6,988 research outputs found

    Real-coded chemical reaction optimization with different perturbation functions

    Get PDF
    IEEE World Congress on Computational Intelligence (WCCI 2012), Brisbane, Australia, 10-15 June 2012 hosted three conferences: the 2012 International Joint Conference on Neural Networks (IJCNN 2012), the 2012 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2012), and the 2012 IEEE Congress on Evolutionary Computation (IEEE CEC 2012)Chemical Reaction Optimization (CRO) is a powerful metaheuristic which mimics the interactions of molecules in chemical reactions to search for the global optimum. The perturbation function greatly influences the performance of CRO on solving different continuous problems. In this paper, we study four different probability distributions, namely, the Gaussian distribution, the Cauchy distribution, the exponential distribution, and a modified Rayleigh distribution, for the perturbation function of CRO. Different distributions have different impacts on the solutions. The distributions are tested by a set of wellknown benchmark functions and simulation results show that problems with different characteristics have different preference on the distribution function. Our study gives guidelines to design CRO for different types of optimization problems. © 2012 IEEE.published_or_final_versio

    An Inter-molecular Adaptive Collision Scheme for Chemical Reaction Optimization

    Full text link
    Optimization techniques are frequently applied in science and engineering research and development. Evolutionary algorithms, as a kind of general-purpose metaheuristic, have been shown to be very effective in solving a wide range of optimization problems. A recently proposed chemical-reaction-inspired metaheuristic, Chemical Reaction Optimization (CRO), has been applied to solve many global optimization problems. However, the functionality of the inter-molecular ineffective collision operator in the canonical CRO design overlaps that of the on-wall ineffective collision operator, which can potential impair the overall performance. In this paper we propose a new inter-molecular ineffective collision operator for CRO for global optimization. To fully utilize our newly proposed operator, we also design a scheme to adapt the algorithm to optimization problems with different search space characteristics. We analyze the performance of our proposed algorithm with a number of widely used benchmark functions. The simulation results indicate that the new algorithm has superior performance over the canonical CRO

    Evalaution and optimization of laser cutting parameters for plywood materials

    Get PDF
    Laser process parameters influence greatly the width of kerfs and quality of the cut edges. This article reports experiments on the laser plywood-cutting performance of a CW 1.5 kW CO2¬ Rofin laser, based on design of experiments (DOE). The laser was used to cut three thicknesses 3, 6 and 9 mm of plywood panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. The aim of this work is to relate the cutting edge quality parameters namely: upper kerf (UK), lower kerf (LK), the ratio between upper to lower kerfs and the operating cost to the process parameters mentioned above. Mathematical models were developed to establish the relationship between the process parameters and the edge quality parameters, and special graphs were drawn for this purpose. Finally, a numerical optimization was performed to find out the optimal process setting at which both kerfs would lead to a ratio of about 1, and at which low cutting cost take place

    An inter-molecular adaptive collision scheme for Chemical Reaction Optimization

    Get PDF
    Optimization techniques are frequently applied in science and engineering research and development. Evolutionary algorithms, as a kind of general-purpose metaheuristic, have been shown to be very effective in solving a wide range of optimization problems. A recently proposed chemical-reaction-inspired metaheuristic, Chemical Reaction Optimization (CRO), has been applied to solve many global optimization problems. However, the functionality of the inter-molecular ineffective collision operator in the canonical CRO design overlaps that of the on-wall ineffective collision operator, which can potential impair the overall performance. In this paper we propose a new inter-molecular ineffective collision operator for CRO for global optimization. To fully utilize our newly proposed operator, we also design a scheme to adapt the algorithm to optimization problems with different search space characteristics. We analyze the performance of our proposed algorithm with a number of widely used benchmark functions. The simulation results indicate that the new algorithm has superior performance over the canonical CRO. © 2014 IEEE.postprin

    Turing patterns in multiplex networks

    Get PDF
    The theory of patterns formation for a reaction-diffusion system defined on a multiplex is developed by means of a perturbative approach. The intra-layer diffusion constants act as small parameter in the expansion and the unperturbed state coincides with the limiting setting where the multiplex layers are decoupled. The interaction between adjacent layers can seed the instability of an homogeneous fixed point, yielding self-organized patterns which are instead impeded in the limit of decoupled layers. Patterns on individual layers can also fade away due to cross-talking between layers. Analytical results are compared to direct simulations

    Real-coded chemical reaction optimization

    Get PDF
    Optimization problems can generally be classified as continuous and discrete, based on the nature of the solution space. A recently developed chemical-reaction-inspired metaheuristic, called chemical reaction optimization (CRO), has been shown to perform well in many optimization problems in the discrete domain. This paper is dedicated to proposing a real-coded version of CRO, namely, RCCRO, to solve continuous optimization problems. We compare the performance of RCCRO with a large number of optimization techniques on a large set of standard continuous benchmark functions. We find that RCCRO outperforms all the others on the average. We also propose an adaptive scheme for RCCRO which can improve the performance effectively. This shows that CRO is suitable for solving problems in the continuous domain. © 2012 IEEE.published_or_final_versio

    Minimal Curvature Trajectories: Riemannian Geometry Concepts for Model Reduction in Chemical Kinetics

    Get PDF
    In dissipative ordinary differential equation systems different time scales cause anisotropic phase volume contraction along solution trajectories. Model reduction methods exploit this for simplifying chemical kinetics via a time scale separation into fast and slow modes. The aim is to approximate the system dynamics with a dimension-reduced model after eliminating the fast modes by enslaving them to the slow ones via computation of a slow attracting manifold. We present a novel method for computing approximations of such manifolds using trajectory-based optimization. We discuss Riemannian geometry concepts as a basis for suitable optimization criteria characterizing trajectories near slow attracting manifolds and thus provide insight into fundamental geometric properties of multiple time scale chemical kinetics. The optimization criteria correspond to a suitable mathematical formulation of "minimal relaxation" of chemical forces along reaction trajectories under given constraints. We present various geometrically motivated criteria and the results of their application to three test case reaction mechanisms serving as examples. We demonstrate that accurate numerical approximations of slow invariant manifolds can be obtained.Comment: 22 pages, 18 figure

    Chemical reaction optimization for the set covering problem

    Get PDF
    The set covering problem (SCP) is one of the representative combinatorial optimization problems, having many practical applications. This paper investigates the development of an algorithm to solve SCP by employing chemical reaction optimization (CRO), a general-purpose metaheuristic. It is tested on a wide range of benchmark instances of SCP. The simulation results indicate that this algorithm gives outstanding performance compared with other heuristics and metaheuristics in solving SCP. © 2014 IEEE.postprin
    corecore