) adjusts the driver’s steering angle command based on 

the state of the vehicle.  A general schematic overview of the AFS system is depicted in Figure 

4‐1. 

 

 

 

 

 

 

 

 

Recalling the closed loop driver‐vehicle dynamic model described in Section 0, a simple active 

steering controller can be modeled as follows: 

 

� (� + 1)= ��(�)+ ����� (�)+ ����(�)+ �������� (4.1) 

 

where the parameters are as previously defined in Section 0; ���� is the control actuator, and 

���� is the steering angle adjustment that needs to be added to the driver’s steering angle. To 

design the controller for a closed loop system, two main approaches may be used. These are 

detailed in the rest of this chapter. 

Figure 4‐1 AFS Schematic view 
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4.3 Controller Design Considering Effects of Driver 

4.3.1 Desired Road Information is Available 

Assuming that the future road preview is a measurable signal for a controller, one can use many 

different control methods to stabilize the vehicle. Note that for cases where this information is 

available most of the time, there is no need for a driver model. The controller only needs to track 

the signals coming from the path following block. In the path following module, the algorithm 

finds the best possible way of performing a maneuver. It is obvious that with the utilization of 

upcoming road characteristics, a controller can guarantee lateral stability and good performance 

of the vehicle’s linear model. Assuming this case, a desired set of values are considered for each 

of the vehicle states. Then the controller adjusts the input commands of the vehicle based on 

comparing the target states with the actual measurements or estimations. It is generally accepted 

that the following algebraic equation presents the state’s desired values corresponding to the 

steering angle input and the longitudinal velocity:  

 

�� = min�� �
��

� + �����
��,

������(��) ��

��
��, ��� = �

�� ����≤ ������

0 �� ������
 (4.2) 

  

where ������ is a tunable threshold for lateral velocity, �� is the desired yaw rate,  ��� =
��

����

��

����
 is the under/over/natural steer stability coefficient, and � = � + � is the wheelbase. �� in (4.2) 

ensures that in a normal driving condition on dry or wet road, the vehicle should follow the 

command of the driver as much as possible. The other desired state is the lateral velocity ���, 

which mostly is considered to be zero. Although it is known that this state cannot be zero when 

there is a non‐zero steering wheel angle, the desired value for the lateral velocity still can be 

approximated as zero. 

 In order to design a tracking controller, one also needs to have the desired values for other 

vehicle states in modeling, specifically the lateral position and the yaw angle. For cases where 

the controller has access to future road information, it is trivial to define a lateral position error 

and a yaw angle error, and then design the controller to reduce these errors. Whenever the driver 

tries to steer such that the vehicle deviates from the target, the controller applies appropriate 

adjustments to bring the vehicle back on the right track while maintaining the vehicle in its stable 

behavior region. Figure 4‐2 shows a typical scheme of this type of controller, which uses future 
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information. It is clear that in this case, the linear bicycle model and the driver‐in‐the‐loop system 

can always be controlled without considering the characteristics of the driver.  

 

 

 

 

4.3.2 Desired Road Information is not Available 

When devising an applicable design, one of the greatest restrictions for the controller is the 

absence of future road preview points. In spite of the existence of GPS, proximity sensors, haptics, 

and vision sensors that help provide useful information, all of which can be used to estimate the 

desired path, the driver’s intention still remains difficult for the controller to determine. Note that, 

the desired path in this case may only be predicted for certain situations. Therefore, the are main 

interest is in developing a method to improve the overall performance of the vehicle for a range 

of different driving styles by only using the current vehicle states. Figure 4‐3 shows the proposed 

AFS control scheme that adjusts the steering wheel angle input of the driver to make the system 

stable. Considering Equation (3.17) again and applying the AFS controller, the dynamic behavior 

can be rewritten as ([78]): 

 

� (� + 1)= �� (�)+ ������(�)���� ���
������ ��������

+ �������(�)���� ���
������ ��������

+ ����(�)+ ���(�)�����
����������

 (4.3) 

The discrete dynamic state Equation (4.3) demonstrates that the driver/vehicle closed loop 

dynamics is composed of the vehicle states, the controller adjustment signal, and the driver’s 

steering input. We assume that the desired lateral position is unknown information and a 

    �� ���� + 

  

������� 

 ���  

  ���������� �� +   ���� 

������ ����� 

� 

Figure 4‐2 Controller design with road profile information 
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bounded uncertainty for the system. Given this dynamic system, the vehicle states of the lateral 

velocity and the yaw rate are the only parameters that can be controlled directly (where 

corresponding desired values are available). We can reduce the model to a discrete vehicle model 

as: 

�(� + 1) = ��(�)+ �[�(�)+ �(�)] (4.4) 

�(� + 1)= �� (�)+ ���� (�)+ ��(�)+  ��(�) (4.5) 

  

where � = [�� �]�, � ∈ ��×�, � ∈ ��×� are matrices with entries defines by  �(�, �) =

�(�, �), �(�, �) = ��(�, �), ��(�)= ��(�) for   �, � ∈ {1,2} , where � and �� were defined in (3.9). 

� (�)=  ����� (�)+ ��(3)��(3)+ ��(4)��(4)  . In (4.5), the value of the steering angle of �(�) 

is substituted by its definition, which contains the preview point effects and the current vehicle 

state effects. The term ���� (�) in (4.5) represents the effect of the vehicle state in the steering 

angle command.  Now, one can add a delay to complete the closed loop vehicle/driver 

formulation. When considering the driver’s delay, Equation (4.5) can be rewritten to: 

�(� + 1)= ��(�)+ ����(� �(�))+ ��(�)+  ��(�) (4.6) 

  

Taking into consideration that for the controller design, �(�) is assumed to be unknown 

bounded information. For the design procedure, there is no difference between �(�) and 

�(� �(�)).  

The problem is now formulated as a standard regulation problem of a retarded‐time‐delay 

system with an unknown bounded uncertainty. The �� method can solve this problem 

appropriately. In the following section, a method for �� regulation is proposed. 

 

Figure 4‐3 Closed loop controller design scheme without relying on future desired road profile 
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4.4 � � Controller Design for Discrete Delayed Linear Time Invariant system 

 

In this section, a static feedback controller �(�)= ��(�) is designed to stabilize the overall 

system and concurrently minimize attenuations from the parameter of � in ‖�‖� ≤ �‖�‖�. Based 

on the available information about delay for �� controller, there are two classes of delay‐

dependent and delay‐independent controllers. When the time‐delay is small, using a delay‐

dependent strategy for the controller design process provides better results in the sense of 

conservation. Since a delay in the driver‐in‐the‐loop system is not very significant, a delay‐

dependent approach is chosen for the design. In order to make the overall design procedure 

more applicable, an unknown delay with known upper and lower bounds is considered.  

Consider the following uncertain discrete‐time retarded delay system with a time‐varying delay:  

� :

�(� + 1)= ��(�)+ ����� �(�)� + ���(�)+ ���(�),

�(�)= ��(�),
�(�)= ��(�)

�(�)= 0, �� ≤ � ≤ 0,
�

 

 

(4.7) 

where �(�) is  the state, �(�)∈ � is the control input vector,  �(�)∈ �� is the exogenous 

disturbance signal assumed to belong to ℓ�[0, ∞), and �(�)∈ �� is the control output to be 

attenuated. Matrices �, ��, ��, ��, and � are assumed to be constant and with appropriate 

dimensions; �(�) is a time‐varying delay satisfying: 0 < �� ≤ �(�)≤ �� . 

The control objective is to synthesize an admissible controller � that internally 

stabilizes the plant while also minimizing (attenuating) the �� norm of the 

resulting closed‐loop transfer function matrix from � to �. The goal is designing a static controller 

to make the system stable while considering the effects of a bounded time varying delay and an 

exogenous input caused by the driver’s steering angle, according to future road profile.  

The first step is the stability analysis of the open loop delayed system (�(�)= 0). The following 

theorem, which is a modified version of theorem 1 in [59], gives a condition on the stability of 

the overall system (4.7). Note that throughout the rest of paper, � is the identity matrix and � >

0 (respectively, � ≥  0) means that matrix � is positive (respectively, positive semi) definite, and 

"*" denotes the symmetric term of a symmetric matrix. 
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4.4.1 Stability Analysis of Discrete System with Delay 

 Theorem 4.1: For the given lower and upper delay bound (��  and �� ), and the attenuation 

coefficient of � > 0, the system (4.7) is stable for �(�)∈ ℓ�� and �(�) = 0 , if there exist 

matrices ��, ��, � = [��
� ��

� ��
� ��

� ��
�]�,� = [��

� ��
� ��

� ��
� ��

�]� and 

symmetric matrices � > 0, �� > 0, �� > 0, and � ≥ 0 such that the following LMI is feasible: 

 

� = �� = �

Φ �� � ���� ��
�

�� � 0 0
���� 0

�

�< 0 

 

(4.8) 

where  

Φ = Φ � =

��� ��� ��� ��� ���

��� ��� �� ���

��� ��� ���

��� ���

���

∈ �(����)×(����), 

 

 

��� = (�� �� + 1)�� + �� ��(� �) (� �)���
� + �� + ��

� ∈ ��×�, 

��� = � + �� (� �)���
� + ��

� ∈ ��×�, 

��� = ���� + ��
� �� + �� ∈ ��×�, 

��� = ��
� ��  ∈ ��×�, ��� = ���� + ��

� ∈ ��×�, ��� = � + �� � + �� + ��
� ∈ ��×�, 

��� = ���� �� + �� ∈ ��×�, ��� = �� ∈ ��×�, ��� = ���� ∈ ��×�, 

��� = �� �� ��
� + �� + ��

� ∈ ��×�, ��� = ��
� + ��

� �� ∈ ��×�, 

��� = ��
� + ��

� ∈ ��×�, ��� = �� �� ��
� ∈ ��×�, ��� = ��

� ∈ ��×�, 

��� = ��� ∈ ��×�, ��� = �� �� , �� = [� 0] 

 

 

 

PROOF: 

This theorem is a special case of Theorem 1 of [59]. The proof is provided here to have a self‐

contented presentation.  Let 

�(�)= �(� + 1) �(�)= (� �)�(�)+ ����� �(�)� + ���(�), (4.9) 
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Then, 

�(�)= � �(�) 

���

�����(�)

+ ��� �(�)�,

��� �(�)� = � �(�) 

���(�)

������

+ �(� �� ), 

(4.10) 

Consider the following Lyapunov‐Krasowski function:  

�(�)= � ��(�)

�

���

 

��(�)= ��(�)��(�), ��(�)= � � ��(�)��(�)

���

�������

�

����� ��

 

��(�)= � � ��(�)���(�)

���

�������

��� ��

����� ��

+ � ��(�)���(�)

���

�����(�)

,

��(�)= � ��(�)���(�)

���

������

 

(4.11) 

where � = �� > 0, �� = ��
� > 0, � = 1,2 and � = �� > 0 are to be determined. Taking the 

derivative (Δ�(�)= �(� + 1) �(�)) of the Lyapunov function along the solution path yields: 

Δ��(�)= ��(� + 1)��(� + 1) ��(�)��(�)= 2��(�)��(�)+ ��(�)��(�), 

Δ��(�)= �� ��(�)��(�) � ��(�)��(�)

���

������

= �� ��(�)��(�) � ��(�)��(�)

���

�����(�)

� ��(�)��(�)

���(�)��

������

 

Δ��(�)= (��� + 1)��(�)���(�) ���� �(�)������ �(�)� � ��(�)��(�)

���� ��

������

≤ (��� + 1)��(�)���(�) ���� �(�)������ �(�)�, 

Δ��(�)= ��(�)���(�) ��(� �� )���(� �� ), 
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Hence, 

Δ�(�)≤ 2��(�)��(�)+ ��(�)��(�)+ �� ��(�)��(�) � ��(�)��(�)

���

�����(�)

� ��(�)��(�)

���(�)��

������

+ (��� + 1)��(�)���(�)

���� �(�)������ �(�)� + ��(�)���(�)

��(� �� )���(� �� ). 

Defining �(�)= ���(�) ��(�) ���� �(�)� ��(� �� ) ��(�)�
�

, the following 

equations hold: 

2��(�)� ��(�) ��� �(�)� � �(�)

���

�����(�)

� = 0 (4.12) 

2��(�)� ���� �(�)� �(� �� ) � �(�)

���(�)��

������

� = 0 (4.13) 

2[��(�)�� + ��(�)��]��(�) (� �)�(�) ����� �(�)� ���(�)� = 0 

 
(4.14) 

 

Note that: 

 

� [��(�)� + ��(�)�]���[���(�)+ ��(�)]

���

�����(�)

= �(�)��(�)�������(�)+ 2��(�)� � �(�)

���

�����(�)

+ � ��(�)��(�)

���

�����(�)

 

≤ ����(�)�������(�)+ 2��(�)� � �(�)

���

�����(�)

+ � ��(�)��(�)

���

�����(�)

 

(4.15) 
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and, 

� [��(�)� + ��(�)�]���[���(�)+ ��(�)]

���(�)��

������

= (�� �(�))��(�)�������(�)+ 2��(�)� � �(�)

���(�)��

������

+ � ��(�)��(�)

���(�)��

������

 

≤ (�� ��)��(�)�������(�)+ 2��(�)� � �(�)

���(�)��

������

+ � ��(�)��(�)

���(�)��

������

 

(4.16) 

Substituting (4.16) into the derivative of the Lyapunov function and using Schur complement, the 

following inequality obtained: 

 

Δ�(�)≤ ��(�)���+ �� ������ + �����������(�)

� [��(�)� + ��(�)�]���[���(�)+ ��(�)]

���

�����(�)

� [��(�)� + ��(�)�]���[���(�)+ ��(�)]

���(�)��

������

 

  �� =

��� ��� ��� ��� ���

��� ��� ��� ���

��� ��� ���

��� ���

0

, 

 

Δ�(�)+ ��(�)�(�) ����(�)�(�)

≤  ��(�)���+ �������� + �����������(�)

� [���(�)+ ��(�)]����[���(�)+ ��(�)]

���

�����(�)

� [���(�)+ ��(�)]����[���(�)+ ��(�)]

���(�)��

������

,   
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�� =

��� + ��� ��� ��� ��� ���

��� ��� ��� ���

��� ��� ���

��� ���

���

 

 

Now, if ��+ �� ������ + ��������� < 0 , it is easy to show that: 

Δ�(�)+ ��(�)�(�) ����(�)�(�)< 0 

Note: if � ≥ � > 0 then ��� ≥ ��� > 0. 

It is also assumed that the initial condition is zero. As a result, one can directly conclude that  

�(0) = 0, ∀� ∈ [ �� , 0]. 

→ � ��(�)�(�)

�

���

�� � ��(�)�(�)

�

���

< �(� + 1) ≤ 0, ∀� > 0.  

which guarantees that Δ�(�)< 0 when �(�)= 0 . This means that the given system is 

asymptotically stable with �(�)= 0. 

Using the S‐procedure in the LMI transformation, the above inequality can be described in the 

form of (4.8), thus completing the proof.█     

Using Theorem 1, an upper bound for the delay of system (4.7) without a controller is obtained. 

The next step is designing a controller for the same system to stabilize it for a given upper and 

lower bound of delay. 

4.4.2  State Feedback Stabilization of Discrete Delayed System  

THEOREM 4.2: For the given lower and upper delay bound (�� and �� ), and an attenuation 

coefficient of � > 0, the system (4.7) is asymptotically stable, using �(�) = �����(�),  and �(�)∈

ℓ�[0, ∞). If the matrices �, � = [��
� ��

� ��
� ��

� ��
�]�, � = [��

� ��
� ��

� ��
� ��

�]�exist, 

and for the symmetric matrices � > 0, �� > 0, �� > 0, and � ≥ 0, the following matrix 

inequality holds: 

 

� =

Λ �� � ���� Λ� �� � �

�� ����� 0 0 0 0

�������� 0 0 0
� 0 0

�� � 0
�

< 0 

 

(4.17) 
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where: 

Λ =

Λ�� ��� ��� ��� ���

��� ��� �� ��

��� ��� ��
� + ��

�

��� ��
�

���

 

 

� = [�� �� 0 0 0]�, Λ�� = (��� + 1)�� + �� + �� + ��
� + �� + ��

�, 

Λ�� = �� ��
� + �(� �)� + ����

� + ��, Λ�� = ��
� �� + ��, Λ�� = ��

� ��, 

Λ�� = ��
�, Λ�� = �� ��

�, Λ�� = �� � �� + ��, 

Λ�� = �� �� ��
� + �� + ��

�, Λ�� = ��
� + ��

� ��, 

Λ�� = �� �� ��
�, Λ� = [��� 0]� 

 

PROOF: 

Based on theorem 1, it is clear that ��� < 0. As such, �� + ��
� < 0. Then, �� + ��

� is symmetric 

and negative definite, and as such, nonsingular. Then let: 

� = �
� 0
��

� ��
��, ��� = �

� 0

�� ��
�= ��. 

In view of the closed loop system with constant feedback, first replace � with � + ��. The main 

goal is finding matrix �, which stabilizes the overall system. However, adding this variable to the 

formulation, the matrix inequality that resulted in theorem 4.1 is not linear anymore. Thus, after 

replacing matrix �, pre and post multiply Ξ by ���� {��� � � � � � �} 

and ���� {�� � � � � � �}. Subsequently, new variables must be defined as below and 

after carrying out some manipulations, � = ���� {��� � � �}. �. �, �� = ����, � = 1, 2, � =

��, � = ���� {��� � � �}. �. �, � = ���, and � = ��.  

After some calculations, the results are as follows:  

Λ�� = ��. �(��� + 1). �� + �� ��(� + �� �0) (� + �� �0)�. ��
� + �� + ��

��

+ ��
�. (� + ��

� ��(� + �� �0)+ ��)�. �

+ ��. (� + �� (� + �� �0)�. ��
� + ��

�)

+ ��
�. (� + ��. � + �� + ��

� )�. �� 

��� = ��. (� + �� (� + �� �0)�. ��
� + ��

�)+ ��
�. (� + ��. � + �� + ��

�)�. ��. 

 



52 

 

The other terms can also be calculated simply by pre‐post multiplication. Now by considering 

that ���� = �, one can write:  

�� = �, ��
� � = ��

���, ��
��� = �, 

which, using the relation and the Schur complement, completes the proof.  

4.4.3 State Feedback of Discrete Delay System Using LMI 

Using Theorem 4.2, a solution can be obtained.  However, due to calculation difficulties, the 

solution is not practical. In regards to the inverse variable terms in an inequality condition, it 

cannot be treated as an LMI. As a result, the well‐known approaches for solving an LMI are not 

applicable. Using the algorithm proposed by Ghaoui in the late 1990s ([37]), the given matrix 

inequality condition can be transformed to a general nonlinear minimization problem with LMI 

constraints (see Appendix). This can be solved iteratively, as follows: 

 

Finding a Feasible Solution 

 

 

Require: 

1  : Define the new matrix variable �� ≤  ���� �  

2 : Convert the matrix inequality of ��< 0 to a nonlinear minimization problem based on LMI, as 

follows: 

�������� ������� + �� +̅ ���� 

Subject to: 

� = �� > 0, �� = ��� > 0, �� > 0, �� > 0, � = �� > 0 

 

�
�� �̅

�̅ ��
�≥ 0, �

�� �
� ��

�≥ 0, �
� �
� �

�̅≥ 0, �
� �
� ��

�≥ 0 

 

and  � < 0 in (4.17), where  ������ is replaced by ��. 

(4.18)  

    3 : � ←  sufficiently small  > 0  

    4 : ���� = �. 

Ensure: Requirement is satisfied 

    5 : while � < ���� do 

    6 : Find a feasible set (��, ��̅, ���, ���, ��, ���, ���, ���, ��, ��, ��, ���, ���)  that: 
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� < 0 , where ���� � ← �� 

    7 : � ← 0 

    8 : for � = 0 to ���� do 

    9 : Find a feasible set ��, �,̅ ��, ��, �, ��, ��, ��, �, �, �, ��, ��� 

 

�� = ��� ��������� +̅ ���̅ + ����+ ���� + �����+ ������ 

         Subject to: 

� < 0 while ���� � ← �� 

    10 : ��̅�� ← �,̅ ���� ← �,����� ← ��,����� ← ��,����� ← ��, ���� ← �. 

    11 :  if condition (4.17) is satisfied and ‖� 6�‖ ≤ ��� 

  then 

    12 :   � ← ���� 

    13 :   ���� ← � 

    14 :   Reduce � 

    15 :   break the for loop 

    16 :   end if 

    17 :  end for 

    18 : end while 

 

 

4.5 Solving the LMIs 

It is well known that the LMIs solving is not strictly convex problem and different solvers may 

result in different gains, however the corresponding attenuation levels will be quite close. Given 

that the minimization is to seek an infimum for �, some solvers can lead to extremely large values 

for the design matrices. For this reason, the size of matrix � can be restricted to constrain the 

gains of the controller. One approach to limit the size of matrix � is as follow: 

�
� �

�� 0
0 ��

� ��

��
�> �� (4.19)

where the scalars of �� and �� are free variables to shape the controller gains properly and � is 

a small number defines the numerical error tolerance. Adding this extra inequality is found to be 

effective in practice, however it adds another constraint in the admissible set for � which makes 

the analysis more conservative. Another method to avoid the numerical difficulty is to minimize 

� + �� Tr(���) instead of � where �� is a positive scalar. 
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4.6 Driver‐in‐the‐Loop Output Regulation 

Theorem 4.2 guarantees the asymptotic stability of the system, which forces both of the states –

the yaw rate or the lateral velocity – to approach zero as the control input applies to the system. 

Hence, the controller is highly conservative.  Even in cases where there is no delay, the control 

signal is still conservative and degrades the system’s overall performance. The controller 

performance, however, can be improved using the benefit of the output tracking methodology. 

To provide a good ride and good vehicle handling, the first state, which is lateral velocity, needs 

to be zero at all times. This is satisfied by the stabilization method.  However, the other state’s 

behavior, the yaw rate, can be presented by a linear function of the steering angle to achieve the 

best performance, as mentioned in (4.2). The desired value for the lateral velocity can be 

calculated based on zero dynamics of the system, however, since it is a small value, it is usually 

assumed to be zero. 

4.6.1 Output Regulation for the Full‐Rank Matrix �  with a Known Delay of � 

Consider again the discrete LTI system of (4.7). An error term can be defined based on the current 

vehicle states and the desired state values of Equation (4.2):  

�(�)= �(�) ��(�) (4.20) 

Then, the error dynamic can be written as follows: 

 

�(� + 1)= �(� + 1) ��(� + 1)

= ��(�)+ ���(� �)+ �� �(�)+ ���(�) ��(� + 1) 
(4.21) 

  

The goal is to stabilize the error dynamics. Considering the fact that an upper bound for the 

delay is known, one can easily assume a nominal delay of � ̅that satisfies 0 ≤  �̅̄≤  ��  . Now, 

the desired value dynamics can be defined as: 

 

���(�)= ���(�)+ ��(� + 1) ���(�) ����(� �) (4.22) 

  

Hence, one can rewrite the error dynamic of (4.21) as the following: 
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�(� + 1) = ��(�) ����(�)+ ���(�)+ ���(� �) ����(� �)+ �� �(�)

= ��(�)+ ���(� �)+ ���(�)+ �� �(�) 
(4.23) 

Using (4.23), the problem is now in using error stabilization. This is accomplished using the 

aforementioned theorems. After solving the new problem based on the error dynamic term, the 

following equation regarding the input signal for regulation can be obtained: 

 

�(�)= �(�)+ ��
�����(� + 1) ���(�) ����(� �)� (4.24) 

  

However, usually matrix �, which is related to the actuator, is not full‐rank. Rather, it is a full‐

column rank. Therefore, the control signal of �(�) cannot be extracted from the relation of (4.24). 

This relation provides � different input command signals, instead of �, where � ≤ �. The 

method used here is taking the benefit of a singular value decomposition (SVD) transformation, 

and changing the system coordination such that matrix � can be written as in (4.25): 

��×� = �
���×�

0(���)×�
� (4.25) 

 

 

Then, using (4.25), the previous equation of (4.22) is now transformed to: 

 

�
��

0
��(�)= �

��

0
��(�)

+ �
��(� + 1)(���) �(���)×���(�) ��(���×�)��(� �)

��(� + 1)� ��×���(�) ��(�×�)��(� �)
� 

(4.26) 

  

Now, it can be simplified by making the assumption that the ������� = ��� output tracking can 

be addressed. 

For the vehicle case study that is considered in this report (4.5), since� ∈  �×� is not of the form 

of �
��

0
�, using transformation based on the SVD, one can always find a transformation matrix � 

which change the coordinates to an appropriate space of � × � = �� = ����

0
�.  

Then, assuming 
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��(�)= ��(�), �(�)= �����(�), ��= �����, ��� = ��� ���, �� = ��,

��= ����  

the system of (4.7) can be transformed to the following representation: 

 

Σ��:�

���(� + 1)= ����(�)+ �����(� �)+ ���(�)+ ���(�)
 

�(�)= ����(�)

��(�)= 0, �� ≤ � ≤ 0

 (4.27) 

 

This control input only guarantees that ��(�) → ��(�) ��(�)→ ��(�). So, before applying 

this approach, one should be careful about transforming the desired values, as well by defining: 

 

���(�)= ���(�), 

Now,  

  ��(�) → ���(�) �(�)→ ��(�) 

 

(4.28) 

Hence, defining the new transformed error of �(�)= � × �(�) : easy 

 

�(�)= ��(�) ���(�)= ��(�) 

�(� + 1) = ���(�)+ ����(� �)+ ���(�)+ ���(�) 
(4.29) 

 

We have to find �(�) that stabilizes the transformed equation, again with the aforementioned 

theorems. Based on the fact that the theorem gives a memory‐less state feedback, the 

transformed controller is: 

�(�)= ���(�) (4.30) 

Applying this controller, the transformed error dynamic is: 

�(� + 1)= ���+ ������(�)+ ����(� �)+ ���(�) 

That can be rewritten as: 

��(� + 1)= ������ + �������(�)+ ��������(� �)+ ���(�) 

Considering that: 

�� = ���� 

One has: 
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��(� + 1)= (����� + ������)��(�)+ ���������� �(�)� + ���(�) 

�(� + 1) = (� + ��)�(�)+ ���(� �)+ ��(�) 

�(�)= ���(�)= ��(�)= �(�) (4.31) 

Thus, one can easily design �(�) for the system (4.7) and use �� = [��� ��] to stabilize the 

error dynamics. 

Remark: Based on the above calculations, one can use the same control input, which was 

designed for transformed system, in the main system.  

Remark: Note that in this scheme, one cannot guarantee ��� → 0. The reason is that when using 

matrix ��, only one of the states can be assigned, and the other states must follow specific 

dynamics based on system dynamics. It means that the controllable space is a subspace, which 

is constrained by the system dynamics, (the controllable space is � ∈ �(� = 2)). 

4.6.2 Extension to Robust Regulation with Time Varying Delay 

In order to relax the assumption of the output regulation with a known time delay, the method 

is modified such that a more realistic situation can be addressed. This part is the same as the 

robust stabilization theorem, only that the knowledge on the upper bound driver delay is 

presumed. Recall again, the system of (4.7) and the desired state dynamics of (4.2), where the 

error term is: 

�(�) = �(�) ��(�) (4.32) 

Then, for the time varying delay case, the error dynamic can be written as follows: 

 

�(� + 1)= �(� + 1) ��(� + 1)

= ��(�)+ ����� �(�)� + �� �(�)+ ���(�) ��(� + 1) (4.33) 

  

The goal is to stabilize the error dynamics. Considering the fact that an upper bound for the 

delay is known, one can easily assume a nominal delay of � ̅which satisfies 0 < � ≤̅ �� . Now, one 

can define the desired value dynamics as: 

���(�)= ���(�)+ ��(� + 1) ����(�) ������ ��̅ (4.34) 

Hence one can rewrite the error dynamic of (4.23) as follows: 
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�(� + 1) = ��(�) ����(�)+ ���(�)+ ����� �(�)� ������ ��̅

+ �� �(�)

= ��(�)+ ����� ��̅ + ���(�)+ �� �(�)

+ ������ �(�)� ��� ��̅�   

(4.35) 

Now, one should consider �� �(�)+ ������ �(�)� ��� ��̅� = ��(�) as unknown 

disturbances. The new system dynamic that needs to be stabilized is as follows:  

�(� + 1)= ��(�)+ ����� ��̅ + ���(�)+ ��(�) (4.36) 

Following the method proposed in the previous section, the solution can be easily obtained. 

4.7 Uncertainty Analysis 

In this section, the problem is reconsidered in a more revealing way, where the driver 

uncertainties are also included in the controller design procedure. It is worth emphasizing that 

usually, a drivers’ behavior changes very slowly (see [109]).  The driver model that is used is limited 

to constant preview points (��), sampling time (�), and longitudinal speed. Based on the 

formulation, one may consider a bound for different values of each parameter and study their 

effects on the preview gains. Among �� + 4 preview gains, the focus  is in the first two gains, 

because they have direct effects on the delayed part of the modelling. The other gains have 

some effects in unknown information, part (�).  These need to be considered similarly to some 

of the bounded uncertainties.  Different values of the miscellaneous parameters for the first two 

gains are shown below. 

 

Figure 4‐4 Variation of � � regarding to the variations in longitudinal speed and sampling time 
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Figure 4‐5 Variation of � � regarding to the variations in longitudinal speed and sampling time  

 

The above figures show preview gains of �� and �� for the different ranges of speed and 

sampling time.  In normal driving conditions, Δ�� = 0.03 and Δ�� = 0.2. These values are the 

gain’s variations from a standard design at a nominal operating point of the vehicle at the 

longitudinal speed of �� = 90 ��  with a sampling time of � = 50��. Note that the number of 

road preview points does not affect the steering gains of �� and ��. According to this 

information, one can use the following modified system equation from (4.7): 

 

�:�

�(� + 1)= ��(�)+ (�� + Δ��)��� �(�)� + ���(�)+ ���(�)

�(�)= ��(�)

�(�)= 0, �� ≤ � ≤ 0�

  (4.37) 

 

Handling this uncertainty, an assumption is added to the problem and then use the same method 

for the delayed system without uncertainty. Assuming that the term of Δ��(= ��Δ��) denotes 

the parameter uncertainties satisfying the condition Δ �� = ��(�)�, where �, and � are 

constant matrices, and �(�) is an unknown time‐varying matrix, this satisfies ��(�)�(�)≤  �.  

Once again, the aim is to design a practically implementable robust controller in order to make 

the system stable and reliable to the effects of bounded time varying delay and the exogenous 

input caused by future preview points. 
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 Lemma1 [154] For all � ∈ ��×�� satisfying ��� ≤ � ∈ ���×��, � = �� ∈ ���×��, � ∈ ���×��, � ∈

���×�� and � = �� > 0 

 

� + ��� + ������ < 0 

 

 if and only if there exists some � > 0, such that: 

 

� + ���� + ������� < 0 

 

Theorem 4.3: For the given lower and upper delay bound (�� and �� ) and attenuation 

coefficient of � > 0, the system (4.7) is asymptotically stable using �(�)= �����(�), and  �(�)∈

 �� [0, ∞). If the matrices �, � = [��
� ��

� ��
� ��

� ��
�]�exist, and the symmetric matrices � >

0, �� > 0, �� > 0, � > 0, � = [��
� ��

� ��
� ��

� ��
�]�, and � ≥  0, then the following LMI is 

feasible: 

��= ��� = �
� ��� ���

�� 0
��

� < 0 (4.38) 

where � is defined in Theorem 4.2, �� = [0 �� 0]�, and �� = [0 �� 0]. 

 

 

Proof: 

Using LMI (4.17) in Theorem 4.2, the robust asymptotic stability of the system (4.7) without 

uncertainty is addressed. Now replace �� with �� + Δ�� in inequality (4.17), and use Δ�� =

��(�)�. This creates:  

Λ �� � ���� Λ� �� � �

�� ����� 0 0 0 0

�������� 0 0 0
� 0 0

�� � 0
�

+

0
�
0

0

�[0 0 �� 0 0]+

0
0

����

0

0

��[0 �� 0 0]

< 0 

(4.39) 

By Lemma 1, there exists some � > 0 for the inequality (4.39), such that: 
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Λ �� � ���� Λ� �� � �

�� ����� 0 0 0 0

�������� 0 0 0
� 0 0

�� � 0
�

+ �

0
�
0

0

[0 �� 0 0]

+ ���

0
0

����

0

0

[0 0 �� 0 0]< 0 

Using the Schur complement (Appendix), the inequality (4.38) is obtained.  

4.8 Active Front Steering Simulation 

The degradation effects, such as increasing the driver’s delay, cause poor vehicle performance, 

and the instability of the delay in the driver/vehicle closed loop system were shown in Chapter 

3. In order to show the effectiveness of the designed controller and the proposed method, some 

simulations are done in the following. An ISO harsh double lane change scenario [136] is 

considered as a reference (desired) path (see Figure 4‐6) When considering the assumed 

scenario for the open loop vehicle, the steering angle that makes the simulated vehicle remain 

on the track, the yaw angle, and lateral velocity are all recorded for comparison. During the 

simulation, it is assumed that the vehicle performs the maneuver with a constant speed.  

 

 

Figure 4‐6: ISO harsh double lane change 

The proposed controller is compared to a standard linear quadratic tracking (LQT) AFS state 

feedback controller. In the previous works on open loop vehicles, good performance of the LQT 

for a linear 2DOF bicycle model vehicle control is reported (see [28]).  From a control theory 

standpoint, using the LQT method for a linear plant results in both stabilization and good tracking 

performance. The LQT controller design is presented in appendix. Note that the controller does 

not contain any information about the driver. 
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Matlab Simulink is used for the simulations of the proposed controller, where the YALMIP ([94]) 

package with SDPT3 ([145]) solver is added to solve the LMIs efficiently. Using theorem 4.3, a 

robust controller that stabilizes vehicle states to unknown driver delay (only the upper/lower 

bound delay is known) with an attenuation factor of � is obtained. In order to convert it to a 

tracking controller to enhance performance, the proposed method in Section 4.6.2 is used, where 

the nominal delay is assumed to be � =̅ 300 �� and the robust controller is designed for time 

varying delay intervals of �(�)≤ 350 ��.  

The simulations start with a small driver delay and proceed by gradually increasing the time‐

delay.  The simulation runs with a number of preview points of �� = 30 and a sampling time 

of � = 50 �� for the driver simulation and � = 5 �� for vehicle model update. Given that the 

model is in continuous‐time, the C2D command in MATLAB is used to discretize the model by 

sampling time, �. In order to define the desired path, the open loop behavior of the bicycle mode 

on the ISO double lane change scenario is simulated, and the lateral position output is assumed 

to be the desired path for the closed loop system. For the path follower, it is assumed that �� =

0.25, �� = 100, and � = 1. Recalling (3.12), the vehicle and preview gains are computed. Then, 

the recorded lateral position path data is fed into the system with a delay of the  �� sample. This 

leads the current (�) steering angle ( �� ) of the driver to be dependent on the vehicle state and 

preview points of  � ��  (i.e: �� = ��������� ×��). It is also assumed that this steering angle is 

available for the controllers to adjust the vehicle’s behavior.  

Applying theorem 4.3 and adjusting the control signal by the proposed method in Section 4.5, 

the �� robust AFS gain controller with an unknown time delay system is obtained. It has a gain 

of � = [ 0.5816   2.9205]�� for a longitudinal speed of �� = 90 ��  . This controller 

guarantees the output regulation with an attenuation factor of � = 0.5 . The driver’s delay is also 

assumed to be bounded between 3 ≤ �� ≤ 7 (= 150�� ≤ ����� ≤ 350 ��). The state 

feedback for the  �� robust AFS gain controller with unknown time delay system for uncertain 

system (Δ� = [0.03 0.2]) is found to be � = [ 1.2237  7.6781]�� with a guaranteeing 

attenuation of  � = 0.66.  Note that, referring to Figure 4‐4 and Figure 4‐5, when designing a 

controller for the longitudinal speed of �� = 90 ��  with this uncertainty bound, a good robust 

bound can be obtained. 

The lateral position of the vehicle and the driver’s steering angle are shown in different cases: 

Figure 4‐7 presents a closed loop vehicle response while the driver has a small delay of 50 �� 

and runs the vehicle at a speed of 90 �� . As shown, the performance of the LQR controller is 

slightly better than the other two robust controllers. The main reason lies in the conservation 

inherent to any robust controller. The former two designs make the system stable for a wide 

range of driver delays; however, they also slightly degrade the overall system’s performance. It 
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is obvious that the larger the level of attenuation, the more conservation and consequently, the 

more performance reduction occurs.   

 

 

Figure 4‐7 Lateral position of the vehicle and the driver’s steering angle command (�� = �� ���, � = �� ��)  

 

 

While the LQR controller shows good results for small delays, it cannot stabilize the closed loop 

system for larger time‐delays. The trend depicts a loss of stability in the vehicle‐LQR controller 

in Figure 4‐8 and Figure 4‐9. It can be inferred from these figures that for a time‐delay of more 

than 250 ��, the LQR controller cannot stabilize the closed loop vehicle. It is also worth 

mentioning again that without a controller, the closed loop system loses its stability for delays 

larger than 200 ��.  
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Figure 4‐8 Lateral position of the vehicle and the driver’s steering angle command 

 (�� = �� ���, � = ��� ��)  

 

Figure 4‐9 Lateral position of the vehicle and the driver’s steering angle command 

 (�� = �� ���, � = ��� ��)  
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As the delay increases, the effectiveness of the robust controllers is revealed. Figure 4‐10 and 

Figure 4‐11 show that the proposed controllers prevent closed loop system instability even in the 

existence of a large driver time‐delay (up to 350 ��). More robust controllers can also be 

designed using the proposed method; however, they would be very conservative and 

performance degradation would no longer be acceptable. Given that the method is proposed 

for harsh maneuver scenarios, considering delays larger than 400 �� is not realistic in a real 

driving condition and are omitted here for brevity. 

 

 

Figure 4‐10  Lateral position of the vehicle and the driver’s steering angle command 

 (�� = �� ���, � = ��� ��)  
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Figure 4‐11 Lateral position of the vehicle and the driver’s steering angle command 

 (�� = �� ���, � = ��� ��)  

The simulations also show that the delay robust controller leads to better results than the delay 

robust uncertain controller. This can be easily explained by the fact that the former controller is 

more conservative than the first one. The uncertain robust controller does not perform control 

tasks as well as the robust controller.  However, by changing the speed, the usefulness of this 

controller emerges. Changing the speed or the sampling time alters the vehicle’s dynamic 

behavior subsequently changing the driver model parameters. The uncertain controller is robust 

to both bounded delay variation and bounded driver gain variation. In the following figure, 

Figure 4‐12, the vehicle’s longitudinal speed has been increased to 120��  and the controllers 

are kept unchanged. 
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Figure 4‐12  Lateral position of the vehicle and the driver’s steering angle command 

 (�� = ��� ���, � = ��� ��)  

Figure 4‐12 shows that although the robust controller is robust to delay variation, it is not robust 

enough to driver gain variation. 

Redesigning the robust controller, a new control gain of � = [ 0.0005 4.1911]�� is obtained 

with an attenuation factor of � = 0.8. Now, using the new robust controller and the same robust 

uncertain controller, the following simulations present the vehicle behavior at a speed of �� =

120 �� . Note that the LQR controller has also been redesigned for this speed. Figure 4‐13 and 

Figure 4‐14 show the effectiveness of the proposed controller in the stabilizing closed loop 

vehicle, even with a large delay at high speeds. 
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Figure 4‐13 Lateral position of the vehicle and the driver’s steering angle command 

 (�� = ��� ���, � = ��� ��)  

 

Figure 4‐14 Lateral position of the vehicle and the driver’s steering angle command 

 (�� = ��� ���, � = ��� ��)  

Similar to the previous simulation for lower speeds of �� = 90 �� , the redesigned delay robust 

controller shows slightly better performance compared to the uncertain robust controller. (See 

Figure 4‐15) 
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Figure 4‐15 Lateral position of the vehicle and the driver’s steering angle command 

 (�� = ��� ���, � = ��� ��)  

Figure 4‐16 demonstrates that decreasing the driver’s delay amount to � = 150 �� means that 

all three controllers guarantee closed loop vehicle stability.  

 

Figure 4‐16 Lateral position of the vehicle and the driver’s steering angle command 

 (�� = ��� ���, � = ��� ��)  
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Finally, in order to show the effectiveness of the proposed controllers at low speeds, the following 

simulations have been performed at �� = 60 �� , where the LQR controller and the robust 

controller have been redesigned. The robust uncertain controller, however, has been left 

unchanged. Solving this given the LMI in (4.17), the robust regulator of the robust controller with 

a gain of � = [ 1.3300 0.8333]�� is obtained with an attenuation coefficient of � = 0.4. 

Applying the new robust controller, the LQR controller, and the previous uncertain robust 

controller, Figure 4‐17 and Figure 4‐18 present the closed loop driver‐vehicle behavior for small 

and large driver time delays. 

 

 

 

Figure 4‐17 Lateral position of the vehicle and the driver’s steering angle command 

 (�� = �� ���, � = ��� ��)  
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Figure 4‐18 Lateral position of the vehicle and the driver’s steering angle command 

 (�� = �� ���, � = ��� ��)  

 

4.9 Extension to the Torque Vectoring Technique 

The main advantage of using an active steering technique is that the actuator can directly control 

the lateral vehicle force �� , which is very important in handling. Referring back to (4.7), there is 

versatility in directly controlling both lateral velocity and vehicle yaw rate. On the other hand, it 

is known that implementation of a controller using active steering is expensive, and at the same 

time, there are still some safety issues in relying on a fully electric steering system without 

mechanical redundancy.  

The other alternative for controlling a vehicle is the method that works based on the vehicle’s 

changing longitudinal forces. The idea here is to calculate the required moment at C.G. to 

improve vehicle performance. Then, changing the longitudinal forces of each wheel produces 

the requested moment. The most important techniques of this branch are Torque Vectoring (TV) 

and Differential Braking (DB). DB tries to produce the required moment only by braking, and its 

main advantage is that it is easy to implement. In a conventional vehicle, separate control of the 

torque transferred by the engine to each of the wheels is very difficult and expensive to 

implement. Hence, DB is an efficient method to reduce each wheel’s torque without knowing 

each exact engine‐torque. Although, in this method, one cannot use all of the capacity of the 
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control system since the actuators cannot add positive torque at each wheel. The TV technique, 

on the other hand, can produce both negative and positive torque at each wheel and potentially 

enable the control system to take advantage of all of the capacity in the system. The cost of 

having full control on the system is the additional time on wheel motors at each corner. This 

limits the method to hybrid and electric vehicles. Although there are very limited conventional 

vehicles that have actually implemented TV on a conventional platform, an improvement in 

conventional vehicles will not recoup the cost of implementation. Therefore, for the rest of this 

thesis, it is assumed that there are four individually controllable motors at each corner of the 

vehicle and one can implement the TV method on the car. A schematic of the structure of the 

control system is depicted in Figure 4-19. 

 

 

Figure 4‐19: Torque vectoring control strategy 

  

One of the main advantages of using the proposed method for integrating driver effect into the 

controller design is the independency of the method from the actuator type and implementation 

technique. The requested torque from the controller can be used by both AS and TV techniques. 

The detail of an optimal method for torque distribution is discussed in the next chapter.  

Using the same algorithm, one can re‐tune the controller for the case where TV method is 

targeted for the control purpose. In order to improve the simulation process, the CarSim high‐

fidelity software is used to model the driver in the simulation. The structure is depicted in Figure 

4‐20.  An important note is that the driver model ([95]) in CarSim is a different from the driver 

model in controller design. In CarSim, the driver is a path follower model that includes many 
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different parameters of a driver such as the maximum steering torque, preview time, reaction 

delay, and many others. The important point here is that the proposed method still works 

robustly to the differences between the driver modeling in CarSim and the controller.  

 

Figure 4‐20: Simulation structure using CarSim 

4.10 Torque Vectoring Simulation 

To discretize the continuous model, a zero‐order hold method with a sampling frequency of 200 

Hz is used. Vehicle parameters remain the same as the AFS simulation part. The simulations are 

performed for different cases of longitudinal velocity and drive delay. Applying theorem 4.3, the 

�� robust controller with an unknown time‐delay system and certain driver model uncertainty 

bounds is obtained. The following section begins with the simulation for the case where the 

driver model is simulated in Matlab, which is exactly what is considered in the proposed 

controllers, and then, the CarSim driver model is used to make the simulation more realistic. 

4.10.1 Linear Bicycle Model with Driver‐in‐the‐Loop 

To model the driver, the preview distance ahead is taken as 1.5 s. For the path follower, it is 

assumed that �1 =  0.25, �2 =  100, and � =  1. As shown in Figure 4-21, the vehicle with the 

proposed controller can track the desired path with a relatively large driver delay of (380�� ≤

�(�)≤ 450 ��) and on a dry road condition; however, the vehicle solely relying on the driver 

with a large amount of delay will not be able to follow a path, and the LQR controller cannot 

track the path properly. Note that similar to the previous section, the proposed controller is 

compared to an LQR‐based designed controller (see AFS simulation for details). To show the 

performance of the controller for different speeds, the controller is retuned for 70 km/h 

longitudinal speed and the TV technique is applied for a wider range of delay (250 �� ≤ �(�)≤

450 ��) (see Figure 4-22). 



74 

 

 

 

 

Figure 4‐21 Controller performance comparison 

 

Figure 4‐22 Controller performance comparison 
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4.10.2 CarSim Simulation Results 

The first case in Figure 4-23 shows that for normal conditions and a specific given path, the 

CarSim driver can track the path perfectly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, as the road friction coefficient decreases to � = 0.6 (wet surface), the LQR controller 

shows small performance degradation even in low speed cases (Figure 4-24). The simulation 

shows that decreasing the road friction coefficient to a lower value of � = 0.25 increases the 

driver’s delay to 350 �� and �� = 50 km/h, making the vehicle harder to control by the driver. 

Furthermore, the LQR controller cannot prevent vehicle skid and the system becomes unstable, 

while the proposed controller still keeps the vehicle in the acceptable range of performance.    
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Figure 4‐23 Carsim Driver test 
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Figure 4‐24 Carsim Driver ‐ Low Speed 
Figure 4‐25 Carsim Driver ‐ Low Friction 
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Another case with less, but still in the high range, friction and higher longitudinal velocity is 

simulated in Figure 4-27 and Figure 4-26, where the poor performance of standard controller is 

presented in contrast to the acceptable performance of driver in the loop. 
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Figure 4‐27 CarSim driver ‐ high speed, slippery 
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As the delay and the vehicle’s longitudinal speed increase while the road surface coefficient 

decreases, the driver cannot control the vehicle, and the effectiveness of the robust controllers 

is revealed.  

 

The last simulation shows one case where an expert driver tries to steer the vehicle. The expertise 

can be defined by the minimum reaction delay time and the length of preview time. Here, a 

super human is driving the vehicle as the minimum delay for a driver is more than at least 200 ��. 

However, in order to show the idea, it is assumed that a humanoid robot driver is in the vehicle. 

In CarSim, the driver lag is set to be 100 �� and the preview time to 1.5 �. The result supports 

the idea that an expert driver can steer the vehicle even in very harsh maneuverers. Although the 

proposed controller still makes the task easier for the driver compared to the ease of the task 

with the LQR. The comparison will be more apparent when one compares Figure 4-28 with Figure 

4-27, where the effect of driver in the loop can be seen perfectly. 
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4.11 Summary 

The closed loop driver‐vehicle dynamic stability problem was investigated in this chapter. The 

driver was modeled with a multi‐point preview point path follower integrated with a transient 

delay block. The delay block represents the cumulative driver’s observation and the action delay. 

A combination of the delayed steering angle, the path follower, and a linear vehicle bicycle model 

was assumed as the final closed loop system. Given that in real situations, the future road preview 

information (driver’s intention) and the driver’s delay are not accessible to the vehicle controller, 

the robust �� control method was employed to handle unknown bounded exogenous inputs 

and the driver’s time‐varying delay. The controller in this scheme only uses the current states of 

the vehicle, steering wheel, and the uncertain driver model. To make the LTI controller less 

conservative, the robust stabilization problem was transformed into a robust output regulation. 

Considering the fact that the controller design is dependent on the driver’s model parameters, 

the uncertainty in the modeling was added to the problem and a new delay robust �∞ output 

regulator controller was proposed. The uncertain modeling can also be used as a reference for 

a range of drivers with varying expertise levels. The simulation results demonstrated that using a 

standard LQR controller, the vehicle’s performance will be degraded as the driver’s delay 

increases. However, applying the proposed controllers, the overall performance of the closed 

loop system remains satisfactory with even large time delays. As uncertainty is added to the 

system, the performance of the uncertain robust controller is not as good as the robust controller 

in fixed conditions.  However, it preserves the system’s stability, while the other controller fails. 

The driver‐in‐the‐loop idea was implemented with both active steering and torque vectoring 

techniques. 
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“There are hardly any other branches of the mathematical sciences in which abstract 

mathematical speculation and concrete physical evidences go so beautifully together and 

complement each other so perfectly.” 

 

   Cornelius Lanczons –The Variational Principles of Mechanics 

     Toronto University Press, 1962 

 

 

Redesign Based on Linear Parameter Varying Modeling 

5.1 Introduction 

Switching phenomena is a very important part of all of vehicle dynamic studies. Changes in 

driving style, longitudinal speed, tire slip‐ratio, the lateral velocity, and rollover index are of the 

most important indices in vehicle dynamic studies that can drastically change the control 

strategy. In all implemented vehicle control modules, there are many conditions for selecting the 

right controller gain based on system status. The whole estimation process is mostly a function 

of vehicle states and there is usually a bank of observers to estimate important signals required 

by the stability module.  

An important varying element in a vehicle is the driver. Obviously, the performance of a driver – 

or the driving style – is not a constant characteristic. Besides that, driving skill is another variable 

qualitative performance. In the previous chapter, it is shown (see Figure 4‐27, Figure 4‐28) that 

different driving characteristics result in very different vehicle performances. An expert driver can 

control the vehicle at its limits while a novice drive would likely not be able to control the car at 

its limits. Therefore, the controller must be redesigned based on each driving style if one wants 

to consider the driver effect in the closed loop. 

Furthermore, the vehicle dynamics will be completely different when the longitudinal slip‐ratio 

increases and passes certain thresholds (function of tire characteristics and road friction 

coefficient). The nonlinear behavior may cause a huge reduction in the tire force generation 

capacity both in the lateral and longitudinal direction, and a completely different gains for 

stability control will be needed to stabilize the vehicle. Basically, without maintaining slip‐ratio in 

an acceptable region, there would not be much room for the stability controller to affect vehicle 

performance. The main reason is that there is no capacity in tires that the controller can use to 
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revise vehicle direction. Figure 5‐1 shows how the longitudinal slip (�) can decrease the tire force 

capacity on various road frictions. 

On the other hand, it is also known that when the vehicle side slip angle or lateral velocity is 

large, the main task of the vehicle controller is to prevent vehicle skidding by reducing the lateral 

velocity. Regardless of the type of actuation structure, this task is directly related to vehicle 

stability (see [17, 63]). Note that having a set of gains for pure yaw tracking in this case will be 

extremely dangerous for vehicle safety as it can drastically increase the lateral velocity. Usually, 

lateral velocity control will be extremely important on low friction roads, and the main remedy 

to the increase in lateral velocity is to first make the vehicle understeer and in extreme cases, to 

drop the engine torque. In contrast, as the lateral velocity decreases and the vehicle is more 

controllable, yaw tracking becomes more important while the controller affects vehicle 

performance directly. In this case, the driver wants a vehicle which is more responsive and tracks 

the requested yaw rate of the driver more accurately. In normal driving, this is the case that 

occurs mostly on dry road and the vehicle performance can be drastically improved through 

better yaw tracking while the side slip maintains in certain bounded regions. 

 

 

 

  

 

 

 

 

 

 

 

 

 Figure 5‐1 Tire Force VS longitudinal slip 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

R
o

ad
 F

ri
ct

io
n

 C
o

ef
fi

ci
en

t 
�

(�
)  

Wheel Slip (�) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Asphalt Wet 

Asphalt Dry 

Icy 

Cobblestone 

�(�) > 0 

�(� ) = 0 



81 

 

5.2 Automatic Gain Scheduling 

All of these effects leads one to think about gain scheduling methods for tuning the system for 

the best possible performance. In some of the problems, the time varying parameter is 

measurable (or can be estimated adequately). In this case, valuable extra information is available 

for the controller and the performance could be vastly improved. The well‐known gain 

scheduling technique is of the most important tools for this problem. The issue here is to obtain 

the optimal and robust gains for the controller to maintain system robust stability and a good 

performance. 

 The traditional approach to solving this problem is to run the simulation or perform the 

experiments for different system operating points and produce either a multi‐dimensional look 

up table or an analytic expression as a function of the parameter. This way, one selects a finite 

number of operating points and calculates the controller gains for each point while switching 

between the results. Although this method is often used in industry, in many cases, there is no 

guarantee for the overall system stability for all possibilities. In some cases, there might be abrupt 

changes in gains and there should also be a mechanism to prevent the controller parameters 

from changing suddenly. 

The more elegant approach to dealing with this problem is designing the controller based on 

the information given on the boundary of the varying parameters and the rate of change of the 

parameters. This way, one can guarantee the stability of the system for the given range and avoid 

non‐smooth behavior in the overall system. For linear systems, this procedure can be easily 

casted in a convex optimization problem and solving a series of LMIs for different operating 

points. 

 LPV analysis is clearly one of the most important control techniques to have significantly affected 

control engineering. Analysis of the LPV systems have been comprehensively reported in many 

papers (see [21, 127] and the reference therein). Among different methods of dealing with LPV 

systems, in this thesis, the Lyapunov‐base method is considered since it can be directly used in 

a relatively simple and well‐established controller design.  

Intuitively and referring to (3.12), the driver model behavior is a function of the vehicle states and 

vehicle operating point parameters such as longitudinal velocity. Note that, in general, there will 

be some other parameters in real driving that are not captured in the simple formula used. 

Consider the model used in chapter 3. Given that, the vehicle model changes based on the 

longitudinal velocity and the friction coefficients, and the driver gains will be changed 

respectively.  
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There are a few approaches to analyzing time varying gains. One of these approaches could be 

to design a controller which is not only robust to the delay of a driver but is also robust to 

changes of the driver model parameters. Based on the formulation in (3.12), the gains �� and �� 

will be time varying and the controller must be robust with respect to the changes in these gains 

as well. Note that the other gains (�� ��)  will also be time varying; however, they affect the 

uncertainty term which is dynamic and not important for the controller design procedure. It is 

easy to find a reasonable range for the parameters offline by solving the LQR problem for 

different cases where the longitudinal velocity and road friction coefficients are variable. 

Obviously, this procedure will relax the assumption dramatically and lead to a better controller 

design. There are many mature and well‐developed robust controller designs for solving a 

control problem with parametric bounded uncertainty (see [15] and the reference thein). The 

main idea behind most of these methods is to consider a nominal value for the uncertain 

parameter and an uncertainty region (usually a convex polytope) in the vicinity of the parameter 

(or uncertain term). Taking advantage of robust control tools, one may find an optimal solution 

for the problem. If the uncertainty region is convex, the design procedure would be much easier 

and would require less computational effort.  

 

Remark: Similar to the LTI controller design, the LMI conditions are not linear with respect to the 

controller parameters but bilinear. To deal with this issue, there are two main approaches, and 

both are described in [9]. One method is to add an extra optimization parameter and eliminate 

the bilinear term and the other one is a change of variable or congruent transformation.  

 

Remark:   Most of the methods in LPV analysis lead to a set of parameter‐dependent matrix 

inequalities. Even in linear cases, the problem requires solving an infinite number of LMIs, which 

needs infinite time. This issue has been one of the main obstacles in LPV analysis during past 

decades. There are effective relaxation methods to convert the infinite dimensional LMIs to a 

finite number of LMIs by imposing some restrictions in the problem ([11]), but using the relaxation 

methods usually leads to an upper bound estimation for the robust control problem. Affine 

parameter dependency ([150]), sum of square ([152]), and polytypic domain for the parameters 

([10]) are two of the most important methods.  
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5.3 LPV Modeling of the Driver‐in‐the‐Loop System 

There are many parameters in the vehicle model that are varying based on different conditions 

of time. From a vehicle handling perspective, the most important time varying parameter is 

longitudinal velocity. Most of the time, the other parameters can be ignored or modeled as the 

system states. Consider again the bicycle model of the vehicle with front steering given in (3.5): 

��� = ���� + ���� = ��� + ��� cos� + ��� sin� 

�� = ����� cos� ����� + ����� sin� + �� 
(5.1)

�� and �� are the nonlinear tire forces that the presented model cannot capture. The non‐linearity 

of a tire is similar to a saturation model that prevents the tire force from growing linearly with 

respect to tire slip angle. There are several techniques proposed for modelling this behavior, 

however, most of them are too complex to directly use in control design. Moreover, all these 

techniques require information about the road friction coefficient, which is not easy to obtain. 

There are some papers presenting the results of controller design robust to road coefficient 

changes, however, they mostly yield a conservative design that is unacceptable for real 

application (see [77]). Another approach is to assume that an estimation of the road friction 

information is available. Then, a nonlinear or LPV controller can be casted respectively. For the 

sake of simplicity, in this chapter, by assuming that the road friction is constant and known.  The 

extension of the model to LPV is possible by assuming the tire cornering stiffness is measurable 

or can be estimated. 

Based on current technology, it is reasonable to assume that there exists a reliable estimation 

technique (using the stock IMU and the wheel speed sensor) or an accurate sensor such as GPS, 

to obtain the longitudinal velocity. It is assumed that the longitudinal velocity is measurable at 

each sampling time; therefore, the model in (3.5) can be represented in standard LPV form with 

known parameters. Similar to the method in Chapter 4, the effect of the driver can be captured 

in the model by considering that the steering wheel angle is a function of the desired future path 

(one or multiple preview point(s) in future) and the current vehicle states. This approach enables 

the controller to extract some information from the driver model rather than considering the 

driver input as a bounded uncertainty.  

 

Remark: The main focus of this chapter is to solve the problem for a general case without any 

restriction on the driver modeling method.  
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Here, it is assumed that the driver input can be represented as a follows: 

�(�) = ������ �(�)� + ���(� �(�))+ Ω (5.2)

where �(�) is the driver delay and similar to (4.5), Ω is the uncertainty. The LPV model of the 

system then can be presented as follows: 

�(�) = �(�)�(�)+ ��(�)��� �(�)� + ����(�)+ �Ω(�) (5.3)

Where 

� =
��

��� + ���

�
��

���� ����

�
��

��

���� ����

�
��

����� + �����

�

 

�� =

��

��

���
��

��

���

��

��

���
��

��

���

, �� = �
0
1

�, � =

��

���

����

���

 

where � = �
�

��
�� �� ���= [�� �� �� ��] is the time varying measurable, bounded, and 

rate‐bounded vector of parameters and ���� ≤ �(�) ≤ ���� is the time varying bounded delay.  

Remark: The driver has a bounded delay and a bounded delay derivative. i.e. |�(�)|< . It is easy 

to find an upper‐bound for all human delay rate. 

 

Referring to (5.3), there are three independent parameters in the modeling, noting that ��  and 
�

��
 are dependent. Since the range of parameters are known and bounded, one can start by 

assuming that there is a convex polytope such as the box 

Ξ [��� , ���]× �
�

���
,

�

���
�× [����� , �����]× [����� , �����]. 

 

This representation induces conservation in analysis by assuming that �� and 
�

��
 vary arbitrarily in 

a box. This representation forces the LMIs to be true in the regions that exists outside the 

parameter domain. One way to analyze these two parameters is by considering a rectangle to 

obtain a convex set. Reducing the conservation, one may consider a triangle as a convex set 

containing the all possible combinations of �� and 
�

��
 . 
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However, there will be a large space behind the curve that cannot occur in reality. Similar to the 

relaxation reported in [160], the conservation is reduced by confining the parameter ranges with 

a parallelogram. The line that connects two bounds of the ��  
�

��
 curve is ℓ� ∶� =

�

������
+

�������

������
 (see Figure 5‐2). 

 

Figure 5‐2 Uncertainty boundaries 

 The lower bound for the region can be defined by the line ℓ� ∶� =
�

������
+

�

� ������
 , which has 

the same slope as ℓ�and is tangential to the curve � =
�

�
 . Given that the distance between ℓ� and 

ℓ� is:  

� =
�� ��� � ����

�

������
 (5.4) 

the midpoints between two lines at the boundaries of the curve ��
�

��
 are: 

 

�� = ���� ,
��� ��� + 2� ������

2������

� 

�� = ���� ,
��� ��� + 2� ������

2������

� 
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The line connecting the following points can cover all of the region in the parallelogram using 

the linear combination ��Φ � + ��Φ � where �� + �� = 1 and 

 

�� =
|� ���|

|��� ���|
, �� =

|� ���|

|��� ���|
 

Φ � = ���� ,
��� ��� + 2� ������

2������
+

�� ��� � ����
�

2������
�(�)� 

Φ � = ���� ,
��� ��� + 2� ������

2������
+

�� ��� � ����
�

2������
�(�)� 

 

where |�(�)|≤ 1.  Also, one can write the equation for the middle line ℓ� as: 

 

� =
�

������
+

�� ��� � ����
�

2������
+ �(�)

�� ��� � ����
�

2������
 (5.5)

 

 

Using this approximation, the equation ((5.3)) can be rewritten as follows: 

 

�(�)= ���(�)+ Δ����(�)+ ��(�)��� �(�)� + ����(�)+ �Ω(�) (5.6)

� = �
��� ����

��� ����

� , Δ��= �0 �(�)
�� ��� � ����

�

2������

0 0

� 

���� = ��

����� �����

�
+ �������� 0.5�� ��� + � ����

�
 

where � = �
�

��
�� ���

�
= [�� �� ��]�. This transformation enables us to eliminate the 

parameter varying elements without imposing large deviations from the original model around 

the operating point. 
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5.4 Control Objective 

The desired yaw rate value can be defined as a function of the driver's steering angle. Without 

loss of accuracy, the desired vehicle lateral velocity is considered to be zero. Thus, the tracking 

error can be written as follows: 

�(�) = �(�) ��(�) (5.7)

where the desired value for lateral velocity is zero and the desired yaw‐rate is given in (4.2).  

 

��(�)= [0 ��]� = [0 �(�, ��)]� (5.8)

Therefore, the corresponding error dynamics is: 

 

�(�)= ���(�)+ Δ����(�)+ ��(�)��� �(�)� + �����(�)+ �Ω�(�) (5.9)

���(�) = ��(�) ��(�)+ ������ 

Ω�(�) = Ω(�)+ �
��+ Δ����

��
,

Δ����

��

� ��(�)+ �
����

��
,

����

��
���(� �(�)) 

 

 

5.5 Torque Distribution Technique 

Considering the bicycle model for the controller design process, the controller calculates the 

required control action to adjust the vehicle performance. The distributor considers the vehicle 

actuator and road traction capability constraints and optimally distributes a certain amount of 

torque to each wheel in a way such that the required torque is produced at CG. Based on the 

predefined configuration, the effect can be adjusting by changing the steering angle, braking, or 

adding more torque at each individual wheel or vehicle track.  

An optimal torque distribution is used in this paper for transferring the torque (force) to the 

vehicle’s tires. Note that in the torque vectoring technique for electric vehicles, the actuators can 

only produce longitudinal forces for each independent wheel. 
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Figure 5‐3 Torque Distribution technique 

Applying the control action, the second order approximation of the vehicle yaw moment is: 

�(� + Δ�)≈ �(�)+ ∇�(�)Δ� +
1

2
∇��(�)Δ�� (5.10)

where ∇�(�) is the gradient of the vehicle yaw moment with respect to the tire forces. Then: 

�(� + Δ�) �� ≈ ��� ∇�(�)Δ�
1

2
∇��(�)Δ�� (5.11)

For the distribution part, a more accurate model for the vehicle yaw moment is considered as 

follows: 

� = �� � ���� sin�� + ��� cos���

���,�

�� � ���� sin�� + ��� cos���

���,�

 

+� � ���� cos�� ��� sin���

���,�

� � ���� cos�� ��� sin���

���,�

 

(5.12)

where � indicates the vehicle’s front left, front right, rear left, rear right corners, and � is the 

wheel base. Taking the derivative of the yaw moment with respect to longitudinal force (the only 

actuator) results in: 

∇� = [�� sin� � cos� �� sin� + � cos� � �] 

∇��(�)= 0 
(5.13)

���� + Δ����
���� + Δ����

���� + Δ����

���� + Δ����

 �    

����    

��    

��    

����    

����    
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The problem is now formulated as a standard optimization problem. Consider the following cost 

function for the torque distribution: 

� =
1

2
�Δ���Δ� + (��� ∇�(�)Δ�)��(��� ∇�(�)Δ�)� (5.14)

where � and �, respectively, are a positive scalar and a positive definite matrix to adjust the 

importance of error tracking and control action. The optimal control action that minimizes � is: 

Δ� = (� + ∇���∇�)��∇������  = [�� �� �� ��]���� (5.15)

Remark:  The control allocation problem can also be cast as a standard linear programming or 

quadratic programming problem corresponding to ℓ�‐ norm, ℓ�‐ norm or ℓ� ‐norm objective. 

Depending on the control objective, the method, including its physical limitations, can also be 

handled using an interior‐point method. A thoroughly explanation about the methods of solving 

mixed optimization programming is presented in [3]. 

Assume that  ℓ� norm is chosen for solving the allocation problem. Based on (5.14), the 

distribution gain is a function of geometric characteristics of the vehicle, tuning parameters of � 

and �,  and the steering angle. Using the optimal torque distributor, the actuator gain can also 

be modeled in vehicle modeling. 

Remark: One can use sequential problem solving to find the exact answer of the problem in two 

steps. First, one can find all of the solutions that minimize the difference between the requested 

moment and the control action moment (error). In the next step, among all of these solutions, a 

set of forces that minimizes control action can be chosen (in a desirable norm space). The process 

of solving this problem is easy to implement, but it does require solving a quadratic programing 

(or linear programing for ℓ�‐ norm) problem twice; whereas, the method used in this chapter 

provides an analytical solution that is easier to implement. 

 

Program 1: 

� min
��∈��

‖��� ∇�(�)Δ�‖ (5.16)

Program 2: 

min
��∈��

‖Δ�‖             ��.             ��� ∇�(�)Δ�‖ = �  (5.17)
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Now, one can write the following equations for the yaw rate dynamics which also includes the 

characteristics of the torque vectoring actuator: 

�� = ���� ���� + ����� (5.18)

                                                      �� = �(�� 2�� ��) 

The parameter‐varying effect of the actuator is now captured in the formulation. Note that the 

value can be calculated using the steering wheel angle signal. 

5.6 Controller Design 

In this section, it is assumed that the parameter varying terms are all accessible to the controller, 

and the synthesis problem of a memory‐less control law is investigated. Considering the effect 

of the driver and the torque vectoring actuator, the goal is to design a memory‐less state 

feedback parameter varying controller that is robust to time varying delay for the following 

system: 

 

� :

�(�) = ���+ Δ�����(�)��(�)+ ����(�)���� �(�)� + ����(�)����(�)+ �(�(�))Ω(�),

�(�)= ��(�),
�(�)= ��(�)

�(�)= 0, ���� ≤ � ≤ 0,
�

 (5.19)

 

where � ∈  �� is the state, ��� ∈  �� is the control input,  Ω� ∈  �� is the exogenous disturbance 

signal assumed to belong to ℓ�� ,  �(�) ∈  �� is the control output to be attenuated, and �(�) =

�
�

��
�� ��� is the parameter varying vector. Assuming that the longitudinal velocity is positive, 

the parameters are continuously differentiable functionx of time and all of the trajectories lie in 

a known compact set. 

Controller design for the LPV systems is usually based on the worst‐case scenario analysis in 

robust control literature. Most of the physical parameters have a certain range of variation with 

a bounded rate of variation. In worst‐case analyses, the controller is designed to work under the 

extreme bounds of the range of the parameter and its corresponding derivative. This makes the 

LPV analysis conservative compared to the cases where some extra information about the 

parameters or derivatives are available. For instance, in Markov chain modeling, the probability 

of switching between the parameters is also used in the design (see [51]). For the case where 

there is no information about the rate of change in parameters, a quadratic stability method is 

normally used, which results in a conservative design for the case where the rates of change of 
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parameters are bounded. To refine the results, the literature suggests to use the parameter 

dependent Lyapunov function for analysis. This way, the analysis directly includes the parameters’ 

rate of change values, which decrease design conservation (see [150]). 

5.6.1 Delay analysis in LPV systems 

Similar to chapter 4, the Lyapunov‐Krasovskii method is used here to deal with the delayed 

system. Using this method, the time‐delay derivative ��(�)� must be less than 1. The assumption 

here is that the human delay derivative at each sampling time does not grow more than one 

unit, which makes sense based on human characteristics and action limitations in a short period 

of time. This assumption ensures that the controller collecting the information in order.  

Assume that a phenomenon happens at time �, and there is a function of time varying delay of 

�(�) in the transmission line, we want to receive the first set of data before the second pack of 

information which will be sent at  � = � + Δ�. Then: 

� + �(�) < � + Δ� + �(� + Δ�) ⇒ Δ� < �(� + Δ�) �(�) ⇒ 1 < �(�) 

On the other hand, we always want to have new information coming from the delay channel. 

This means that � �(�) should always be increasing. If for some cases, it is decreasing, one may 

have the same data at the different time, i.e., �� �(��)= �� �(��). To prevent this, the 

following condition must be satisfied: 

�� �(��)< �� �(��) 

�� �(��)< �� + Δ� �(�� + Δ�) ⇒ �(�� + Δ�) �(��)< Δ� ⇒ �(�) < 1  

 Note that for the other cases, one can use a model transformation to deal with a delay derivative 

larger than one, however, it makes the design more complicated (see [134]). 

For an unforced system with no delay, quadratic stability guarantees the system stability for 

unbounded parameter variation rate, and the necessary condition is: 

�(�)�� + ��(�)< 0, � > 0 

 
(5.20)

The robust stability, on the other hand, can take care of the system with an upper bounded 

parameter variation rate. This extra information decreases conservativeness of the system and 

makes the design process efficient. The necessary and sufficient condition using this method is: 

 

�
��(�)

���
��

�

+ �(�)��(�)+ �(�)�(�)< 0, �(�) > 0 (5.21)
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Lemma (Jensen’s inequality):  

Let � be a be a convex integrable function and � ∶ [�, �] →  �, � <  �, be integrable over its 

domain of definition. Then, the following inequality holds: 

� �� �(�)��
�

�

� ≤ (� �)� ���(�)���
�

�

 

Now, let � be quadratic function of � = ����, then: 

Let � ∈  �� �
�  and � ∶ [�, �] →  �� be an integrable function on its domain. Then, 

�� �(�)��
�

�

�

�

� �� �(�)��
�

�

� ≤ (� �)� �(�)���(�)��
�

�

. 

 

Theorem 5.1: 

Given a lower and upper delay range of 0 ≤  �(�) ≤  ���� and an attenuation factor of � > 0, 

the system (5.19) is asymptotically stable (for Δ��= 0, �(�)= 0), using ���(�) =

�(�)����(�), and Ω�(�) ∈ ℓ��,  if there exists a continuously differentiable positive definite matrix 

function �(�), positive definite matrices � and �, and matrices �, �(�) such that the following 

LMI holds for (�, �)∈  Δ�× ��
  . 

 

��� ��� ��(�)� �(�) 0 � ����� 

��� � 0 ���� 0 0
��� 0 0 0 0

�� 0 0 0
�� 0 0

�(�) �����
�

< 0 (5.22)

��� = � �� 

��� = �(�)+ ��(�)� + ��(�)�(�) 

��� = (1 �)̅� � 

��� = ± �
��(�)

���
�� �(�)+ � �

�

 

|�(�)|≤ � <̅ 1 

|�(�)|≤ � 
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Proof:  

The proof is inspired by theorem 8.1.2 in [21].  Consider the following Lyapunov‐Krasovskii 

function: 

�(��, ��)= �(�)���(�)+ � �(�)���(�)��
�

���(�)

+ ���� � � �(�)���(�)��
�

���

��
�

�����

 

 

Taking the derivative along the system trajectory and using Leibniz rule: 

 

��

��
= �(�)���(�)+ �(�)���(�)+ ��(�)� ±

��(�)

���

���

��
�

�(�)+ �(�)���(�)

�1 �(�)� ���� �(�)�
�

���� �(�)��+ ���� � �(�)���(�)��
�

�����

���� � �(� + �)���(� + �)��
�

�����

= �(�)���(�)+ �(�)���(�)+ ��(�)� ±
��(�)

���

���

��
�

�(�)+ �(�)���(�)

�1 �(�)� ���� (�)�
�

���� (�)��+ ����
� ��(�)���(�)�

���� � �(�)���(�)��
�

������

 

 

Note that |�(�)|= � <̅ 1 and �(�) ≤ ���� 

 

���� � �(�)���(�)��
�

������

≤ ���� � �(�)���(�)��
�

���(�)

 

 

 

 

From Jensen’s inequality: 

���� � �(�)���(�)��
�

���(�)

≤
����

�(�)
�� �(�)��

�

���(�)
�

�

� �� �(�)��
�

���(�)
�

=
����

�(�)
[(�(�) �(� �(�)))��(�(�) �(� �(�)))] 
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��

��
≤  �(�)���(�)+ �(�)���(�)+ ��(�)� ±

��(�)

���

���

��
�

�(�)+ �(�)���(�)

�1 �(�)� ���� (�)�
�

���� (�)��+ ����
� ��(�)���(�)�

����

�(�)
[(�(�) �(� �(�)))��(�(�) �(� �(�)))] 

 

 
�

�(�)
(�(�) �(� �(�)))  always exists (�(�) exist, and 

����

�(�)
≤ 1) 

��

��
≤  �(�)���(�)+ �(�)���(�)+ ��(�)� ±

��(�)

���
��

�

�(�)+ �(�)���(�)

�1 �(̅�)� ���� (�)�
�

���� (�)��+ ����
� ��(�)���(�)�

[(�(�) �(� �(�)))��(�(�) �(� �(�)))] 

 

Now replace the values from the equation (5.19): 

 

= ���(�)+ ���(� �(�))+ �Ω(�)�
�

��(�)+ �(�)�����(�)+ ���(� �(�))+ �Ω(�)�

+ ��(�)� ±
��(�)

���
��

�

�(�)+ �(�)���(�)

(1 �)̅���� �(�)�
�

���� �(�)��

+ ����
� ����(�)+ ���(� �(�))+ �Ω(�)�

�
����(�)+ ���(� �(�))

+ �Ω(�)�� [(�(�) �(� �(�)))��(�(�) �(� �(�)))] 

 

Ψ = [�(�) �(� �(�)) Ω(�)] 

 

��� + �� + �
��(�)

���
��

�

+ � � ��� + � ��

(1 �)� � 0
0

+ ����
� �

��

��
�

��

� �[� �� �]

< 0 

Introducing the ℓ� performance test, one can show that the �� norm of system (5.19)  does not 

exceed a certain level of �. Now it is possible to define the following Hamiltonian and show that 

its derivative is always negative for all non‐zero Ψ : 
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�(�) = �(�) � (��(�)��(�) ����(�)��(�)��
�

�

 

If � < 0 then integration leads to: 

�(�)��(�) < ���(�)��(�) 

Hence: 

�(�) = �(�) ��(�)��(�)+ ����(�)��(�)< 0 

 

 

��� + �� + �
��(�)

���
��

�

+ � � ��� + � ��

(1 �)� � 0
��

+ ����
� �

��

��
�

��

� �[� �� �]

+ ��� �
��

0
0

�[� 0 0]< 0 

Given that: 

����
� �

��

��
�

��

� �[� �� �]+ ��� �
��

0
0

�[� 0 0]

= �

�� �������

0 ������
�

0 ������

� �
��� 0

0 ���
��

� 0 0
������ ������� ������

� 

 

 

��� + �� + � ±
��(�)

���
��

�

+ � � ��� + � �� �� �������

(1 �)� � 0 0 ������
��

�� 0 �������
�� 0

�

< 0 ( ) 

The problem is that this formulation involves cross terms of decision variables that cause 

difficulties in the control design procedure. In the design section, one needs to change the system 

matrix � to � + ��, and this term results in a bilinear matrix inequality that needs more complex 

algorithm to solve (usually based on bisection method). Note that by having these terms, a 

congruence transformation can‐not linearize the problem. 
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One approach is to decouple the crossed terms using the projection‐lemma ([47]) based 

methods (see [162] and [21]). Then, one can rewrite (� = Υ|�����) as: 

 

� + � � + � � < 0 
� = [ � � �� � 0 � 0] , = [� 0 0 0 0 0 0], � = ��  

 

Now using projection lemma, one only need to show that:  

 

�
�� � < 0  

 �
�� � < 0 

 

Where � and � are null space of  and . Following the lemma, it is easy but lengthy process 

to show that the feasibility of (5.22) shows feasibility of Ω�: 

 

 

Ω� =

��� ��� ��(�)� �(�) 0 � ����� 

�(�)+ ��(�)� � 0 ���� 0 0
��� 0 0 0 0

�� 0 0 0
�� 0 0

�(�) �����
�

 

 

Substituting �(�) with �(�)+ ��(�)�(�)and performing congruence transformation with 

��� 0 0 0 0 0
��� 0 0 0 0

��� 0 0 0
� 0 0

��� 0
���

 

 

And letting �(�)= �(�)��� completes the proof. 

Note that since |�|≤ � and it enters linearly in the matrix inequalities, one only needs to check 

the LMI feasibilities at the vertices of this convex hull.  

Given that the uncertainty term can be written as Δ�� = Π �(�) Γ where Π and Γ are constant 

matrices and �(�)��(�)≤  1, one can easily extend the result of theorem 5.1 to consider the effect 

of structured uncertainty Δ�� (�). 
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Theorem 5.2: 

Given the lower and upper delay range of 0 ≤  �(�) ≤  ���� and an attenuation factor of � > 0, 

the system (5.19) is asymptotically stable, using ���(�)= �(�)����(�), and Ω(�) ∈  ℓ��,  if there 

exists a continuously differentiable positive definite matrix function �(�), positive definite 

matrices � and �, and matrices �, �(�) such that the following LMI holds for (�, �)∈  Δ�× ��
 . 

 

Υ� = �
Υ �Π� Γ��

�� 0
��

�< 0 (5.23)

 

where Υ is defined in (5.23), Π� = [0 Π� 0]�, and Γ� = [0 Γ� 0]�. 

Proof:  

Recalling that Δ��= Π�(�)Γ, one can write: 

 

Υ + [0 Π 0 0]��[0 0 Γ� 0 0]+ 

[0 0 ��Γ� 0 0]���[0 Π� 0 0]< 0 

 

(5.24)

 

 

By Lemma 1 in chapter 4, there exists some � > 0 for the inequality (5.24), such that: 

 

Υ + �[0 Π 0 0]�[0 Π� 0 0]+ 

���[0 0 ��Γ� 0 0]���[0 0 Γ� 0 0]< 0 

Using the Schur complement, the inequality (5.23) can be obtained. 
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5.7 Simulation Results 

In this section, the Robust LPV controller is evaluated in different scenarios. The CarSim software 

is integrated with Matlab Simulink to provide an accurate vehicle model (see Figure 5‐4). It is 

also assumed that the driver model is a multi‐point preview path follower where the 

corresponding parameters can be calculated by solving an LQR problem at each sampling time. 

Since this paper addresses only the control part, the parameters are assumed to be accessible 

directly by the controller. Note that the parameters need to be estimated without using the future 

path of the vehicle. One way is to consider a moving average window on the past few seconds 

of the road information and applying an appropriate identification method assuming that the 

desired path is tracked with an acceptable error. Another option is offline calculation of the gains 

using the known preview‐point driver models and scheduling them based on longitudinal 

velocity. 

The vehicle parameters for a slippery road condition in the simulation are reported in Table 2. In 

the simulation, the requested torque transfers to the wheels and is used by an independently 

controllable electric motor. Also, to obtain good results on a slippery road, it is assumed that a 

traction controller prevents a large longitudinal tire slip‐ratio. In cases where there is a conflict 

between the traction controller and lateral controller, the priority is given to the traction 

controller to maintain the tire angular velocity in a certain range. 

During the simulation, it is assumed that the delay �(�) ≤ 215��, �(�) ≤  0.1, the longitudinal 

speed (50�� ≤  �� ≤  90 �� ), ����≤   5
�

�

�
, 2 ≤  �� ≤  4 , 2 ≤  �� ≤  6, ����= ����≤

1.5 and �(̅�) = 215��. Usually, for lower longitudinal speeds, the controller is off and the traction 

control takes care of the vehicle stability. An acceleration‐in‐turn maneuver is an example of an 

exceptional case where accurate longitudinal speed estimation is required. This estimation starts 

from zero and is assumed to be handled by another control patch. 

Solving the semi‐infinite LMIs, the gridding‐method is employed to convert it to a tractable finite‐

dimensional problem where each parameter space is divided into 10 intervals (see [21] for details 

of convergence conditions). It is also assumed that the parameter varying matrices have 

polynomial basis as: �(�) = �� + ��� + ����. Note that optimization is over an open set of 

matrices, so, achieving the minimum in not possible as it is looking for an infimum. The readers 

are referred to [155] for a thorough discussion on solving LMIs numerical problems.  
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Table 2 : Vehicle parameters   

Variable Value Units Description 

�� 38000 

62000 

�

���
 Front‐axle cornering stiffness 

�� 33000 

63000 

�

���
 Rear‐axle cornering stiffness 

� 1.42033 � Front axle to center of mass distance 

� 1.43767 � Rear axle to center of mass distance 

� 2270 �� Vehicle mass 

� 4600 ��. �� Vehicle yaw moment of inertia 

� 20  Hand wheel to road wheel angle 

ratio 

 

 

 

Figure 5‐4: Simulation structure 
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The LMIs are solved using YALMIP interface integrated with MOSEK and the following controller’s 

gains are: 

 

�(���) = �
6.24�� + 4.74�� + 32.8�� + 256
29.8�� 22.7�� + 68.2�� 1244

�, � = 7.3 (5.25)

 

Now considering the tire cornering stiffness of wet road, another set of gains can be obtained as 

follows: 

 

�(��� )= �
32.8�� + 23.9�� 12.5�� + 1177

180�� 131�� + 147�� 6466
�, � = 7.3 (5.26)

 

Note that the trend of changing parameters in controllers makes sense since on dry road 

conditions, the yaw‐tracking gain is much higher than the lateral velocity gains while the lateral 

velocity gain is higher for wet road conditions. Also, one can solve the optimization to minimize 

the attenuation factor which results in ���� = 4.48 and ���� = 6.47. Note that these are present 

in high gain controllers that are not favorable for real applications. 

To show the effectiveness of the controller, it is compared to the LTI controller designed in 

chapter 4.  Note that the simulated driver (preview time = 1.3�, 200�� ≤  � ≤ 350��) can not 

track the wet road path (� =  0.5) at (�� = 80 �� ,) when the controller is off. The vehicle side 

slip angle is shown in  Figure 5‐5, where the proposed controller keeps the vehicle side slip angle 

smaller than the robust LTI controller. The desired path (the blue line in Figure 5‐6) is generated 

by the driver model in CarSim when the preview time is long (1.5 ���), reaction time delay is 

small (0 ≤ �(�)≤ 50��), and the road surface is dry. The fixed controller is tuned by assuming 

that the vehicle velocity and driver model parameters are constant. A simple least square 

algorithm is also used to identify the CarSim driver model parameters in real‐time. Then, the 

identified parameters and the required vehicle states are fed to the proposed controller. As it is 

shown in  Figure 5‐5 and Figure 5‐6, the LPV version outperforms the LTI controller. 
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 Figure 5‐5 Vehicle Slip angle ‐ Wet surface 

 

  

Figure 5‐6 Path Following performance comparison 
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As expected, the performance of the controllers is directly related to the amount of information 

that is available to them. The LPV control method uses extra information about the changes in 

driving style and the longitudinal speed and adapts its action correspondingly, however, the fixed 

robust controller cannot catch up to the large deviation from the nominal design point. Also, the 

fixed controller makes the vehicle performance more conservative and the vehicle tends to show 

more understeer behavior. 

5.8 Summary 

A new formulation for the vehicle lateral control problem integrated with driver model was 

presented. The modeling allows the controller to lessen its conservatory behavior by extracting 

useful information from the driver’s steering wheel input. As the driver model’s parameters are 

generally time varying, the closed loop model is presented using an LPV framework. Considering 

the delay in a driver's action, a robust LPV controller is then designed for the delayed uncertain 

LPV problem. The same idea can be extended to the case where the parameter varying torque 

distributor is also included in the controller design process. 

First, one or more scheduling variables need to be defined in order to parameterize the operating 

space. Following that, a family of parametric systems can be modeled, and finally, a parametric 

controller, guaranteeing the desired control objectives in every operating point, needs to be 

designed. The transient behavior between operating points should also be ensured and deemed 

acceptable. The LPV systems are finite‐dimensional time‐varying with fixed state‐space structure 

of some vector of varying, but measurable at any instant, parameters. If the nonlinear tire model 

vehicle can be estimated accurately with an LPV model, then the �� ��� method can be 

adapted to address the nonlinear controller design problem. It is also expected that using the 

�� ��� method can be a good alternative for the proposed delayed uncertain robust 

controller.  
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System Dynamics: Things today are the things of yesterday plus any changes. The changes are 

the result of the things of yesterday. Now extend this to tomorrow. 

“William S. Bonnell” 

 

Performance Analysis using Stochastic Driver Model 

 

6.1 Introduction 

In the previous chapter, it is shown that, if the controller could recognize a driving‐style, it could 

adjust itself to serve the driver’s request better. To accomplish this, the policy maker algorithm 

would need to be able to determine which of the human driver’s states is currently active and to 

predict transitions between driving style states. 

There are many different types of systems that might show sudden changes in their dynamic 

behavior. The economy system, an aerospace plant, a fault in the system, and human behavior 

may change their operating points abruptly. More generally, the parameter‐dependent dynamic 

system analysis inherently has the potential to cover more real world applications. Remember 

that, the deterministic approach to dealing with the mode‐dependent system was studied in 

Chapter 5 where an LPV controller was designed to take care of all of parameter variations in the 

system. One approach to modeling this type of behavior is using Markov Jump Linear System 

(MJLS). Many of the linear system analysis tools have been developed and extended for different 

practical notions in this class of stochastic hybrid systems (see [16, 30, 35] for more details).  

The main aim in this chapter is to further analyze the designed parameter dependence 

introduced in the previous chapter. The LPV robust controller designed in Chapter 5 guarantees 

system stability and the disturbance rejection level of �. It is shown that taking the driver model 

gains as measurable time‐varying parameters will facilitate the design process. However, it is 

known that there is a level of conservation coming from the inequalities in the controller design. 

It is also worth mentioning that since in an LPV design, there is no information about the 

switching between different modes of the system (driving style and longitudinal speed), the 

controller should be designed to perform robustly with respect to any changes in the parameters. 

In real situations, extreme abrupt changes are very rare when compared to normal driving 

conditions.  
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By adding extra information (probability of switching) about the system, the aim is to obtain a 

better (lower) estimation on the disturbance attenuation level of the closed loop LPV system. 

Adding another piece of information about the way that the parameters are changing should 

improve the estimation of the uncertainty attenuation level that is obtained using the robust LPV 

method. The goal is to consider the driver as a system with several interconnected subsystems 

with their own particular responses. Assuming that the transition probability of switching 

between this bank of standard simple controllers is available – which can be identified offline or 

based on an on‐line learning rule –, one can reformulate the control problem to one of the 

standard forms of robust controller design for jump linear systems. One approach to modeling 

the transition probability is to consider a Markov network between the different model states. As 

the vehicle states involved in the modeling are measurable or can be adequately estimated, the 

driver’s current state can be determined. Based on the transition probability relation, the next 

step can be predicted. The controller can then configure itself to achieve the best possible 

performance. Intuitively, this method suggests to break a driver’s behavior into finite sets and a 

probability will be assigned for transmission from each set. It is worth mentioning that there has 

recently been an increasing interest in modeling driving styles using stochastic and Markov chain 

modeling (see [22, 23, 85] and the references therein).  

The main advantage of using this method over the LPV method is that the transition between 

the sets are more realistic in this model. Although one can argue about the definition of the 

transition rate in an LPV analysis – the rate of changes of parameters i.e. � ‐, in an LPV approach, 

only the bounds of this change of rate will be considered in analysis. Here, a nominal value for 

the rate of changes in parameters is accessible, and that will help us improve the disturbance 

rejection capability of the controller.  

Observing this capability, the closed loop model of the system using the designed LPV controller 

(5.19), the whole system is reformulated given that extra information on driving style is available. 

 Remark: Although this technique for modeling, analysis, and control brings a certain set of 

versatility by extracting more information about the system uncertainties, finding the probability 

transition matrix is not an easy task in practical application. To make the abstract notion more 

practical, many researchers extended the analysis to cases where the transition probability matrix 

is not known or partially known with incomplete information (see [36, 161]).  A natural direct 

approach for stability analysis will be considering a fixed mode independent Lyapunov function 

for each operating point to guarantee stability by imposing some conservation to the analysis. 

The alternative approach is using a mode‐dependent Lyapunov function to take advantage of 

the extra information embedded in the transition probability matrix of the system.  



105 

 

Recently, both �� and �� control of MJLS are addressed using a mode‐dependent Lyapunov 

function (see [51, 106, 107]).  

 

6.2 Driver Identification 

Usually, abrupt changes are undesirable in a control process. It is well‐known that a smooth 

analysis in control theory is always easier to solve and implement compared to a non‐smooth 

analysis. Abrupt changes could be a result of changes in environment, a failure, or any changes 

in system that forces the system to work in another operating point. A human driver is inherently 

a very complex stochastic model who may change their driving style at any instance resulting in 

changes of the model operation point. For over 50 years, there have been a number of attempts 

carve out a logical framework for modeling this type of systems.  

The identification process should ideally be able to send a message to a semi‐autonomous 

controller when it needs to kick‐in and take over vehicle control. It may provide the driver with a 

hint signal or activate an alarm to signal that a hazardous situation has been detected. In this 

approach, the control system tries to predict the car’s trajectory based on estimations of the 

driver behavior and actively take control of the car if the probability of threat is higher than a 

given threshold. A better driver model and a more accurate parameter identification technique 

can reduce the rate of intervention of the autonomous controller and improve the overall driving 

experience. 

 

6.2.1 Current Approach for Driver Identification 

There are many different driver identification methods in the literature. The main idea behind 

most of them is to use the desired path and vehicle states of the vehicle as a reference, and then, 

by calculating the difference between the driver action, the driver model parameters can be 

estimated or identified.  

Therefore, the most important assumption in all available methods is the availability of the 

desired path of the vehicle. Note that there is a clear difference between a driver’s desired path 

and the desired path provided by the path planning block. One of the main questions using the 

conventional method is to really distinguish between two desired paths. 
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6.2.2 Proposed Method for Driver Parameter Identification  

The bedrock of this thesis is to avoid using the desired path information for control purposes. 

Hence, here a slightly less accurate method is proposed that does not use preview (future) 

information. We propose to use a moving average window in the past and monitor the driver 

and vehicle behavior constantly (see Figure 6‐1). This way, one can always have a lot of extremely 

important information to identify the driver. The focus is to use only available and 

commercialized sensors on a regular vehicle and prevent using unconventional sensors to 

determine the desired path. 

The main assumption here is that the identification is always running on a normal condition.  A 

normal condition is defined to be the situation where the driver tracks his/her desired path 

carefully. As the desired path tracking error is not available, it is assumed that this error is small. 

Instead the vehicle states that are measurable and indirectly indicate the effect of the desired 

path are used. Thus, for the rest of this chapter a general model for identifying driver behavior 

is considered. 

 

 

Figure 6‐1: Driver identification moving window 

 

The identification is always running in each sampling time until the algorithm detects that the 

driving is abnormal. Defining the index for this condition will be related to a threshold for the 

vehicle yaw‐rate and the lateral velocity. Clearly, large values for lateral velocity (or side slip angle) 

No need to have the 
driver’s future 
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are indices for situations that are not normal. By passing this treshhold, the identification 

algorithm will be stopped and held until the driving condition returns to normal. 

6.3 Identification Model 

The focus in the identification method here is only to show the potential of the proposed idea, 

so  a simple but general model is used to mimic the driver behavior. The regressor vector for the 

identification purpose must be chosen such that all of the signals are available based on current 

commercialized technology. On the other hand, the identification process should imitate real 

situations. To address these requirements, the following model is assumed for the identification 

process.  

� = ���� + ��� + ��� + ���� + ���� + ���� + � ��Δ��

�

���

 (6.1)

The proposed model includes the most important element of steering in a normal condition. A 

driver always considers the vehicle states and the desired road to steer the vehicle. It is known 

that a human has perfect feeling about acceleration ���, ��� in both directions. The longitudinal 

and lateral velocity ���, ��� are clearly part of any driver decision for turning the steering wheel.  

Steering a vehicle is always a function of vehicle heading (�) and the corresponding rate (�). It 

is also generally accepted that each driver uses a certain number of future preview points. As the 

identification is running in a normal condition, it is assumed that the vehicle position is the same 

as the driver’s desired path. Using a GPS, all of the information on the lateral position can be 

recorded. Thus the last term in the identification model is the preview information Δ�� that has 

already been recorded because the identification is running in a window of preview points in the 

past.  

Assume that the sampling rate is Δ�, the moving window time is �� , and the driver preview time 

is �� second. The identification is then performing on the last ��:=
��

��
 samples. At each sampling 

time, the following problem needs to be solved: 

min‖�� �‖ (6.2) 

where � ∈ ���� ��� �×�� ��, the steering wheel angle is � ∈ ��� , ‖. ‖ is any appropriate norm, and 

the regressor vector is  � = ��� �� �� �� �� �� �� ��� ���. 

By logging all of this information, there are many handy approaches to identifying the 

parameters. We used a simple least‐square method to minimize the ℓ� norm of error over the 

moving window. 
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Remark: Note that for the sake of simplicity, dynamic driver behavior is considered here. One 

can improve the current method by adding dynamic constraints to the identification methods. 

6.4 Driver Parameter Identification Using Experimental Data 

In order to use the proposed method to identify the driver, a series of test experimental data 

that are produced at the University of Waterloo (UW) is used. The Mechatronics Vehicle Systems 

Laboratory at UW contains hundreds of vehicle handling test data in different situations. The 

tests are mostly double lane changes while the vehicle has different speeds and the surface 

friction error is also varying from 0.25 to 0.95. The data which is used in the rest of this chapter 

was collected from the Autobox and GPS module mounted on a Chevrolet Equinox (see Figure 

6‐2). The mounted stock IMU sensor provides the required measurements for the yaw‐rate, 

longitudinal and lateral acceleration. Longitudinal and lateral velocity are estimated with 

acceptable accuracy. The GPS module provides information on vehicle position. The vehicle 

heading angle (�) can also be calculated directly from the GPS data. The steering wheel angle 

is also accessible using the stock steering sensor. 

 

 

 

 

 

 

 

 

 

 

The information from 120 tests have been collected and a log of about 40 minutes of driving is 

collected. Two male drivers drove the car during these tests. Most of the tests have been for 

stability controller tuning, and they cover a wide range of situations from a normal double lane 

change driving on dry asphalt to a harsh double lane changes on icy road. There are some cases 

of double lane changes on wet surfaces.  

Note that there are a few cases where the vehicle became unstable and the driver lost control 

on an icy road while performing a harsh maneuver. We will see that these tests usually result in 

Figure 6‐2 Experimental data for driver identification 
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a different range of parameters and should be removed from the analysis. The main reason is 

that the normal driving assumption (small path tracking error) is not valid anymore. 

6.4.1 Experimental Data 

 Figure 6‐3 shows the lateral position versus the longitudinal displacement of the vehicle for all 

of the experimental tests. Clearly, there are many different cases that produce enough excitation 

for testing the algorithm.  

 

Figure 6‐3 Vehicle Position (from GPS) 

Following that, the driver steering wheel angle is shown in Figure 6‐4. 

Vehicle longitudinal velocity, yaw‐ rate, and lateral velocity are depicted in Figure 6‐5, Figure 6‐6, 

and Figure 6‐7.  

 

 
Figure 6‐4 Driver Steering wheel angle 
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Figure 6‐5 Vehicle Longitudinal Velocity 

 

Figure 6‐6 Vehicle Yaw‐rate  
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Figure 6‐7 Vehicle Lateral Velocity 

 

Form the above figures, one can conclude that there is enough excitation for the algorithm to 

identify the parameters for a wide range of driving conditions. More specifically, the lateral 

velocity shows that the dataset is rich and includes the complete spectrum mild to very harsh 

maneuvers.  

6.4.2 Parameter Clustering 

Given that the focus is in finding different modes of a driving style; a clustering method is needed 

to classify the results. Based on the experimental results, the data is clustered when the driver 

preview point times were assumed to be 1.5 second. Also, it is assumed that the moving window 

is on the past 15 seconds. The proposed algorithm is run using the data gathered from driving 

of two different drivers in different situations. For the sake of simplicity, the identification is 

performed with both 1 Hz and 0.2 Hz of identification frequency.  

First, the driver model parameters are identified every 5 seconds. The idea is to look at a 15 

seconds of logged data and run the identification method to obtain an appropriate set of gain. 

The result for �� (the lateral velocity gain) is shown in Figure 6‐8. The right side shows the 

normalized frequency of occurance of ��. 
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Figure 6‐8 The frequency of � � gain 

Based on the given experimental data set, there are some extreme cases where the identification 

process should be stopped. If the process is offline, these values should be treated as outliers. 

The threshold can be defined based on each application, and here, a bound for the lateral 

velocity (side slip angle) is considered and the the outliers are removed based on this simple rule. 

In one process, an outlier is detected. The lateral velocity in this test is very high and the 

logitudinal velocity shows negative values which means that the car was spinning (see Figure 6‐9 

Figure 6‐10) 

 

Figure 6‐9 �� and �� for a very harsh test 
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Figure 6‐10 yaw‐rate and steering wheel of a very harsh test 

After removing the detected unnormal driving condition, the following histogram �� is obtained 

(see Figure 6‐11).  

 

Figure 6‐11 Driver parameter identification �� 

Following the same method, the other driver parameters for the driver model are estimated as 

it is shown in Figure 6‐12. 
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Figure 6‐12 Driver identification parameters 

In order to validate the identified parameters, a part of the data is randomly selected and the 

steering wheel that is based on the identified model is compared to the actual recorded steering 

wheel. Figure 6‐13 shows the data fit and how it corresponds to the mean square error for four 

randomly selected data. As shown, the algorithm closely tracks the human driver’s steering wheel. 
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Figure 6‐13 Data fitting of experimental results with identified model (each 5 second) 

In order to investigate the effect of identification frequency, the identification is ran every second 

and compared with the previous results. This way, the data set that is used for each parameter 

will be 5 times bigger that the previous one. Then, the clustering is performed on the new set of 

data The normalized root mean square of fitting at each section is also calculated and shown in 

Figure 6‐13.  

Normalized root mean square error (NRMSE )= 1
‖X��� ��‖

‖���� ����������‖
 (6.3)

where ���� is the reference data and �� is the identified vector. The results show a negligible 

difference which supports the idea that the proposed algorithm is promising. Note that using 

this method, the 2200 sets of gains (�� ��) is identified. Some of the most important gains are 

shown in Figure 6‐14. It can be observed that compared to the previous case – where the 

identification frequency was five time lower – the results are almost identical. The other 

observation is that the distribution of the parameters is very close to a normal distribution. 
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Figure 6‐14 Parameter Identification at each 1 second 

Figure 6‐15 compares the experimental results with four randomly selected parts of the data. The 

figure depicted good results in terms of estimating the steering wheel angle of a driver. 

 

 

Figure 6‐15 Data fitting of experimental results with identified model (each 1 second) 

In order to analyze the effectiveness of the algorithm, the mean square error of the steering 

wheel estimation (for both cases of 1 second and 5 second identification) is presented in Figure 

6‐16. It can be seen that the distribution is similar to a one sided normal distribution. Based on 

this approximation, the mean of identification error is under 30 degrees on the steering wheel 

(Maximum 11% error) with a deviation of about 25 degree. These values are completely negligible 

compared to actual steering wheel. 

S
te

e
ri
n
g
 W

h
e
e
l [

ra
d
]

S
te

e
ri
n
g
 W

h
e
e
l [

ra
d
]



117 

 

 

Figure 6‐16 Mean Square Error of the identification process 

 

Remark: The identification method proposed does not require any additional sensor or future 

information. This makes it immediately applicable even on most conventional vehicles. Besides 

providing important parameters to tune the controller better, one can use this extra information 

to recognize if the driving condition is normal. Another application is to personalize an 

autonomous driving vehicle to revise the control actions such that the driver does not feel the 

switching between him/her self and the automobile decision maker. There is still lots of room for 

improving the basic version. The state of ego vehicles, the relative distance and velocity from 

other moving objects and many more can be of a driver’s interest when making the decision. 

 

6.5 Finding Markov Probability Transition Matrix 

There are several gains for the described driver model in (6.1). Based on the offline test on the 

experimental results, several number of gain sets are obtained (see (6.4)). For example, in the 1 

sec identification case, 2200 sets of gain are obtained. The focus here is to import the driver 

characteristics into the system modeling and improve the controller design and the worst‐case 

estimation of disturbance rejection. Sticking to the idea presented in Chapter 4, the only gains 

that can be easily augmented with the vehicle handling dynamics, are �� and ��. Clearly, there is 

a pool of gain‐sets (2200 based on the experimental data set) for each of these gains. According 

to the clustering in the previous section, one can define a finite number of modes for each gain. 

The probability of switching between different modes can then be calculated according to the 
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frequency of jumping from mode � to mode �. For �� and �� the following bins (6.4) for clustering 

the gains are defined: 

 

∞ < �� < 0
0 < �� < 2
2 < �� < 4
4 < �� < 6
6 < �� < ∞

,    

∞ < �� < 0
0 < �� < 2
2 < �� < 4
4 < �� < 6
6 < �� < ∞

 (6.4)

The transition probability matrix for the gains can be calculated as follows: 

Π� =

0.52 0.28 0.12 0.04 0.04
0.07 0.73 0.17 0.02 0.01
0.04 0.27 0.6 0.08 0.008
0.03 0.21 0.18 0.41 0.18
0.15 0.15 0.1 0.15 0.45

 
(6.5)

 

Π� =

0.43 0.35 0.13 0.07 0.03
0.085 0.53 0.31 0.05 0.026
0.072 0.22 0.54 0.15 0.028
0.03 0.15 0.24 0.35 0.24
0.14 0.015 0.11 0.21 0.65

 (6.6) 

 

The transition probability matrices in (6.5) and (6.6) defines the probability of jump between 

different modes in each set of gain. It is assumed that there are five modes for each sets of gains. 

Note that the probability matrix for ��is consistent with the results from the histogram. It can be 

seen that the highest probability of �� is remaining at mode 2. Referring to the histogram in 

Figure 6‐11, the highest frequency lies in the section, 0 ≤ �� ≤ 2.  

 However, in order to make the transition Markov jump system ready for analysis, one needs to 

have the transition probability matrix of switching between each pair of ����, ���� to �����, ����� 

where ({�, ��}, {�, �′})∈ ��×�. The same approach can be used to find the probability matrix as: 

 

Π� = Π� Π� ∈ ���×�� (6.7)

where  is the kronecker product. 
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This shows that there are 50 elements in two transition probability matrices of Π� and Π� that 

should be identified to obtain Π�. The elements of Π� and Π� in (6.5) and (6.6) are identified using 

2200 pairs of gains for �� and ��; however, the result can be different if the identification process 

is performed over smaller sets of gains. The variations of each element of the total transition 

matrix Π� is studied using 100 different sets of data with a random number of gains (between 150 

to 2200) in each set of �� and ��. The relative standard deviation (coefficient of variation (c.v)) is 

calculated for each of the elements, which shows relatively small deviation among all of elements. 

Figure 6‐17 shows the standard deviation (�), median, and �. � =
�

�
 of the results of four different 

elements of Π� where �  is the mean value. This shows that the number of gains does not have 

significant effect on the value of the identified elements. 

 

Figure 6‐17: Coefficient of variation for four elements of transition probability matrix of � � 

Remark: The transition probability that is obtained in (6.5) and (6.6) is for discrete jump systems. 

In order to make it applicable in continuous time framework, it is assumed that each mode can 

spend a continuous amount of time in any state. This way a driver moves from each state to the 

another in accordance with a (discrete‐time) Markov chain. However, the amount of time that 

he/she spends in each state is exponentially distributed (such as Poisson process).  For more 

information on discrete to continuous time transformation see example 5.6.3 in [73].  
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6.6 Stochastic Analysis of Linear Parameter Varying Closed Loop System 

The main aim here is to further analyze the LPV controller designed in Chapter 5 (see (5.23)). The 

LPV controller is designed to schedule the controller based on the driver parameters (driving 

style) and the longitudinal speed. In this section, the aim is to add extra information about the 

probability of the transition between different modes of the driver gains and improve the 

disturbance rejection level estimation of the controller.  

To address this problem, the Markov Jump Linear System provides versatile tools in the realm of 

both analysis and control.   

Definition: 

Let (Ω, �, �) be a probability space and {��, � ≥ 0} be a stochastic process taking values in � =

{1,2, , �}. Then, {��, � ≥ 0} is said to be a Markov process with state space � if: 

�(�(�) = �|�(� ):� ≤ �)= ���(�) = �|�(�)� 

holds for all 0 ≤ � ≤ � and � ∈ �.  

    The stability of linear switching control is an interesting field in control theory. Abrupt changes 

and switching in real world applications are the most important motivators of many scientists 

who are working on MJLS. There are at least two major approaches to dealing with this branch 

of systems. One is to consider a family of Lyapunov functions for analyzing the minimum dwell 

time. This way there is no need to have uniformly decreasing Lyapunov functions in all of 

switching times. The other method is analyzing state‐dependent switching rules. In most of the 

versions of this method, the Lyapunov function at each mode needs to be increasing at all times. 

The famous Lyapunov‐Metzler inequality is the most important stability analysis of this type of 

switching systems. It can be shown that the mean‐square stability of MJLS is a special case of the 

general stability proof of mode‐dependent switching systems that use the Metzler inequality, 

which can also be presented via LMIs.  

Remark: Although, linear Markov jump systems might be similar to a natural extension of ordinary 

linear systems, this class of system can show very different behavior. As an example, just by 

looking at the stability (or instability) of the modes or operating points of a MJLS, one cannot 

guarantee stability of the whole system. There are many interesting examples of unstable systems 

that have stable linear modes or even systems with unstable modes that are MSS (see [35, 70]). 

The stability of a MJLS depends on a balance between stability of each system mode and the 

transition matrix. In other words, the stability of each operation mode is neither a necessary nor 

a sufficient condition for the mean‐square stability of the system. Mean‐square stability depends 
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on a balance between the transition probability of the Markov chain and the operation modes. 

This illustrate peculiar properties of MJLS systems. 

Now, consider the unforced continuous‐time Markov Jump Linear System (MJLS) of   

 

�(�)= ���(�)��(�), �(�), � ≥ 0 (6.8)

 

where �(�) taking values in the space � with infinitesimal generator of: 

 

Pr{�(� + )= �|�(�) = �}= �

���( ) + �( ) � ≠ �

1 + ���( ) + �( ) � = �

, ���( )= ∑ ���( )�
��� ,���  (6.9)

 

where ��� > 0,  > 0, and lim
�→ �

�
�(�)

�
� = 0. 

 

Note that the jump rate ��� that is considered here is constant. There are cases where the jump 

could be dependent on the system states or even on the control action input. 

 

Definition:  

For system (6.8), the equilibrium point 0 is: 

(i) Asymptotically mean square stable, if for any initial condition and initial distribution 

for �(�), lim
�→ �

� �����, ��, �(�)��
�

�= 0 

(ii) Exponentially mean square stable, if for any initial condition and initial distribution for 

�(�), there exist constants �, � > 0 such that � �����, ��, �(�)��
�

�≤ �‖��‖�����  

(iii) Stochastically stable, if for any initial condition and initial distribution 

�(�), ∫ � �����, ��, �(�)��
�

���
� 

�
≤ +∞ 

(iv) Almost surely (asymptotically) stable, if for any initial condition and initial distribution 

�(�), � �lim
�→ �

� �����, ��, �(�)��
�

�= 0�= 1. 

Referring to ([40])  it is known that (i), (ii), and (iii) are equivalent and imply (iv). 

 

For more analysis on the markov jump linear system see appendix. 
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6.7 Extension to Retarded Delay Systems 

Consider the following MJLS with time‐varying bounded delay: 

 

�(�)= ���(�)��(�)+ ����(�)���� �(�)� + ���(�)��(�)

�(�) = ���(�)��(�)

�(�) = ����(�)�

�(�) = 0, ∀� ∈ [ 2��, 0]

 

 

(6.10)

where �(�) is the state, �(�) ∈ �� ∈ ℓ�� is the bounded disturbance input, and �(�) ∈ �� and 

�(�) ∈ �� are measured and controlled outputs, respectively. The delay has an upper bound of 

�� and an upper rate bound of �. It is assumed that the process {�(�)} is a Markov process with 

probability matrix of Π ����� defined in (6.9).  

6.7.1 Stability of Stochastic Retarded System 

Lemma 1 ([62]): improvement on Jensen inequality 

Assume that � ∈ ��×�, scalars � < �, and a function � ∈ ��([�, �, ��]) are given. The following 

inequality always holds: 

1

� �
��

��

��
�

�

�
3� 0
0 5�

��
��

��
�+ �� �(�)��

�

�

�

�

� �� �(�)��
�

�

��

≤ � ��(�)��(�)��
�

�

 

(6.11)
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Theorem 6.1: 

For given delay bounds of �(�) ∈ [ � �], the system in (6.10) is stochastically stable, if there 

exists matrix � ∈ ���×��, and symmetric positive definite matrices ��, ��, �� ∈ ��×�, �� ∈ ���×�� 

and mode dependent matrices of ���, ���, ��� ∈ ��×� such that the following set of LMIs hold 

for all � ∈ �: 

 

Η�(h) Η� Η�
�Φ Η� < 0 (6.12)

� ������

�

���

≤ ��, � ������

�

���

≤ ��, � ������

�

���

≤
1

�
�� (6.13)

Φ = �
��� �

���

� ≥ 0 (6.14)

where 

Η� = �( )����� + ��
����( )+ �( )� �� �����

�

���

� �( )

+ [��
� ��

�]�
��� + ��� + ���� 0

0 ���
�[��

� ��
�]�

[��
� ��

�]�
��� 0
0 ���

�[��
� ��

�]�

+ (��� + ����)� � ���� + ���� +
1

2 ��
� �� +

1

2 �
����(���

+ ����) 

(6.15)

 

Η� = ��
��������� + 2��

������ + 4��
������ + ��

������ 

Η� = �
���

���
�, ��� = �

�� 0
0 ��

�(� ∈ {1 2}), ���� = ���� {���, 3���, 5���}, ���

= ���� {��, 3��, 5��} 

� = �
1 1 0 0
1 1 2 0
1 1 6 6

�� 

�( )=

��

���

( �)�� + ( � )��

1

2 �
���

, �� = �

��� + ����

�� ��

�� ��

�(�� ��)

� 
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��(�)= ��(�), �(� �), ��� (�)�, �(� �),
1

�
� �(�)��,

�

���

 

1

(�) �
� �(�)��

���

��(�)

,
1

� (�)
� �(�)��

��(�)

���

,
2

�
� � � �(�)��

�

���

��,
�

���

 

2

( (�) �)�
� � �(�)��

�

���

��
���

��(�)

,
2

� � (�)�
� � � �(�)��

�

���

��,     ��(�)
��(�)

���

�

�

 

�� = ���{��, ��, ��, ��}, �� = ���{��, ��, ��, ��}, �� = ���{��, ��, ��, ���},  

�� = ���{�� ��, �� ��}   

�� = ���{�� + 2�� 3��, �� + 2�� 3���}, �� = ���{�� ��, �� 2�� + 3��} 

 

 

Proof: 

As shown in ([19]), one can show that the {(��, ��), � > �}̅ is a Markov process starting 

from(�(. ), ��). Let’s define a set of Lyapunov function candidates as follows: 

�(��, ��, �) = � ��(��, ��, �)

�

���

 

��(��, ��, �) = ����(��)��, ��(��, ��, �), ��(��, ��, �) = � ��(�)��(��)�(�)��
�

����

, 

��(��, ��, �) = � ��(�)��(��)�(�)
����

����

�� 

��(��, ��, �) = � � � ��(�)��(��)�(�)
�

���

����
�

���

,  

��(��, ��, �) = �� � � ��(�)���(�)
�

���

����
���

���

 

��(��, ��, �) = � � � ��(�)���(�)
�

���

������
���

�

���

���

, 

��(��, ��, �) = � � �(�)����(�)��
�

���

��
�

���

 

��(��, ��, �) = � � �(�)����(�)��
�

���

��
���

���

, 

��(��, ��, �) = � � � �(�)����(�)��
�

���

�

�

����
�

���
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��(�) = ���(�) � ��(�)��
�

���

� ��(�)��
���

���

� � ��(�)��
�

���

��
�

���

  �

�

= �( )�� 

 

Assuming that  is the weak infinitesimal generator of the defined Markov chain, then one has 

the following for ∀�� = �, � ∈ �: 

 

��(��, ��, �) = ���ζ�(�)�
�

��(��)��( )��(�)� + ��( )��(�)�
�

��(��)(����(�))

+ ��( )��(�)�
�

�� �����

�

���

� ��( )��(�)� 

(6.16)

 

��(��, ��, �) = ��(�)���(��)�(�) ��(� �)���(��)�(� �)

+ � ��(�)�� ������

�

���

� �(�)��
�

����

 

 

��(��, ��, �) = ��(� �)���(��)�(� �) ��(� �)���(��)�(� �)

+ � ��(�)�� ������

�

���

� �(�)��
����

����

 

 

��(��, ��, �) = � � � ��(�)���(��)�(�)
�

����

�� + ����(�)���(��)�(�)�

+ � � ��(�)�� ������

�

���

� (��)�(�)
�

���

����
�

���

� 

 

��(��, ��, �) = �� � � ��(�)����(�)
����

����

�� + �����(�)���(�)��  

��(��, ��, �) =
1

2 ��
� ��(�)��(�) � � ��(�)���(�)��

����

���

��
���

���

 

��(��, ��, �) = ��(�)����(�) � �(�)����(�)��
�

����

 

��(��, ��, �)= ���(�)����(�) � �(�)����(�)��
����

����
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��(��, ��, �) =
1

2 �
��(�)����(�) �� � �(�)����(�)

�

���

����
�

���

� 

using (6.15) and (6.16), one can write: 

 

�(��, ��, �)≤ ��
�(�)Η��(�) � � �(�)�����(�)��

�

���

�� � ��(�)���(�)
����

����

�� 

� � ��(�)���(�)��
����

���

��
���

���

� � �(�)����(�)
�

���

����
�

���

 

 

using lemma 1, for ∫ �(�)�����(�)��
�

���
, one can write: 

 

� � ��(�)��(�)��
�

����

≤ ���(�) �(� �)�
�

���(�) �(� �)� + �
��

��
�

�

�
3� 0
0 5�

��
��

��
�� 

where: 

 

�� = �(�)+ �(� �)
2

�
� �(�)

�

����

�� 

�� = (�) �(� �)
6

�
� �(�)

�

����

��
12

�
� � � �(�)

����

�

�

����

���� 

then,  

 

 

� � ��(�)����(�)��
�

����

≤ ��
�(�)��������� 

��(�)= ����(�) 

 

This procedure can be applied to the other term as well.  

�� � ��(�)���(�)��
����

����

≤ �� (�)��
����������� 
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On the other hand, it can be shown that: 

� � �(�)����(�)
�

���

����
�

���

≤
2

�
� � ��(�) � �(�)��

�

����

�

�

�� � ��(�) � �(�)��
�

����

�
4

��
� ����� 

 

 

where  

� = 2 � ��(�) � �(�)��
�

����

�
6

��
�

1

2 �
��(�) � � �(�)

�

���

����
�

���

� 

 

And the same procedure for the other term taking into account that: 
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Therefore, 
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These conditions directly result in: 

 

�(��, ��, ��, �) ≤ ��
�(�)Ω( )��(�)≤ min

�∈�
������Ω( )(�)����

�(�)��(�) 

 

The negative definiteness of Ω( ) can be easily relaxed by Ω( �)< 0 and Ω( �)< 0. Using the 

Schur complement, one can now show that �(��, ��, ��, �) ≤ ����(�)��(�) ≤ ���(�)�(�). 

Observe that the Dynkin’s formula results in: 

 

���(��, ��, ��, �)� � ������
, ���

, ���
, ��� ≤ �� �� �(�)��(�)��

�

��

���� � ≥ � 
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� �� �(�)��(�)��
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��

� ≤
1

�
� ������

, ���
, ���

, ���
1

�
���(��, ��, ��, �)�

≤
1

�
� ������

, ���
, ���

, ��� 

 

Similar to the proof of theorem 1 in ([158]), it can be shown that � �∫ �(�)��(�)��
�

��
�  Is bounded 

by the initial value function which guarantees stochastically stability of system (6.10) for any time‐

varying delay satisfying the bounded rate condition. This completes the proof. 

6.7.2 Robust Analysis of Retarded Markov Jump Linear System 

Referring to system (6.10), the following definition and theorem leads us to find an upper bound 

estimation for �� performance of retarded MJLS.   

 

Definition: 

Given a scalar � > 0, system (6.10) is said to be stochastically stable with an ��  performance 

level � if the following two requirements are met: 

System (6.10) with � = 0 is said to be stochastically stable. 

Under zero initial conditions and for all nonzero � ∈ ��[0, ∞), the following inequality holds: 

� �� ��(�)�(�)��
�

�

� ≤ �� � ��(�)�(�)��
�

�

 

Theorem 6.2: 

For given scalars � > 0, delay bounds of �(�) ∈ [ � �], the system in (6.10) is stochastically 

stable with an ��  performance level �, if there exists a matrix � ∈ ���×��, and symmetric positive 

definite matrices ��, ��, �� ∈ ��×�, �� ∈ ���×�� and mode dependent matrices of ���, ���, ��� ∈

��×� such that the following set of LMIs hold for all � ∈ �: 

 

Ω�( )= �
Ω( ) ���� ��

���

�� 0
��

� < 0, �� = �

���� + ����� + �����

�� ��

�� ��

�(�� ��)

� (6.17)

Proof: 

Let’s define the performance function �� = � �∫ [��(�)�(�) ����(�)�(�)]��
�

�
� 
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��� = [��
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�(��, ��, ��, �)+
1
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��(�)�(�) ���(�)�(�) ≤ ��

�(�)Ω�( )��(�)≤ �|�(�)|� 

Thus ���(�)�(�) ≥ �(��, ��, ��, �)+
�

�
��(�)�(�) holds for any � ≥ 0. Using Dynkin’s formula: 
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�

�

� , � ���(�)�(�)��
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�

≥
1

�
� �� ��(�)�(�)��

�

�

� 

 

The results show improvement in the estimation of disturbance rejection of the system. It is worth 

mentioning that designing a controller using the Markov chain method is another alternative for 

solving this problem. However, as the standard version of the Markov jump linear controller is 

based on a stochastic process, implementation of the controller in a real situation will be 

problematic.  

 

6.8 Linear Parameter Varying Controller Performance Analysis 

In the previous chapter, an LPV controller was designed for the parameter varying driver‐in‐the‐

loop system of (5.3). To investigate the system performance, Theorem 5.2 is used to find the 

robust LPV controller with the corresponding disturbance rejection factor. Using the boundaries 

given for the varying parameters �
�

��
, ��, ���, the controller (5.25) is designed and the attenuation 

level of � = 7.3 is achieved for damping the uncertainties in the closed loop system. The main 

goal here is to extend the analysis using extra information that is available from the Markov 

modeling of the behavior of the driver. It is shown that having the transition probability of the 

model, one can incorporate this information to better analyze system performance. 

By integrating the system (5.3) and the controller designed in Theorem 5.2, a closed loop system 

of the form (6.10) is obtained. Here, it is assumed that the extra information about the driver 

mode switching probability is also known.  Using the same method in 6.7, one can revise Theorem 

5.1 to find the best estimation of the upper bound of disturbance rejection for the MJLS (see 

Appendix).  

Applying Theorem 6.2, the lower disturbance rejection of � = 4.98 is obtained. Note that, the 

controller and the system representation remain fixed. In this estimation, it is only assumed that 
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the switching between the system modes is based on a given transition probability rather than 

bounded rate arbitrary jumps.  

 

Remark: Using an appropriate MJLS analysis technique, one can continue the derivation and 

find the policy to guarantee “almost‐sure” stability of the system. The extension of current 

theorem to the controller design, however, is straight forward and similar to the methods in 

chapter 4 and 5.  

 

Remark: A tighter lower bound disturbance rejection is obtained using Theorem 6.2 by adding 

another constraint to the system. The availability of the probability transition matrix for driver 

mode switching is the cost of improving this estimation.  

The same problem also can be solved using the proposed theorem for robust stability of MJLS 

in 6.1. Compared to theorem 5.2, an improved version of the well‐known Jensen inequality is 

used in this theorem to reduce the level of conservation. By applying theorem 6.1 on the closed 

loop system, the attenuation factor of � = 4.62 is obtained. 

An academic license of MOSEK ([108]) is used in all of the calculation and the simulation condition 

remains the same for fair comparison. 
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6.9 Summary 

Given that identifying current driving style is very important for implementation of LPV controller, 

a method for identifying the driver parameter (style) was proposed in this chapter. The most 

important difference between the proposed method and current approaches is to use only the 

current and previous driving information to model the driver. All of the other methods need 

some future road data to identify the driver. We proposed to look at a previous moving window 

on the driving information to identify the current state of the driver. The algorithm was applied 

to a set of experimental data collected at the University of Waterloo. Then, based on the range 

of parameter variation, several modes were defined for the driver and using Markov modeling, 

a transition probability was obtained for each mode. Using the proposed method for augmenting 

the driver model with the vehicle model, a retarded Markov jump linear system with uncertainty 

was obtained. A new theorem was proposed for analyzing system stability and finding the 

disturbance rejection level of the system. 

To show the effectiveness of the method, the closed loop LPV system in Chapter 5 was revisited 

and it was assumed that the driver switches between different modes with a known probability 

transition rule. The results show that using this extra information, a better disturbance rejection 

estimation is obtained when compared to the results of chapter 5. Similar comparison between 

the Markov jump linear system and LPV is reported in [31] where it is shown that adding extra 

information about the switching probability of different modes of a system improve the 

performance analysis.  
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“Finally, we make some remarks on why linear systems are so important. The answer is simple: 

because we can solve them!” 

Richard Feynman 

 

    

Redesign Considering NonlinearitiesRedesign Considering NonlinearitiesRedesign Considering NonlinearitiesRedesign Considering Nonlinearities    

 

7.17.17.17.1 IIIIntroductionntroductionntroductionntroduction    

A main cause of unstable behavior of both longitudinal and lateral velocities is that the tires are 

saturated in response to harsh/emergency maneuvers, aggressive/performance driving, low 

friction contact, and slick road conditions. Behavior of a vehicle at the limits of adhesion is quite 

different from its nominal one; for example, in cases where front tires lose their grip, the vehicle 

may go into oscillatory response (understeer behavior); on the other hand, if the rear tires enter 

a saturated region, it is more likely to spin and shoe into oversteer behavior.  A vehicle working 

to its limits makes a novice driver unable to control the vehicle. 

The following are the three main assumptions in previous chapters that are relaxed in this 

chapter: 

1. Small steering wheel angle (Figure 7-1 (a)): To obtain a linear vehicle model, one need to 

assume that ;sin, 1 ,	, cos, 1 1). Hwever for harsh maneuvers this assumption induces 

calculation error. 

2. Linear tire model (infinite tire capacity) (Figure 7-1 (b)): Tire force saturation is a known 

disadvantage of dealing with a linear vehicle model. 

3. Negligible longitudinal tire force: There are scenarios that the assumption is not valid 

anymore. For example, an acceleration in turn or an on-throttle double lane change 

maneuvers are the cases that this assumption can be violated. 

 

The main focus of this chapter is on nonlinear analysis and controller design for improving the 

handling behavior of a vehicle considering the effect of the human driver. Similar to the previous 

chapters, to make an implementable approach, it is assumed that the desired road information 
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is not available. An important assumption here is not to use the exact values of longitudinal and 

lateral forces in the control process.  

 

 

Figure 7‐1: Vehicle model nonlinearities 

The nonlinear equations of motion are formulated such that the nonlinear damping technique 

can be adopted to stabilize the yaw rate error. For two different robust designs, it is also shown 

that the yaw rate error will be confined inside a certain neighborhood even in the presence of 

uncertainty. The size of this neighborhood is directly proportional to the gain of the robust 

control terms and the driver characteristics.  

Although a plethora of techniques exist for the control of nonlinear systems without 

delays, control design for nonlinear delayed systems introduce significant feedback design 

challenges that may cause very loose stability bounds. Incorporating the driver delay in the 

analysis is postponed until future work. However, the effect of driver delay is investigated in 

simulation results. 

7.2 Nonlinear Vehicle Model 

The vehicle model used in this chapter is a nonlinear bicycle model that describes the most 

important vehicle states for vehicle handling control (see Figure 3‐1). The two‐dimensional model 

is described by (3.2). The LuGre tire model ([32]) is used to generate the cornering front and rear 

forces as a function of the vehicle’s tire velocity and the road condition. Compared to other 

conventional approaches such as Pacejka ([72]), this model utilizes relative velocities rather than 

slip ratios and slip angles. The change of the input (relative velocity instead of slip ratio/angle) 

provides a precise notion of the tire states. The main reason is that the normalization action 

(during slip ratio/angle calculation) is not needed, and only the effect of velocity is considered 

without any cancellation. The model captures the dynamic behavior of the tire specifically near 
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the regular load regions. The cornering forces can be presented by the following nonlinear 

expression:   

 

��� = �������� + ������� + ����������� (7.1)

 

��� = ���� �
����������

��������
+ ������������  (7.2)

 

where for � ∈ {�, �} and � ∈ {�, �}, ��� is the tire deflection, ���(�) is the front (rear) normal tire 

force, � is the road classification factor, �� is the wheel rotational speed, and ���� is the effective 

tire radius. The function ������� is related to the normalized Coulomb friction ��, the normalized 

state friction ��, the transition between these two friction states by Stribeck relative velocity ��, 

and the relative velocity ���� as follows: 

����,�,�� = ��,� + ���,� ��,���
�

��,�,�

��
�

�

 

��,�,� = sin���� � �� 

��,�,� = sin(��)� �� 

��,�,� = ����� cos���� � �� 

��,�,� = ����� cos(��)� �� 

(7.3)

where �� (��, ��) is the rubber (relative damping, relative viscous) damping parameter, � is the 

tire parameter to show the steady state friction and slip interaction, and ��(�) is vehicle corner 

slip angles.  

 

�� = ��� + ���
�

+ ��
� 

�� = ��� ���
�

+ ��
� 

(7.4)

 

Figure 7‐2 illustrates how the longitudinal tire force saturates as the slip angle increases. The 

driver model used here is a general model based on the vehicle states and human desired road 
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path. Note that the linear predictive driver model of (3.12) cannot predict the tire saturation and 

assumes that the tire capacity is not physically bounded.  

Remark:  In this chapter, the problem is solved for a generic driver model, however, one can use 

the discrete model of (3.9) and convert the DLQR problem to the corresponding continuous time 

using different approaches such as � domain method ([53]). The gains can then be computed 

by solving the continuous linear quadratic Riccati (CLQR) equation.  

 

Figure 7‐2 Lateral force LuGre tire saturation corresponding to different road condition [Normalized] 

The model in (3.9) only captures the linear behavior which mimics most drivers’ understanding 

of vehicle dynamics. In this regard, when the tire enters the saturation zone (see Figure 7‐2), 

many drivers still steer the vehicle based on the linear tire model assumption. In this case, the 

driver usually continually demands more lateral or longitudinal tire forces when the tire is no 

longer capable of providing more capacity. This is one source of poor performance of a driver‐

vehicle system which happens with most novice drivers, especially when driving on roads with a 

low friction coefficient. Figure 7‐3 shows how the nonlinear tire saturation phenomenon prevents 

the driver from properly steering the car. The simulation is done for a standard double‐lane‐

change with 90 kph on a wet road condition (� = 0.5) while the driver has small amount of 

reaction delay (between 160ms to 210 ms)  and 1.5 seconds of preview time. 
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Figure 7‐3 Longitudinal Velocity =90 KpH, 160 ms  ≤τ≤  210ms 

 

 

Figure 7‐4 Longitudinal Velocity =90 KpH, 160 ms  ≤τ≤  210ms 

In Figure 7‐4, an infinite tire capacity is assumed for the vehicle. Note that using a linear bicycle 

model to describe the handling characteristics of a vehicle, the forces linearly proportional to the 

tire slip angle (� = ��). This approach lets the tire forces increase in proportion to the tire slip 

angle. This is exactly what a novice driver expects from the vehicle. Thus, the driver can steer the 

vehicle smoothly. Figure 7‐4 demonstrates that even a novice driver can steer the vehicle on a 

low friction surface if the tires are not saturated. 
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Remark: In most of vehicle controller design papers, the authors assume a linear model for the 

vehicle. There are two main reasons for this assumption. The first one is to prevent nonlinear 

design challenges. Secondly, engineers are always interested in keeping the vehicle in the linear 

region or in the extreme cases, at the edge of its tire capacities. Then, one can argue that if a 

controller works properly, the vehicle must almost always be maintained in the linear working 

region. Thus, for controller design, one can expect more of linear vehicle behavior rather than 

nonlinear responses.  

Noting Figure 7‐3 one can immediately conclude that the driver could not safely complete the 

maneuver if a nonlinear vehicle model were to be used in the simulation. For this simulation, the 

nonlinear LuGre tire model is used. The model saturates as the slip angles reach higher values 

(see Figure 7‐2). Conversely, consider the case where the maneuver is mild, at a lower speed, 

and the tire forces are not saturated yet. In this region, both linear and nonlinear tire models 

produce the same values for the forces. The driver is also expecting a linear tire behavior, so 

he/she can control the vehicle properly and there is almost no difference between the linear and 

nonlinear model. Figure 7‐5 represents a novice driver’s performance in steering the car into a 

double lane change maneuver when the road is dry and the speed is low enough such that the 

vehicle remains in the linear operating point condition. 

 

 

Figure 7‐5: Novice driver steering linear and nonlinear vehicle, � = �. � 
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The discussion and simulation results show that the nonlinear characteristics of the tires are very 

important in vehicle control analysis. Thus, designing a controller with consideration to the 

driver’s limitations and the tire saturation behavior is very important and needs to be properly 

addressed. 

 

7.3 Defining Control Problem 

The main aim of the controller design is to track the desired vehicle yaw rate while keeping the 

vehicle lateral velocity bounded. By considering (3.2), the robust control methodology is used to 

produce the required yaw moment at the vehicle C.G. that reduces the vehicle yaw rate error. 

The desired value for the yaw rate is directly proportional to the current steering angle. It is also 

known that the desired lateral velocity value can also be defined; although, the lateral velocity 

state is coupled with the yaw rate state through the zero dynamics. Thus, using yaw moment 

control technique, there is no possibility of simultaneously steering the vehicle’s lateral velocity 

and the yaw rate to the desired values.  

 

 

7.3.1 Yaw Rate Tracking Controller Design 

By considering the force estimation uncertainties, one can extend equations (3.2)  to the 

following uncertain model for the lateral dynamic of vehicle: 

�� =
1

�
������ + Δ���� cos� + ����� + Δ���� sin�� ��� ��� +

��� + Δ���

�
 (7.5)

�� =
1

��
������� + Δ���� cos� + ������ + Δ���� sin�� +

�

��
��

������ + Δ����

��
 (7.6)

where �� = � �� is the difference between actual and desired value of the yaw rate and the 

vehicle driver model is: � = ���� + ����  + ����  + � � + �.  

Note that, based on the LuGre tire model, the norms of the lateral and longitudinal forces are 

bounded. These forces are highly dependent on the road friction condition, which is hard to 

estimate; therefore, it is assumed that the estimated forces have bounded uncertainties Δ�. To 

make the control design implementable in real time, this uncertain estimation is used in the 

control structure. The disturbance and estimation error terms as well as their coefficients in (7.5) 

and (7.6) are stacked in the following vectors: 
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� =

���� cos� + ���� sin�

���� sin� + ���� cos�

� cos�
� sin�

�

, Δ =

cos�
sin�

Δ��� cos� + Δ��� sin�

Δ��� sin� + Δ��� cos�

Δ���

, 

 

(7.7)

��
��

��
= 0 (7.8)

 

From the boundedness of Δ���, Δ���, Δ���, one can conclude that: 

 

‖Δ‖� ≤ �1 + Δ���
� + Δ���

� + Δ���
� �

�
� 

(7.9)

 

 

Using the vectors defined (7.7), the yaw error dynamics (7.6) can be rewritten as:  

 

�� =
��Δ

��

����

��
+

�

��
�� (7.10)

 

The main objective is to devise a method to attenuate the effects of Δ in (7.5) and (7.6). In this 

research, first the nonlinear damping method in [79] is adopted to fulfill such a control task. 

Consider the following control law: 

 

� = ���� + ���� ������ �����‖�‖� (7.11)

 

Where �� and � are design parameters, (7.11) acts as a nonlinear damper for (7.5) and (7.6) to 

drain the artificial energy of the system. Considering � =
�

�
 ��

� as a measure of deviation from 

the desired state. We have:   
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� = �� �
��Δ

��

����

��
+

�

��
��� =

��Δ��

��
����

� ���
�‖�‖� 

≤ ����
� ���

�‖�‖� +
1

��

‖�‖‖Δ‖�|��|= ����
� � ���‖�‖

‖Δ‖�

2���
�

�

+
‖Δ‖�

�

4��
��

≤ 2��� +
‖Δ‖�

�

4��
��

 

 

(7.12)

Then one can conclude that |��(�)| is bounded by: 

 

‖��(�)‖� ≤ max�|��(0)|,
‖Δ‖�

2��� ���
� (7.13)

 

Using Gronwall Lemma [79], we obtain: 

 

�(�) ≤ �(0)������ +
1

8��
����

max(‖Δ‖�
� )�1 ������� (7.14)

 

hence, 

‖��(�)‖ ≤ √2‖�(0)‖����� +
1

��

�
�1 �������

2���
‖Δ‖�

�  (7.15)

 

From (7.15), it is clear that the trajectory of the system will be trapped inside a neighborhood of 

the desired yaw rate. The size of this neighborhood decreases as the value of � increases. Hence, 

the performance of the robust control law (7.11) directly depends on �. However, it should be 

noted that with higher values of �, the controller in (7.11) becomes a high‐gain feedback 

controller that increases the control effort. 
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One can study the boundedness of the lateral velocity �� by analyzing the subsystem (7.5). The 

 
���

�
 term in (7.5) can be expressed as: 

 

��� = ������ + ����� + ��� sin(��)� ��� ���
�

+ ��
����� (7.16)

Considering the cases where the vehicle longitudinal velocity (��) is high, the term ��� ���
�
 is 

negligible compared to ��
�.  

Using this approximation and the change of variable � =
�� ���

��
, (7.5) becomes: 

 

� =
��������

�
sin(�)+ Λ, (7.17)

 

� =
1

�
(���������� + ��������� + ���� + ���� + ����� ��� �  

 +���� + ����� ��� �) ��� ��� �� 

 

The norm of �� is bounded according to (7.15). It is also known that the tire deflection (���) and 

its time derivative (���) are bounded, which results in the boundedness of the norm of Λ.  

Now, consider �� =
�

�
�� as a Lyapunov function candidate for analyzing (7.17), one can write: 

 

�� =
��������

�
� sin(�) + Λ� ≤

2������

��
�� + ‖Λ�‖ (7.18)

 

Using the fact that  � �
��

�
sin�� ≤ 0  (see Figure 7‐6) for �

����

��
�≪ 1 and choosing 0 < � < 1: 

�� ≤
2(1 �)������

��
�� �|�|�

2�������

��

‖Λ‖

2
�

��

2�������
�

�

+
‖Λ‖���

8�������

≤
4(1 �)������

��
�� +

‖Λ‖���

8�������
 

(7.19)
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Figure 7‐6 : Comparing 
�

 �
�� and � ���(�) 

Boundedness of the norm of lateral velocity (�) can be established using the Gronwall lemma. 

Equation (7.19) shows that ��(�) will converge to a neighborhood of the origin. The size of this 

set is upper‐bounded by: 

‖Λ‖�����

32(1 �)����
� ���

�  (7.20)

Note that there is no control parameter to adjust this bound. One may use physical parameters 

of the original system to reach the desired performance.  

The control law (7.11) steers the trajectory of the system into a small neighborhood around the 

desired point. We are also interested in comparing the nonlinear approach with methods that 

are eliminating the effects of disturbances. To fulfill such a design, the following input is proposed 

as an alternative to (7.11) : 

 

�� = ���� �� ������� ��|��|‖Δ�‖�

�

���

� ���� (��) (7.21)

 

The last term in (7.21) is added to ensure that the time derivative of the artificial energy of the 

system (� =
�

�
��

�) remains negative definite for all (� > 0). Using (7.21), (7.12) changes to: 
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� = �� �
��Δ

��

����

��
+

��

��
��� 

=
��Δ��

��
�����

�
1

��
�� ��|��|‖Δ�‖�

�

���

� ���� (��) 

(7.22)

since 

��Δ��

��

1

��
�� ��|��|‖Δ�‖�

�

���

� ���� (��) ≤ 0, (7.23)

It is easy to conclude that � ≤ 2���� and the exponential convergence of �� to zero follows. It 

is worth noting that, instead of using the upper bound on the stack vector Δ in (7.11), the term in 

(7.21) depends on the upper bounds of each component of Δ. This suggests that one can 

attenuate each term of uncertainty separately at the expense of using discontinuous feedback 

control law. More precisely, one can use adjustable gains to attenuate the effect of road 

disturbance on the steering angle and at the same time to reflect the importance of eliminating 

the effect of uncertainties in force estimation. An implication of this is the possibility of adaptively 

tuning the authority between the driver and the controller by varying the aforementioned gains. 

7.3.2 Back‐Stepping Method 

In this section, the possibility of using a backstepping control method is discussed to suppress 

the effects of uncertainties in both subsystems (3.2) through a recursive design based on the 

nonlinear damping technique. The latter requires that for each step of the backstepping method, 

the controller stabilizes the respective subsystem by attenuating the effects of disturbances. Since 

in (3.2), the steering angle (�) depends on both �� and �, the first step of control design involves 

solving a nonlinear parametric equation. To circumvent this issue, the following variable is 

defined: 

� = ���� + ��� (7.24)

 

where �� and �� are the driver gains that obtain from the human modeling identification. The 

new variable � can be interpreted as the effect of the vehicle yaw‐rate and the lateral velocity on 

the driver's decision. Using [� �]� as the new state vector for system (3.2), the dynamics of the 

system can be written as: 
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� = �� + �� cos(� + �)+ �� sin(� + �) ����� + ��� 

� = �� + �� cos(� + �)+ �� sin(� + �)+ �"� 
(7.25)

 

 

where 
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���
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���

��
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��
��� 

�� =
��

��
, �"=

1

��
  

In this regard, one can use the transformation: 

� = �
�"

��
� (7.26)

which eliminates the input term at the second subsystem (7.25). The reason that one cannot 

perform such a method for the first subsystem again stems from the difficulties which arise in 

the design process of the nonlinear robust control technique.  

Given that the desired states are: 

� = ����,    � = �� (7.27)

in terms of new variables,  

�� = � ���� 

�� = � + �
�"

��
�� 1��� = � 

(7.28)

the system (7.25) can be expressed as: 

 

�� = �� + �� cos(�� + ���� + �)+ �� sin(�� + ���� + �) (7.29)
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���� ��� + �� +
1

��
���+ ��� ���� 

�� = ��
�+ ��

�cos(�� + ���� + �)+ ��
�sin(�� + ���� + �) 

+
��

��
�� ��� + �� +

1

��
��� 

(7.30)

 

 

where ��
� are defined by: 

��
� =

�"

��
�� + ��, ��

� =
�"

��
�� + ��, ��

� =
�"

��
�� + �� (7.31)

To apply the backstepping procedure, consider the subsystem (7.30). Using the following vectors: 

 

�� = �
��

�cos(����)+ ��
�sin(����)

��
�sin(����)+ ��

�cos(����)
�, Δ� = �

cos(�� + �)

sin(�� + � )
� (7.32)

the dynamic of �� in (7.30) turns into: 

 

�� = ��
�+ ��

�Δ� +
��

��
�� ��� + �� +

1

��
��� (7.33)

In the first step of the control design, �� must be regarded as a fictitious input for (7.30) to steer 

� to its respective reference signal. In other words, we seek for �� = ����, ��, �� that stabilizes 

the subsystem (7.30). The following choice: 

��
� =

��
�

����
�

��

��
���� +

��

��
���� + ��

�+ ���� + �������
�

� (7.34)

achieves this goal. This can be seen by considering  � =
�

�
��

�  as a Lyapunov function candidate. 

Using (7.30), the time derivative of � along the solution of (7.29) and (7.30) becomes: 

 

� = �� ���
�Δ� ���� �������

�
� 

≤ ����
� ���

�����
�

+ �����Δ��
�

���� 

(7.35)
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≤ ����
� +

‖Δ‖�
�

4�
 

which clearly demonstrates the ISS stability of the subsystem (7.30). By tuning � , one can achieve 

the desired robust control performance for (7.30). In the next step of control design, ��
�  acts as a 

reference signal for �� and the actual controller must be designed in a way that ensures the 

convergence of �� to ��
�. 

This task can be simplified by defining the transformation � = �� ��
�. Employing the Lyapunov 

function: 

 � =
1

2
��

� +
1

2
� (7.36)

for the complete system (7.29), (7.30) and computing its time derivative along the system 

trajectories results in: 

� = �� ���
�+ ��

�Δ� +
��

��
�� ��� + �� +

1

��
��

��� + �(�� ��
�) (7.37)

 

Using the definition of ��: 

� = ����
� +

‖Δ‖�
�

4�
+  �(�� ��

�)+
��

��
����(�� ��

�) (7.38)

Next, by defining the following vectors: 

� = �� + ���� 

�� = �
�� cos(�)+ �� sin(�)

�� sin(�)+ �� cos(�)
�, Δ� = �

cos(�)

sin(�)
� 

(7.39)

 

 

and inserting the dynamic of ��  from (7.29) into (7.38): 

� ≤ ����
� +

‖Δ‖�
�

4�
+

��

��
����� 

+� ��� + ��
�Δ� + ���� ��� + �� +

1

��
���+ ��� ���� ��

�� 

(7.40)
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The control action � might be designed to compensate for the effects of Δ� in (7.30) and assures 

the convergence of �� to the virtual input of (7.29). To attain such objectives simultaneously, 

consider the following choice of control: 

 

� =
1

��
(�� ���� ��� +

1

��
��� ���� ��

� 

���‖��‖� + ���� �
��

��
������� ) 

(7.41)

 

Substituting (7.41) in (7.40), results in: 

 

� ≤  ����
� +

‖Δ‖�
�

4�
+ ����

�Δ� ���‖��‖� ����� 

≤ ����
� �����

� +
‖Δ‖�

�

4�
+

‖Δ‖�
�

4��
 

≤ 2 min���, ����� +
� + ��

4���
‖Δ‖�

�  

(7.42)

 

Applying Gronwall lemma, (� = [�� �]�): 

 

‖�‖ ≤ √2‖�(0)‖�� ������,����� + �
� + ��

2���min���, ����
 ‖Δ‖�

�  (7.43)

 

which proves the ISS stability of �. Although, the effects of Δ� and Δ�  are suppressed in different 

steps of the control scheme, the norm of the second term in (7.43) relies on both � and �� , and 

to reach the desired performance for �� and �� , their minimum must be increased. However, the 

former does not imply the convergence of � and � to the neighborhood of the desired values. 

On the other hand, one can find the � ⇒ 0 or �� ⇒  ��
�  as � and �� tend to infinity. In order to 

calculate the upper‐bound on �� , one can use (7.43) to write: 

 



148 

 

|�|≤ ‖�‖ 

|��|≤ √2‖�(0)‖�������,����� + �
� + ��

2���min���, ����
 ‖Δ‖�

�  
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��
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��

��
���� +

��

��
���� + ��

�+ ���� + �������
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≤ (1 + �)�√2‖�(0)‖�������,������+ ����� +
��

�

����
��

�� 

+(1 + �)��
� + ��

2���min���, ����
 ‖Δ‖�

� � 

(7.44)

� = �� +
��

���

����
+

���
�����

�

����
 

The first term in (7.44) vanishes in time and the last term can become small by choosing high 

values for � and ��, however, the second term in (7.44) does not contain any control parameters 

and cannot be attenuated by the control law (7.41). 

If one wishes to eliminate the effects of uncertainties on the final bound of the states i.e. �� and 

 ��, it is possible to start with the following fictitious non‐smooth control law for the subsystem 

(7.29) in place of (7.34): 

 

��
� =

��
�

����
�

��

��
����� + ��� + ��

�+ ���� + Ξ� (7.45)

Ξ = �������Δ�����������

�

���

 

It can be shown that the effects of Δ� would be removed by (7.45).  In the next step of the control 

design, � must be chosen in a way such that the time derivative of the Lyapunov function: 

� =
1

2
���

� + (�� + ��
�)�� (7.46)

becomes negative definite for [�� �]�. 
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Since ��
� contains a non‐smooth term, the regular derivative of � can not be computed at �� =

0. However, if the input � can be chosen such that the ����������� ���������� ([131]) of � 

becomes negative, which is sufficient for the stability of the [�� �]� system. However, using a 

non‐smooth Lyapunov function for the control design can result in unwanted chattering. This 

problem can also be addressed by using a Flattened Robust Control Lyapunov function. (see [44]). 

 

7.4 Simulation 

The proposed control techniques are evaluated using the vehicle model along with the LuGre 

model tire. The simulation condition is a standard ISO 3888‐1 harsh double‐lane‐change 

maneuver ([116]).  The vehicle and tire model parameters are given in Table 3‐1 and  

Table 7‐1. 

Table 7‐1 Tire Specification 

Variable Value Variable Value Variable Value 

��            8.9031 ��            5.5645 ��,�,� 660 

��,�,� 640 ��,�,� 150 ��,�,� 160 

��,� 0.75 ��,� 0.75 ��,� 0.001 

��,� 0.006 �� 7 ��,� 0.975 

��,� 0.975 ��,� 1.9 ��,� 1.454 

 

 

Note that the LuGre tire parameters should be tuned according to the real vehicle tire data to 

capture both lateral and longitudinal tire characteristics. The lateral and longitudinal forces are 

calculated in the tire model and are used in the nonlinear vehicle model. To simulate the 

estimation errors, a random uncertainty is added to the tire model output and then this signal is 

used as the input for the controller. In other words, ( �� = � + ��) where 0.5� ≤  Δ � ≤  0.5� 

(see Figure 7‐7 and Figure 7‐8).  The driver is also modeled with a time varying delay to mimic 

human behavior. The sampling time is chosen to be � = 10 ms such that is appropriate for real‐

time implementation. The desired yaw‐rate is calculated by (4.2). 
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Figure 7‐7: Tire forces and corresponding estimated forces (Normal Driving) 

 

Note that in the simulation, an extreme level of uncertainty is assumed to show the effectiveness 

of the controller. In the left column of Figure 7‐7 and Figure 7‐8, the tire forces are shown for 

two maneuvers. It is assumed that there is no braking in the maneuver and the traction only 

produces positive longitudinal forces. In the right column, the uncertain signal based on 

(1 + Δ)�, |Δ|≤ 0.5 is shown.  
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Figure 7‐8: Tire forces and corresponding estimated forces. (��������� ����  �� = ��� ��� , ��� ��  ≤  � ≤

  �����, � =  �. �) 

 

While the controller is off, the driver cannot pass the route at a high speed, on a slippery road 

and with a large driver delay (more than 300 ms) (see Figure 7‐3). Turning on the controller 

enables the driver to do the double lane change in this condition. Figure 7‐9 presents the lateral 

position of vehicle as well as the yaw rate tracking errors. The performance of both controller 1 

(7.11) and controller 2 (7.21) are demonstrated and the lateral position of the vehicle is compared 

to the desired path of the driver in both cases. It is also shown that a very good yaw rate tracking 

is obtained in the both cases.  
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Figure 7‐9: Controller Performance, �� = ��� ��� , ��� ��  ≤  � ≤   �����, � =  �. � 

Figure 7‐10 also shows the control action of each of the proposed controllers. As mentioned in 

the control design section, the output of the controller 2 suffers from chattering and 

discontinuity. 

 

Figure 7‐10 Control Action, ��  = ��� ��� , ��� ��  ≤  � ≤   �����, � =  �. � 
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It is assumed that the velocity is increased to 120 ��  and the driver is a novice driver with a 

relatively large delay of  400 ��  ≤ � ≤   450��, and the vehicle runs on an icy road (� = 0.2).  

In this scenario, the system without the controller loses stability and results in very poor 

performance. The yaw rate error and lateral velocity state of the vehicle in this situation are shown 

in Figure 7‐11. With the controller, the vehicle still preserves stability to demonstrate the 

effectiveness of the proposed method. 

 

 

Figure 7‐11: �� = ��� ��� , ��� ��  ≤ � ≤   �����, � =  �. � 

 

7.5 Summary 

In this chapter, using a general form for the driver model, a robust control approach was adopted 

to design a vehicle controller considering nonlinear characteristics of a vehicle. It was shown that 

such nonlinearities could be potential sources of poor performance for a driver who would expect 

linear behavior from the system. Simulation results support the idea that designing a controller 

while considering the driver model improves overall performance of the system. The obtained 

stability criteria for different cases enhances the understanding of the effect of the human‐in‐

the‐loop in vehicle stability and performance. Future work needs to be done to specifically deal 

with the driver delay terms in real‐time implementation.  
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Conclusion and Future work  

8.1 Conclusion  

Human‐in‐the‐loop analysis is a central issue in many engineering subfields. The main difficulty 

lies in modeling human behavior that is not trivial even for specific task related behaviors. The 

problem will be more difficult in driver‐vehicle interaction since knowing the intention of a driver 

introduces another level of complexity to the problem. This fact makes the driver‐in‐the‐loop 

analysis more complicated than many other human‐machine interaction situations. In other 

words, even having the perfect model of a human driver (if possible) is not enough since it seems 

impossible (or extremely difficult) to predict the intention of a driver for control purposes. 

Due to these difficulties, in the majority of research and studies on vehicle dynamics, the effect 

of the driver as a dynamic system is ignored. On the other hand, there are concrete results 

showing the existence of driver reaction delay and different driving skills and styles. 

Roughly speaking, all driver models are functions of vehicle states and a future path planning of 

the driver. The main goal in this study was to avoid any assumptions on the accessibility to a 

driver’s desires.  

In the first step, it was shown that the driver’s lag and driving style were extremely important in 

the vehicle stability analysis. The simulation results that used a general driver model expectedly 

show that the driver delay and level of skill has a direct effect on vehicle performance. Next, the 

driver model was augmented with the vehicle handling motion equations and a closed loop 

presentation of the system was obtained. Given that the controller can only use the current 

information about the road and vehicle state, the segment of the driver steering signal that is a 

function of future data, was modeled as a bounded uncertainty. This way, without adding extra 

sensors, some parts of the steering wheel angle signal (driver model), which is a function of the 

vehicle state, can be used in the decision making process to improve overall vehicle performance. 

The extracted information can be of help in casting new decision‐making processes that partially 

consider the driver model in their analyses. 

Observing that the state space representation is a retarded system with uncertainty, the 

Lyapunov Krasowski method is used to analyze the system and design an appropriate controller. 

The designed LTI �� controller in Chapter 4 guarantees system stability in the presence of the 

unknown time‐varying delay as well as modeling and process uncertainties. It is also emphasized 

that the method can be easily implemented with both torque‐vectoring (differential‐braking) and 
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an active steering actuator structure. The next stage was to relax the assumptions by considering 

a parameter‐varying model for the driver. Combining a parameter varying vehicle and driver 

model, an LPV uncertain retarded delay was obtained. Knowing that the driver parameter varies 

in a certain range, an LPV controller was designed to guarantee vehicle stability while gain‐

scheduling based on driver model parameter variations and longitudinal vehicle speed was 

performed. 

Knowing that to run an LPV controller, one needs to update the driver model parameter, the 

next step was to propose a technique to identify the driver parameter. To resolve inaccessibility 

of future road preview information, it was proposed using a moving window over the past data 

of the vehicle and driver. This method is only applicable in a normal driving condition and would 

fail when the lateral path following of the vehicle is not accurate; however, it does not require 

any future information.  

The identification method was applied to a set of experimental data that was gathered at 

Mechatronics Vehicle Systems Lab at the University of Waterloo. The identified parameters were 

then clustered into a finite number of sets and the transition probability of switching between 

the sets was calculated. Having the transition probability, a Markov jump based model was 

developed for the regarded uncertain linear system and a theorem was proposed for stability 

analysis of the system.  

Further analysis showed that having the switching probability between different modes of a 

driver, one can go one step farther and improve the behavior analysis of a LPV system. The 

proposed Markov jump analysis was applied to the closed loop system of an LPV controller and 

the driver‐in‐the‐loop LPV model. The results demonstrated that having extra information about 

the switching probability of the driver mode would improve the estimation of disturbance 

attenuation level.  

Finally, the effect of non‐linear vehicle characteristics in driver performance was studied in the 

last chapter. Most of the novice drivers expect a linear (proportional) response from the vehicle 

in all conditions. More specifically, a novice driver does not have proper judgment about the 

longitudinal and the lateral tire force saturation phenomenon. It is shown in simulation that this 

is a reason for poor performance of the vehicle. Studying this effect needs nonlinear analysis 

tools and the last chapter is the extension of the driver‐in‐the‐loop methodology to the case 

where the vehicle is in the nonlinear operation area. A thorough nonlinear analysis was 

performed and different nonlinear approaches were proposed to counteract the effect of 

nonlinearity and measurement uncertainty while the controller consider the effect of human 



156 

 

driver. All of the nonlinear analysis results show that the driver has a direct effect in the closed 

loop performance of the vehicle. 

8.2 Driver Condition Monitoring 

The driver identification method proposed in Chapter 6 can be employed as a driving condition 

monitoring system. Consider that the identification block has enough rich data‐set to classify the 

gains in a finite number of modes for normal driving conditions. Assume that the driver’s states 

change radically while the vehicle is still in a normal condition, i.e., the side slip angle and yaw 

rate are still in an acceptable range. These abrupt changes can be detected using the 

identification method which is detailed in Chapter 6.  

8.3 Personalization of Driving Style  

Another important application for the classification is personalization of driving styles of semi‐

autonomous vehicle.  

There are many applications for using this classification. Currently, a few insurance companies 

started new plans called “usage‐based” or ”pay‐as‐you‐drive”, that includes the driving style in 

the insurance rate as well. Based on the proposed model, a small data collector can be mounted 

on the vehicles to collect data and evaluate the driving style of each individual driver. 

The driving identification technique can also be revised for use in a “smart transmission shifter 

(gearbox)”. This way, the gearbox controller can decide better based on identified driving style 

and the current status of the driver. 

Imagine the case where there is more than one driver for a semi‐autonomous vehicle or the 

driver’s driving‐style changes slightly from time to time. Using the identification method, the 

controller can cluster the driver parameter constantly and find the most often used driving style. 

Using this information, the semi‐autonomous vehicle can take over the steering of the vehicle 

with minimum changes in vehicle traveling trend. The proposed technique can improve 

passenger comfort by making the drive feel as if the same driver still controls the vehicle. Also, 

the controller can detect that the driver has now changed, and based on the new driving style, it 

can change the gains such that the maximum likelihood is obtained.  

More testing needs to be performed for different drivers and driving styles to validate the 

proposed model. The road geometry, the state of the ego vehicle, the relative distance, and the 

velocity of other vehicles and obstacles are important variables to consider when increasing 

model accuracy.   
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8.4 Actuator Limitations and Proposed Control System   

The proposed controller design process assumes that the control actuators are ideal without any 

constraints. However, every actuator has its own capacity (amplitude saturation) which needs to 

be included in the control design. Unexpectedly large commands from the controller may force 

the system to operate in a mode that it is not designed for and this may cause irreparable harm. 

Thus, an analysis on the controller design with considerations to the actuator constraints seem 

to be vital. Besides that, all of the actuators have a delay in their response. Working on electric 

vehicles, all of the actuators are electric motors with a pretty small time constant; however, for 

conventional vehicles, performing torque vectoring or even differential braking will impose 

significant amount of delay, which affects the overall system performance. More precisely, the 

actuator dynamic should be considered in the design process to capture both time delay and 

the dynamic behavior of the actuators.  

The new problem formulation of the LPV system could be revised to the following discrete‐time 

retarded constrained uncertain system with a time‐varying delay:  

 

� :

�(� + 1)= �(�)�(�)+ (��(�)+ Δ��)��� �(�)� + ��(�)�(�)+ ��(�)�(�)

�(�)= �(�)�(�)

�(�)= 0, �� ≤ � ≤ 0

‖�(�)‖ ≤ ����

‖�(� + 1) �(�)‖ ≤  ����

�
 (8.1)

  

where �(�)∈ �� is the state, �(�)∈ �� is the control input vector,  �(�)∈ �� is the exogenous 

disturbance signal assumed to belong to ℓ�[0, ∞). Furthermore, �(�)∈ �� is the control output 

to be attenuated, and ���� denotes the maximum tolerable input control action. Matrices 

�, ��, ��, ��, and � are assumed to be constant and with appropriate dimensions; �(�) is a time‐

varying delay satisfying 0 < �� ≤ �(�)≤ ��.  
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8.5 Control Authority Problem 

The driver’s steering angle depends on future road information (desired path), the vehicle states, 

and the driver’s characteristics. In other words:  

� = �(desired path, curret vehicle states, driver charactristics) (8.2)

 

The future intention of the driver is not available to the control task. However, the current states 

are accessible. The driver’s characteristics are also considered to be known with a bounded 

modeling uncertainty. It is common sense that a higher vehicle speed requires more attention 

from a driver. Reducing the vehicle speed, the car will be more stable and the effect of the driver’s 

delay reduces. The problem arises when a vehicle is running at a high speed, and the driver has 

large amount of delay. In this case, the driver’s steering angle makes the system unstable. An 

important reason for this inappropriate input command is the driver’s delay. Consequently, the 

driver’s panic makes everything worse. Figure 8‐1 shows four different cases that happen in real 

driving conditions. The first case is a driver with small delay in observation and reaction driving 

at low speeds. In this case, a perfect driving condition is expected. Driving with low risk can result 

from either an expert driver (small delay) at low to high speeds, or a driver with large delay 

running a vehicle at low speeds. The last case is when a driver with a large delay drives a vehicle 

at high speeds. In this case, the vehicle stability is critical such that it cannot be addressed using 

only driver input. 

 

Figure 8‐1 different driving conditions 
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Using the proposed controller, the effect of an unknown desired path on the vehicle steering can 

be attenuated with a certain coefficient or weight of �. This coefficient represents the importance 

of the driver’s decision. From this point of view, the coefficient of � can be defined as a level of 

authority between the driver and the controller in the vehicle dynamic system. A bigger � means 

a bigger the role for driver in vehicle control. Conversely, as � decreases, the effect of the driver’s 

decision will be reduced and the controller will have a bigger role in vehicle control.  

Now, reconsider case 4 in Figure 8‐1, where the vehicle is unstable because of the driver’s 

oscillatory steering angle. In this case, lower values for coefficient of � is more appropriate. Using 

lower �, the vehicle is more robust in relation to the unknown information input. On the other 

hand, for the first case, higher values of � are suitable for the vehicle control. The reason for this 

is the low vehicle speed and small driver delay. The following diagram could be used for the 

variation of � versus vehicle speed. 

 

 

 

 

 

 

 

 

 

Figure 8‐2 shows that as the longitudinal velocity of vehicle decreases, the more authority needs 

to be given to the driver. For higher speeds, the vehicle controller should have a higher effect on 

vehicle control. It is obvious that using a small � for a vehicle running at a low speed dramatically 
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on the vehicle situation. The effect of the road friction coefficient is also another factor that can 
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Using the proposed controller, the effect of an unknown desired path on the vehicle steering can 

be attenuated with a certain coefficient or weight of �. This coefficient represents the importance 

of the driver’s decision. From this point of view, the coefficient of � can be defined as a level of 

authority between the driver and the controller in the vehicle dynamic system. A bigger � means 

a bigger the role for driver in vehicle control. Conversely, as � decreases, the effect of the driver’s 

decision will be reduced and the controller will have a bigger role in vehicle control.  

Now, reconsider case 4 in Figure 8-1, where the vehicle is unstable because of the driver’s 

oscillatory steering angle. In this case, lower values for coefficient of � is more appropriate. Using 

lower �, the vehicle is more robust in relation to the unknown information input. On the other 

hand, for the first case, higher values of � are suitable for the vehicle control. The reason for this 

is the low vehicle speed and small driver delay. The following diagram could be used for the 

variation of � versus vehicle speed. 
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Appendix 

 

Schur Complement 

Lemma [20]: Let � be a symmetric matrix given by  � = �
� �

�� �
� then:  

 

� > (≥ )0 � > (≥ )0,  � ������ > (≥ )0. 

� > (≥ )0 � > (≥ )0,  � ������ > (≥ )0.  

�� = �
��� ���

���
� 

 � < 0 

��� < 0,��� ���
� ���

����� < 0 

��� < 0,��� ������
�����

� < 0 

Example: 

 

�
��� + �� �� ��

�� ��

��
�< 0 →  �� < 0,�

��� + �� ��
��

�+ ��� ���

���[� �]< 0 

�
��� + �� + ������ �� + ������

�� + ������
�< 0 →  �

���� + ��� + ��� ��� + ���

��� + ���
�

< 0 

 

�
��� + �� + ��� �� + ���

��� + ���
�< 0 

 

The S-procedure (Quadratic Form) 

Lemma [20]: Let  ��, ,�� ∈ �×�  be symmetric matrices. If there exists �� ≥ 0 , ,�� ≥ 0 such 

that �� ∑ ����
�
��� > 0, then the following condition on ��, ,�� holds: 
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����� > 0  for all � ≠ 0 such that  ����� ≥ 0,� = 1, ,�. 

                                    

Example: 

Consider the following constraint on the variable �:  

For all � ≠ 0  and � satisfying ��� ≤ ������, 

�
�
�

�
�

���� + �� ��
��� 0

��
�
�

�< 0. 

This constraint is equivalent to the existence of � ≥ 0 such that: 

 

���� + �� + ���� ��
��� ��

�< 0. 

 

Bounded Real Lemma: 

The matrix inequality  

 

��� + �� + �������� + ��� < 0 

 Can be converted to the following LMI: 

 

�
� � + �� + ��� ��

��� ���
�< 0  

 

Using the Schur lemma and defining a new variable � = ����, one can further simplifies it as: 

 

��� + �� + ��������� + ������ < 0 

�
��� + �� + ������ ��

��� ��
�= �

��� + �� ��

��� ��
�+ ���

0
�����[� 0]< 0 

�
��� + �� �� ��

�� 0
��

� < 0 
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Bounded Real Lemma for MJLS ([35]) 

Consider the space of all random processes Ω = {Ω(�);� ∈ ��}∈ �� such that  

‖Ω‖�� � � �(‖Ω‖�)��
�

�

 

Is finite. Assume that this space is represented by ��
� (Γ,�,�,[0,�]).  

Consider the following �� problem: 

 

�� = �

�(�)= ��(�)�(�)+ ��(�)Ω(�)

�(�)= ��(�)�(�)+ ��(�)Ω(�)

�� = (��,��),�(�� = �)= ��,� ∈ �

                   (�) 

 

Where � = (��, ,��)∈ ��, � = (��, ,��)∈ ��,�,� = (��, ,��)∈ ��,�, and � =

(��, ,��)∈ ��,�.  Mean-Square stability implies Stochastic stability; the system is stochastically 

stable if for any arbitrary initial condition and Ω = 0: 

 

Ε �� ‖�(�)‖���|(��,��)
�

�

� ≤ ∞ 

 

 The system is mean-square stable if for all zero-input responses: 

 

lim
�→ �

��‖�(�)‖�|(��,��)� = 0 

 

 

Bounded Real Lemma: 

Given � > 0, the following statements are equivalent: 

(i) The system given in (i) is internally MSS with ‖��‖ < � 

(ii) There is a set if positive definite matrices of � = (��, ,��)> 0 ∈ ��� that � =

(��(�), ,��(�))< 0 ∈ ��, where � � + �, 

 

�� = �
���,� + ��

��� ���,�

���,�
� 

���,� = ��
��� + ���� + � ����(�)

�

���

 

���,� = ���� + ��
��� 

���,� = ��
��� ���� 
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(iii) There is � = (��, ,��)> 0 ∈ ��� such that  

 

 

��
��� + ���� + � ����(�)

�

���

���� ��
�

��� ��
�

���

< 0 

 

Linear Quadratic Tracking (LQT) Optimal Controller Design [112] 

Consider the linear system: 

�
�(�)= ��(�)+ ��(�) �(��)= ��

�(�)= ��(�)
 

where � ∈ � , � ∈ � , and � ∈ � , the state, control, and output vectors. The quadratic 

performance index is: 

� =
1

2
�(�(�) ��(�))���(�(�) ��(�))�

+
1

2
�[(�(�) ��(�))��(�(�) ��(�))+ ��(�)��(�)]��

�

��

 

As such, �� is initial time, and the finial time is �. The symmetric control and state weighting 

symmetric matrices, � > 0,�� ≥ 0 and � ≥ 0, are chosen by the designer to ensure appropriate 

penalties for the control and tracking error costs.  The pair {�,�} is assumed to be controllable, 

and  {�,�} is observable. The state trajectory ��(�) is related to the desired state trajectory 

satisfying the plant dynamic constraint. For the case in this report, the infinite horizon LQT (� →

∞ ) with  �� = 0 , and �� = 0 is considered; thus, the optimal control law consists of the sum of 

the two components given by: 

�(�)= ����(�)+ �������� 

where ��� = �������� and ��� is the solution of  ����� + ���� ������������ + � = 0, and 

�(�)= [� ����]��(�) ���(�),��� = �(�)|�→ �  
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Lyapunov – Krasowski Method[56] 

Consider the following system: 

 

�
�(�)= �(�,��) � > ��

���
= �(�) ∀� ∈ [ �,0]

  

Definition: 

If �: × �,� → � is continuous and �(��,�) is the solution of (4.24), the Dini’s derivative is 

defined by: 

�(�,�)= lim
�→ ��

 sup
1

���� + ,����(��,�)� �(�,�)� 

Theorem: 

Suppose that the function �: × �,� → � takes bounded set of �,� in bounded sets of �  

and �,�, �: � → � are continuous nondecreasing functions, �(�)  and  �(�) are positive for 

� > 0, and �(0)= �(0)= 0.  

If there is a continuous function �: × �,� →  such that: 

 

�(‖�(0)‖)≤ �(�,�)≤ �(‖�‖ ) 

�(�,�)≤ �(‖�(0)‖) 
 

 

Then, the trivial solution � = 0 of the system (4.7) is uniformly stable. 

Where ��(.) for a given � ≥ ��, denotes the restriction of � (.) to the interval [� �,�] translated 

to [ �,0], i.e.  

��(�)= �(� + �),  ∀� ∈ [ �,0]. 

If �(�) → ∞ as � → ∞ the solution is uniformly stable. 

If �(�)> 0  for � > 0 , then the solution � = 0 is uniformly asymptotically stable. 

The condition (i) means that the candidate � is positive-definite and has an infinitesimal upper 

bound, and the negativity of the derivative of � in (ii) means that the candidate is not increasing 

along system’s trajectory.  
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Infinitesimal Generator ([35]) 

In a Banach space � a one parameter family �(�)∈ �(�),� ∈ ��, is called a semigroup of 

bounded linear operators on � if �(0)= � and the semigroup property �(� + �)= �(�)�(�) for 

every �,� ∈ �� is satisfied. The infinitesimal generator  of the semigroup �(�) is defined as: 

� lim
�→ �

�( )� �
 

Markov Jump Linear System Analysis: 

In order to analyze the system given in (6.8), one can consider the following quadratic Lyapunov 

function: 

���(�),�(�)� = ��(�)���(�)��(�),���(�)� > 0 

 

Let � be the infinitesimal generator of �, defined by its action on compactly-supported twice 

differentiable continuous second derivative functions �(�(�),�(�)) :  

����(�),�(�)� = lim
�→ �

Ε�[�(�(� + Δ),�(� + Δ)|�(�),�(�)] ���(�),�(�)�

Δ
 

 

Let Δ  be a stopping time with Ε�[Δ]< + ∞, and let �(�(�),�(�))  be C2 with compact support. 

Then Dynkin's formula holds: 

Ε�[�(�(� + Δ),�(� + Δ)|�(�),�(�)]= ���(�),�(�)� + Ε� �� ����(�),�(�)�
�

�

��� 

 

It may be seen as a stochastic generalization of the (second) fundamental theorem of calculus. 

 

�(� + ) �(�)≈ �(�) + ���, �(�)= lim
�→ �

�(� + ) �(�)
 

 

Conditioning on  �(�)= � and applying the law of total probability and conditional expectation 

yields (�(� + Δ)= (� + ��Δ)�(�)): 

 

����(�),�(�)� = lim
�→ �

1

Δ
�� Pr{�(� + Δ = �|�(�)= �}��(� + Δ)�(�)�(� + Δ)

�

���

��(�)�(�)�(�)� 
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= lim
�→ �

1

Δ
�� Pr{�(� + Δ = �|�(�)= �}��(�)�� + ��

�Δ��(�)(� + ��Δ)�(�) ��(�)�(�)�(�)

�

���

�

= ��(�)�(�,�)�(�) 

 

�(�,�)= lim
�→ �

1

Δ
� � Pr{�(� + Δ = �|�(�)= �}�� + ��

�Δ��(�)(� + ��Δ)

�

���,���

+ Pr{�(� + Δ = �|�(�)= �}�� + ��
�Δ��(�)(� + ��Δ) �(�)� = 

 

= lim
�→ �

1

Δ
� �

Pr{�(Δ = �,�(0)= �}

Pr{�(0)= �}
�� + ��

�Δ��(�)�� + ��Δ�

�

���,���

+
Pr{�(Δ = �,�(0)= �}

Pr{�(0)= �}
�(�) �(�)� + ��

��(�)+ �(�)�� 

 

lim
�→ �

�
Pr{�(Δ = �,�(0)= �}

Pr{�(0)= �}
� = 1,lim

�→ �

1

Δ
�
Pr{�(Δ = �,�(0)= �}

Pr{�(0)= �}
1� = ��� 

lim
�→ �

1

Δ
�
Pr{�(Δ = �,�(0)= �}

Pr{�(0)= �}
� = ��� 

 

= lim
�→ �

1

Δ
� �

Pr{�(Δ = �,�(0)= �}

Pr{�(0)= �}
���

�Δ�(�)+ �(�)��Δ + ��
�Δ�(�)��Δ�

�

���,���

� + � ����(�)

�

���

+ ��
��(�)+ �(�)�� = 

= � ���

�

���,���

lim
�→ �

���
�Δ�(�)+ �(�)��Δ + ��

�Δ�(�)��Δ� + � ����(�)

�

���

+ ��
��(�)+ �(�)��

= ��
��(�)+ �(�)�� + � ����(�)

�

���,���

 

 

Note that this condition is similar to the famous Lyapunov-Metzler inequality for guaranteeing 

state-dependent switching system stability (see [50]). 

 




