4,015 research outputs found

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    Multi-agent framework based on smart sensors/actuators for machine tools control and monitoring

    Get PDF
    Throughout the history, the evolutions of the requirements for manufacturing equipments have depended on the changes in the customers' demands. Among the present trends in the requirements for new manufacturing equipments, there are more flexible and more reactive machines. In order to satisfy those requirements, this paper proposes a control and monitoring framework for machine tools based on smart sensor, on smart actuator and on agent concepts. The proposed control and monitoring framework achieves machine monitoring, process monitoring and adapting functions that are not usually provided by machine tool control systems. The proposed control and monitoring framework has been evaluated by the means of a simulated operative part of a machine tool. The communication between the agents is achieved thanks to an Ethernet network and CORBA protocol. The experiments (with and without cooperation between agents for accommodating) give encouraging results for implementing the proposed control framework to operational machines. Also, the cooperation between the agents of control and monitoring framework contributes to the improvement of reactivity by adapting cutting parameters to the machine and process states and to increase productivity

    STEP-NC-compliant implementation to support mixed-control technologies applied to stone-processing machines based on industrial automation standards

    Get PDF
    STEP-NC (Standard for the Exchange of Product Model Data–Numerical Control) for metal milling and turning is not implemented by industrial computer numerical controllers. Solutions reported are prototypes based on post-processing in G-code. Moreover, minority machining processes, such as stone cutting, have not yet been contemplated in the STEP-NC standard. This article takes that sector as a use case. An extended STEP-NC model for circular saw stone-cutting operations is proposed, and a prototype automation implementation is developed to work with this extended model. This article shows how modern technological resources for coordinated axes control provided by many industrial controllers for the automation of general-purpose machines can speed up the processes of implementing STEP-NC numerical controllers. This article proposes a mixed and flexible approach for STEP-NC-based machine automation, where different strategies can coexist when it comes to executing STEP-NC machining files, so controllers do not need to implement the standard in an exhaustive way for all the possible features, but only at selected ones when convenient. This is demonstrated in a prototype implementation which is able to process STEP-NC product files with mixed-feature types: standard milling and non-standard sawblade features for stone processing

    Intelligent Machining Systems

    Get PDF
    Machining is one of the most widespread manufacturing processes and plays a critical role in industries. As a matter of fact, machine tools are often called mother machines as they are used to produce other machines and production plants. The continuous development of innovative materials and the increasing competitiveness are two of the challenges that nowadays manufacturing industries have to cope with. The increasing attention to environmental issues and the rising costs of raw materials drive the development of machining systems able to continuously monitor the ongoing process, identify eventual arising problems and adopt appropriate countermeasures to resolve or prevent these issues, leading to an overall optimization of the process. This work presents the development of intelligent machining systems based on in-process monitoring which can be implemented on production machines in order to enhance their performances. Therefore, some cases of monitoring systems developed in different fields, and for different applications, are presented in order to demonstrate the functions which can be enabled by the adoption of these systems. Design and realization of an advanced experimental machining testbed is presented in order to give an example of a machine tool retrofit aimed to enable advanced monitoring and control solutions. Finally, the implementation of a data-driven simulation of the machining process is presented. The modelling and simulation phases are presented and discussed. So, the model is applied to data collected during an experimental campaign in order to tune it. The opportunities enabled by integrating monitoring systems with simulation are presented with preliminary studies on the development of two virtual sensors for the material conformance and cutting parameter estimation during machining processes

    Energy Driven Process Planning and Machine Tool Dynamic Behavior Assessment

    Get PDF
    AbstractThe current work outlines an approach to close the loop between process planning and machine tool dynamic modeling by addressing the problem of energy efficiency across the process design and realization chains, from the process settings and pallet configuration to the machine tool design and usage phases. The proposed closed loop approach consists of an off-line and on-line component enabling the process and equipment dynamic and energy assessment over time. The benefits of the approach have been evaluated against an industrial case study related to the automotive industry

    Reliability Analysis of On-Demand High-Speed Machining

    Get PDF
    Current trends in high-speed machining aim to increase manufacturing efficiency by maximizing material removal rates and minimizing part cycle times. This project explores three related technologies and presents a system design for rapid production of custom machined parts. First a reliability analysis in high-speed machining of thin wall features is put forth with experimental results. Second an implementation of on-demand manufacturing is presented with emphasis on flexibility and automation. Finally innovative manufacturing cell design is used to drive costs down by optimizing material and information flow. The resulting high-speed on-demand machining cell design employs effective techniques to reduce production time, meet changing customer needs, and drive down costs

    Correction of Errors During The Manufacture by Computer Numerical Control (CNC) of Blades for an Axial Hydrokinetic Turbine

    Get PDF
    The design and manufacture of new systems for providing electric power to non-interconnected areas is one of the challenges for engineering. There are several alternatives, including water or wind-power generation systems, where hydrokinetic turbines are highlighted. This work establishes the methodology, identification and correction of errors generated during the manufacture by machining, using CAD/CAPP/CAM techniques, for an axial hydrokinetic turbine. During the manufacturing process, the generation of an error on the edges of the blades was identified, which was attributed to problems in the design of the model since the degrees of freedom of the manufacturing system used were not considered. For the manufacture of complex surfaces in the design of models, the most extreme points of the surfaces in contact must match the tangent edges to ensure that the tools of machining can reach them with the trajectories generated from the CAM

    Construction and management of large-scale and complex virtual manufacturing environments.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN037121 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Acquisition and reconstruction of 3D objects for robotic machining

    Get PDF
    With the evolution of the techniques of acquisition of Three-Dimensional (3D) image it became possible to apply these in more and more areas, as well as to be used for research and hobbyists due to the appearance of low cost 3D scanners. Among the application of 3D acquisitions is the reconstruction of objects, which allows for example to redo or remodel an existing object that is no longer on the market. Another rise tech is industrial robot, that is highly present in the industry and can perform several tasks, even machining activities, and can be applied in more than one type of operation. The purpose of this work is to acquire a 3D scene with low-cost scanners and use this acquisition to create the tool path for roughing a workpiece, using an industrial robot for this machining task. For the acquisition, the Skanect software was used, which had satisfactory results for the work, and the exported file of the acquisition was worked on the MeshLab and Meshmixer software, which were used to obtain only the interest part for the milling process. With the defined work object, it was applied in Computer Aided Manufacturing (CAM) software, Fusion 360, to generate the tool path for thinning in G-code, which was converted by the RoboDK software to robot code, and this also allowed to make simulation of the machining with the desired robot. With the simulation taking place as expected, it was implemented in practice, performing the 3D acquisition machining, thus being able to verify the machining technique used. Furthermore, with the results of acquire, generation of toolpath and machining, was possible to validate the proposed solution and reach a conclusion of possible improvements for this project.Com a evolução das técnicas de aquisição de imagem 3D tornou-se possível aplicá-las em cada vez mais áreas, bem como serem utilizadas por pesquisadores e amadores devido ao surgimento de scanners 3D de baixo custo. Entre as aplicações de aquisições 3D está a reconstrução de objetos, o que permite, por exemplo, refazer ou remodelar um objeto existente que não está mais no mercado. Outra tecnologia em ascensão é o robô industrial, que está muito presente na indústria e pode realizar diversas tarefas, até mesmo atividades de fabrico, e ser aplicado em mais de um tipo de operação. O objetivo deste trabalho é adquirir uma cena 3D com scanners de baixo custo e utilizar esta aquisição para criar o caminho da ferramenta para o desbaste de uma peça, utilizando um robô industrial nesta tarefa de usinagem. Para a aquisição foi utilizado o software Skanect, que obteve resultados satisfatórios para o trabalho, e o arquivo exportado da aquisição foi trabalhado nos softwares MeshLab e Meshmixer, os quais foram utilizados para obter apenas a parte de interesse para o processo de fresagem. Com o objeto de trabalho defino, este foi aplicado em software CAM, Fusion 360, para gerar o caminho de ferramentas para o desbaste em G-code, o qual foi convertido pelo Software RoboDK para código de rôbo, e este também permitiu fazer simulação da maquinação com o rôbo pretendido. Com a simulação ocorrendo de acordo com o esperado, esta foi implementada em prática, realizando a maquinação da aquisição 3D, assim podendo verificar a técnica de maquinação utilizada. Além disso com os resultados de aquisição, geração de toolpath e maquinação, foi possível validar a solução proposta e chegar a uma conclusão de possíveis melhorias para este projeto
    • …
    corecore