
Title Real-coded chemical reaction optimization

Author(s) Lam, AYS; Li, VOK; Yu, JJQ

Citation IEEE Transactions on Evolutionary Computation, 2012, v. 16 n. 3,
p. 339-353

Issued Date 2012

URL http://hdl.handle.net/10722/155765

Rights IEEE Transactions on Evolutionary Computation. Copyright ©
IEEE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012 339

Real-Coded Chemical Reaction Optimization
Albert Y. S. Lam, Member, IEEE, Victor O. K. Li, Fellow, IEEE, and James J. Q. Yu

Abstract—Optimization problems can generally be classified as
continuous and discrete, based on the nature of the solution space.
A recently developed chemical-reaction-inspired metaheuristic,
called chemical reaction optimization (CRO), has been shown
to perform well in many optimization problems in the discrete
domain. This paper is dedicated to proposing a real-coded version
of CRO, namely, RCCRO, to solve continuous optimization
problems. We compare the performance of RCCRO with a
large number of optimization techniques on a large set of
standard continuous benchmark functions. We find that RCCRO
outperforms all the others on the average. We also propose an
adaptive scheme for RCCRO which can improve the performance
effectively. This shows that CRO is suitable for solving problems
in the continuous domain.

Index Terms—Chemical reaction optimization, continuous op-
timization, metaheuristics.

I. Introduction

WE OFTEN encounter optimization problems in sci-
entific and technological research and development.

Examples include geneticists desire to design the optimal DNA
sequences in order to maximize the reliability of molecular
computation [1], while physicists may be interested in opti-
mally inferring elastic material properties from the observed
deformation data [2]. Economists would like to predict stock
market trends precisely (i.e., minimizing the prediction error)
[3] and electrical engineers might want to schedule power
generation at a power system in order to meet the customers’
demand while minimizing the generation cost [4].

The goal of optimization is to determine the best (or
optimal) element s out of a set of similar ones, S, where s

and S are called a solution and a solution space, respectively.
We always have a variable x to carry a particular solution s

(i.e., to assign x with the values specified by s). The optimality
of x is evaluated by an objective function f and its outcome
is its objective function value y, i.e., y = f (x). x is usually

Manuscript received September 10, 2010; revised April 2, 2011; accepted
June 16, 2011. Date of current version May 24, 2012. This work was supported
in part by the Strategic Research Theme of Information Technology of the
University of Hong Kong. The work of A. Y. S. Lam was also supported in
part by the Croucher Foundation Research Fellowship.

A. Y. S. Lam is with the Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, CA 94720 USA
(e-mail: albertlam@ieee.org).

V. O. K. Li is with the Department of Electrical and Electronic Engineering,
University of Hong Kong, Pokfulam, Hong Kong, and also with the Depart-
ment of Computer Engineering, King Saud University, Riyadh 11451, Saudi
Arabia (e-mail: vli@eee.hku.hk).

J. J. Q. Yu is with the Department of Electrical and Electronic Engineering,
University of Hong Kong, Pokfulam, Hong Kong (e-mail: jamesyjq@hku.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2011.2161091

a vector of n components, where n specifies the dimensions
of f , while y is a scalar. An optimization problem can be
subject to certain constraints (assume there are m constraints),
c1(x), c2(x), . . . , cm(x), which confine s to S. In other words,
the constraints decide if s is feasible to be included in S (i.e.,
if s is a feasible solution). Thus, c1(x), c2(x), . . . , cm(x) define
the size and scope of S and f characterizes the “landscape”
of S. Our objective can be to either maximize or minimize f .
Without loss of generality, we assume minimization through-
out this paper. Then we aim to find the minimum solution
s∗ ∈ S such that f (s∗) ≤ f (s), ∀s ∈ S. Mathematically, a
minimization problem can be stated as

min
x∈Rn

f (x) subject to

{
ci(x) = 0, i ∈ E

ci(x) ≤ 0, i ∈ I
(1)

where R, E, and I symbolize the real number set, the index
set for equality constraints, and the index set for inequality
constraints, respectively.

In general, the solution space of any optimization problem
is either a continuous or discrete domain. Continuous opti-
mization assumes that x can take any real numbers within the
intervals specified by the problem (i.e., through the constraints)
while discrete optimization is restricted to discrete numbers.
The continuity of f sometimes provides additional information
about the locations of the optimums, e.g., the derivatives f ′

give us the direction of the optimal solution (i.e., the downhill
direction) relative to the current search point. Traditional
derivative-based optimization techniques include steepest de-
scent, Newton’s method, and others [5]. They are powerful and
effective but suffer from a common drawback that they easily
get stuck in local optimums. This makes them inapplicable
to multimodal, nonlinear, or discrete optimization problems.
We are interested in derivative-free techniques which are
suitable to be applied to all kinds of optimization problems.
Such methods are usually referred to as metaheuristics. Many
successful ones are nature-inspired, e.g., simulated annealing
(SA) [6], genetic algorithm (GA) [7], ant colony optimization
(ACO) [8], particle swarm optimization (PSO) [9], and others.
Their basic optimization philosophies do not limit them to
either continuous or discrete optimization, but they are always
focused on either continuous or discrete types in their original
designs. Then researchers tried to extend their ideas to adapt
the algorithms to the other type so that they become truly
general-purpose.

SA was originally proposed in [6] for combinatorial opti-
mization.1 Then it was modified to be applicable to problems

1Combinatorial optimization is a branch of discrete optimization and it
mainly focuses on graphs, matroids, and other discrete structures [10].

1089-778X/$31.00 c© 2012 IEEE

340 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

in the continuous domains in [11]. In the original GAs [12],
each solution of a problem is carried by a chromosome, which
is a sequence of binary numbers. Thus, an encoding scheme is
required to make a solution fit the structure of a chromosome.
Generally, the encoding schemes allow solutions in any do-
mains to be mapped to binary strings. Real-coded GAs, whose
chromosomes can take real numbers, were designed and it is
shown that for real-valued optimization problems, floating-
point representations are superior to binary representations
since they are more consistent, more precise, and lead to faster
execution [13]. Like SA, ACO was originally designed for
combinatorial problems and it determines a solution according
to a discrete probability distribution [14]. It was extended
to continuous problems by generating new solutions with
a probability density function instead [15]. PSO was first
proposed to be continuous-valued [16]. By considering the
velocity on each dimension as a probability of changing a bit,
a discrete version of PSO was developed in [17].

A chemical reaction-inspired metaheuristic, called chemical
reaction optimization (CRO), was recently proposed in [18].
In a chemical reaction, the initial species (i.e., reactants)
in the high-energy unstable states undergo a sequence of
collisions, pass through some energy barriers, and become
the final products in low-energy stable states. CRO captures
this phenomenon of driving high-energy molecules to stable
states through various types of elementary reactions. CRO has
been demonstrated to be a successful optimization algorithms
with many applications [18]–[24] and most of them are
combinatorial problems. In other words, the current version
of CRO is designed to work in the discrete domain. As other
natural-inspired algorithms (e.g., SA, GA, ACO, and PSO)
have been shown to work well in both continuous and discrete
domains, this paper is dedicated to an extension of CRO to
continuous problems. We call this version of CRO real-coded
CRO (RCCRO). Moreover, the no-free-lunch theorem states
that all metaheuristics which search for extrema are exactly
the same in performance when averaged over all possible
objective functions [25]. Hence, CRO must possess the same
ability in solving optimization problems as the others and we
desire to evaluate how RCCRO performs with a board range
of continuous problems. We will examine the performance of
RCCRO with a large set of continuous benchmark problems.

The rest of this paper is organized as follows. Section II
briefly gives the original framework of CRO. In Section III,
we explain the modifications to the original CRO to adapt
it to the continuous domain and we also propose an adaptive
scheme for RCCRO. We describe the benchmark problems and
compare the simulation results of the basic RCCRO scheme
with those of some existing continuous metaheuristics and
include a comparison among various versions of RCCRO in
Section IV. We conclude this paper and suggest potential
future work in Section V.

II. Framework of Chemical Reaction Optimization

A. Molecules

The manipulated agents are molecules. Each molecule con-
tains a profile of several properties of the molecule, including:

1) the molecular structure ω; 2) (current) potential energy
(PE); 3) (current) kinetic energy (KE); and 4) some optional
attributes. The optional attributes can be used to construct
other versions of CRO for particular problems provided that
the implementations meet the characteristics of the elementary
reactions (explained in Section II-B). Users can remove any
of these or add some more to suit the designs of their own
operators. The meanings of the necessary attributes in the
profile are given as follows.

1) Molecular Structure: ω actually represents the solution
currently held by a molecule. There is no specific requirement
on the configuration of ω. Depending on the problem, it can
be in the form of a number, a vector, a matrix, or even a graph.

2) Current PE: PE is the objective function value of the
current molecular structure ω, i.e., PEω = f (ω).

3) Current KE: KE can be thought of as the current
tolerance for the molecule to hold a worse molecular structure
with higher PE than the existing one.

B. Elementary Reactions

There are four types of elementary reactions, consisting
of the: 1) on-wall ineffective collision; 2) decomposition;
3) intermolecular ineffective collision; and 4) synthesis. All of
them are triggered by collisions and a successful completion
of an elementary reaction (subject to the energy limitation)
results in an internal change of a molecule (i.e., updated
attributes in the profile). In other words, we explore the
solution space through a sequence of elementary reactions.
They have different characteristics and the details are shown
in the following sections.

1) On-Wall Ineffective Collision: An on-wall ineffective
collision takes place when a molecule hits a wall of the
container and then bounces back. This reaction is not vigorous
and there is only a small change to its molecular structure ω

and PE. This can be thought as the molecule tries to transform
ω to ω′ in the neighborhood of ω, that is

ω′ = N(ω)

where N(·) is the neighborhood search operator which returns
a member from the neighborhood of the operand. Since this
reaction involves an interaction with an external substance
(i.e., a wall of the container), a certain portion of its KE will be
extracted and stored in the central energy buffer (buffer) when
the transformation is complete. The size of KE loss depends
on a random number a ∈ [KELossRate, 1], where KELossRate
is a parameter of CRO. Its KE is updated with

KEω′ = (PEω − PEω′ + KEω) × a.

It is possible for a molecule with lower PE to transform
into one with higher PE, corresponding to a worse solution,
provided it has enough KE to begin with. This transformation
may be desirable to allow the algorithm to escape from a local
minimum. After experiencing collision, the molecule has less
KE. In this way, its tolerance of getting a worst solution is
lower and its ability of escaping from local minima diminishes.

LAM et al.: REAL-CODED CHEMICAL REACTION OPTIMIZATION 341

2) Decomposition: In a decomposition, a molecule ω

hits a wall of the container and then breaks into two or
more molecules (assume two, e.g., ω′

1 and ω′
2, in our im-

plementation in this paper). When compared with the on-
wall ineffective collision, the decomposition is more vigorous
and the molecular structures of the resultant molecules have
greater differences from that of the original one. This can be
considered as the situation when we finish the local search
in the region around ω and decide to explore other regions
corresponding to ω′

1 and ω′
2. Due to the conservation of energy

(explained in Section II-C), ω may sometimes not have enough
energy (both PE and KE) to sustain its transformation into ω′

1
and ω′

2. A certain portion of energy in buffer accumulated
from antecedent on-wall ineffective collisions can be utilized
to support the change.

3) Intermolecular Ineffective Collision: An intermolecular
ineffective collision occurs when two or more molecules
collide with each other and then separate. The number of
molecules involved in this collision subsystem remains un-
changed after the collision. The more the number of molecules
involved, the more energy in the subsystem, and thus, the
more flexibility for the molecules to modify their molecular
structures. In our implementation in the simulation, we assume
only two molecules, e.g., with molecular structures ω1 and ω2,
involved. Similar to the on-wall ineffective collision, this col-
lision is also not vigorous and the new molecular structures ω′

1
and ω′

2 are produced from their own neighborhoods separately,
that is

ω′
1 = N(ω1) and ω′

2 = N(ω2).

4) Synthesis: A synthesis refers to the situation when two
or more molecules (also assume two with ω1 and ω2) collide
and combine to form one new single molecule. The change
is vigorous and the resultant molecular structure ω′ is greatly
different from ω1 and ω2. This implies that we give up the
search regions around ω1 and ω2 and start the search again in
a new territory of S.

C. Energy Handling

Energy handling is one of the unique features of CRO.
Energy is allowed to transform from one type to another type
but all energy manipulations must follow the conservation
of energy, which states that energy can be neither created
nor destroyed. Consider the general form of the elementary
reaction as follows:

ω1 + . . . + ωk → ω′
1 + . . . + ω′

l (2)

where k and l are the numbers of molecules involved before
and after a change, respectively. For example, k = 1 and
l = 2 correspond to the implementation of decomposition in
Section II-B2. The corresponding energy equation of (2) is

(PEω1 + . . . + PEωk
) + (KEω1 + . . . + KEωk

) + buffer︸ ︷︷ ︸
before the change

= (PEω′
1

+ . . . + PEω′
l
) + (KEω′

1
+ . . . + KEω′

l
) + buffer′︸ ︷︷ ︸

after the change

. (3)

With the conservation of energy, the total sum of energy
before and after the change indicated by (2) is identical. Uni-
molecular reactions involve a single molecule hitting a wall of
the container, transferring some of its energy to the central en-
ergy buffer, and thus the uni-molecular reactions involve buffer
and buffer’. However, the intermolecular reactions which take
place in the interior of the container without hitting its walls
do not involve buffer and buffer’. PE directly corresponds to a
solution ω while KE and buffer indirectly place restrictions on
a transition of a solution. To carry out an elementary reaction,
we can first assume that new molecules can be formed by
the operators of respective elementary reactions and compute
their PE. Then we can determine if the existing molecules
with molecular structures ω1, . . . , ωk are replaced by the new
molecules with ω′

1, . . . , ω′
l by examining the general new

solution acceptance rule (for simplicity, we do not consider
buffer here) as follows:∑

ω

PEω +
∑

ω

KEω︸ ︷︷ ︸
existing molecules

−
∑
ω′

PEω′

︸ ︷︷ ︸
new molecules

≥ 0. (4)

Consider a simple example with k = l = 1: ω → ω′. Then we
have the new solution acceptance rule: PEω +KEω −PEω′ ≥ 0.
If PEω ≥ PEω′ , ω′ is always accepted. Otherwise, the accep-
tance depends on KEω. We can see that the function of KE
is to give tolerance for the molecule to get a new molecular
structure with higher PE.

The total energy of the whole system (PE and KE of
the molecules and buffer) is the same at any instance. This
total amount is determined by the initial (incontrollable) PE
of the initial set of molecules, the (controllable) initial KE
(initialKE)2 assigned to the initial set of molecules, and the
initial buffer.3 This total affects the convergence speed and the
possibility of getting the global minimum.

D. Algorithm

Imagine that we have a certain number of molecules in
a container. They collide, interact, combine, decompose, and
finally become stable in the end. The whole process is what we
try to mimic with CRO. The flow chart of CRO can be found
in [18] and it consists of three stages: initialization, iterations,
and the final stage. In initialization, we configure the initial
settings for the molecules and the parameters (i.e., PopSize,
KELossRate, MoleColl, buffer, InitialKE, α, and β). We create
the initial molecule set with size equal to PopSize by ran-
domly generating solutions in the solution space. Their initial
PEs are determined by their corresponding objective function
values while their initial KEs are set to InitialKE. In each
iteration, there is one elementary reaction taking place. We
first determine whether it is a uni-molecular or intermolecular
reactions by comparing a random number b ∈ [0, 1] against
MoleColl. If b > MoleColl or there is only one molecule left,
we will have a uni-molecular reaction. Otherwise, an inter-
molecular reaction happens. For each uni-molecular reaction,

2initialKE is a parameter of CRO.
3buffer is a parameter of CRO and its initial value is usually assigned to

zero.

342 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

we randomly choose one molecule and check if it satisfies
the decomposition criterion: (number of hits − minimum hit
number) > α, where α can be interpreted as the tolerance of
duration for the molecule without obtaining any new local
minimum solution. If so, the molecule will experience a
decomposition, else it will take an on-wall ineffective collision.
For each intermolecular reaction, two (or more) molecules are
selected and they are tested against the synthesis criterion:
(KE≤ β), where β can be considered as the minimum KE
a molecule should have. If it is satisfied by all the selected
molecules, they combine through synthesis. Otherwise, they
experience an intermolecular ineffective collision. We can see
that molecules with too little KE always get stuck in local
minima and synthesis transforms the inactive molecules into an
active one. Interested readers may refer to [18] which contains
pseudocodes to facilitate the implementation.

III. Real-Coded Implementation

A. Modifications

Only three modifications are required to make CRO suitable
for solving continuous optimization problems.

1) Solution Representation: Every solution s in a con-
tinuous search space is a real number vector, i.e., s =
[s(1), . . . , s(i), . . . , s(n)], where n is the dimension of the
problem. s(i) is usually a floating-point number in the range of
[l(i), u(i)], where l(i) and u(i) are the lower and upper bounds
of the ith dimension, respectively. Thus, a molecular structure
ω = [ω(1), . . . , ω(i), . . . , ω(n)] should be able to carry such a
solution representation and each ω(i) should be implemented
with a floating-point type.

2) Neighborhood Search Operator: Besides the solution
representation, the main concern for RCCRO is how to deal
with the continuity of solutions. If we examine the search
philosophy of CRO more carefully, the continuity does not
influence diversification much but will affect intensification.
Both elementary reactions for intensification, i.e., the on-
wall and intermolecular ineffective collisions, pick a solution
from the neighborhood of the existing one. Therefore, we
only need to incorporate the continuity search ability into the
neighborhood search operator to develop RCCRO.

Evolutionary programming or similar algorithms for real-
valued continuous optimization add perturbations to existing
solutions to generate new ones [26]. We adopt a similar
approach to modify the neighborhood search operator N(·).
Assume that the problem we are solving does not place any
constraints on relating the solution variable of one dimension
to that of another.4 We can treat ω(i) independently, and thus,
we have

ω′(i) = N(ω(i)) = ω(i) + δ(i) (5)

where δ(i) is a perturbation for the ith dimension. There are
many probability distributions on which N(·) can be based
to produce probabilistic perturbations, e.g., Gaussian, Cauchy,

4This assumption is valid for all the benchmark problems tested in Sec-
tion IV.

Lévy, lognormal, exponential, Student’s T [27], and others. In
this paper, we employ the Gaussian distribution, which is the
most commonly used distribution in the related field, to test
CRO’s ability to solve continuous optimization problems. Its
probability density function is expressed as

fpdf (x) =
1√

2πσ2
e

−(x−μ)2

2σ2 (6)

where μ and σ2 are the mean and variance, respectively. Let
�(i) be a random variable to model δ(i), we have

�(i) ∼ N (μ, σ2). (7)

Moreover, a perturbation can be represented by three compo-
nents, i.e., the starting point, the direction, and the step size.
The starting point of δ from an existing solution ω is ω itself.
If we do not have any additional information about the location
of the global minimum, we normally have no preference for
which direction to go for playing safe. Due to the symmetrical
property of the Gaussian distribution, setting μ = 0 will result
in generating δ from ω in all directions with equal probability.
Moreover, σ influences how wide (6) spreads from μ. The
larger σ is, the higher the probability a larger δ is generated.
Thus, we have σ controlling the step size. Hence, we have

ω′(i) = ω(i) + N (0, σ2). (8)

The step size affects the performance of the algorithm. De-
pending on the characteristics of the problem, different values
of σ should be adopted. Therefore, σ becomes a parameter
of RCCRO. In the rest of this paper, σ or StepSize will be
used interchangeably. This neighborhood search operator is
employed for on-wall and intermolecular ineffective collisions
(and the decomposition function in the simulation in Sec-
tion IV). Readers may refer to the pseudocodes in [18] to build
the two ineffective collisions with this Gaussian neighborhood
search operator being substituted.

3) Boundary Constraint Handling: A real-valued con-
tinuous optimization problem is usually bounded. In other
words, partial solution si can only take a value in the interval
[li, ui]. However, the Gaussian neighborhood search operator
introduced in Section III-A2 may sometimes take a molecule
out of the boundaries. There are many ways to handle the
boundary constraints and the most popular ones are the random
approach, the absorbing approach, and the reflecting approach
[28]. In this paper, we adopt two schemes for CRO to handle
the boundary constraints. The first one is the reflecting scheme
(RS) used in [29] which treats a boundary as a mirror and
reflects ω back by the same amount of violation from the
boundary. We produce a boundary-constraint-violation-free ω′

from ω by

ω′(i) =

{
2 × l(i) − ω(i), ifω(i) < l(i)
2 × u(i) − ω(i), ifω(i) > u(i).

(9)

RS usually results in solutions away from the boundaries
and it may have worse performance when the optimal solu-
tions reside on the boundaries. Therefore, we also implement
another scheme called hybrid scheme (HS) which combines

LAM et al.: REAL-CODED CHEMICAL REACTION OPTIMIZATION 343

the absorbing and reflecting approaches [30]. We produce ω′

by

ω′(i) =

⎧⎪⎪⎨
⎪⎪⎩

l(i), if (t ≤ 0.5) AND (ω(i) < l(i))
u(i), if (t ≤ 0.5) AND (ω(i) > u(i))
2 × l(i) − ω(i), if (t > 0.5) AND (ω(i) < l(i))
2 × u(i) − ω(i), if (t > 0.5) AND (ω(i) > u(i))

(10)

where t is a random number drawn from [0, 1]. In this case,
we will not omit solutions along the boundaries. We will
evaluate the performance of CRO with these two schemes
in Section IV. There are other sophisticated methods for
boundary constraint handling, e.g., periodic mode in [31],
boundary search in [32], and others. We leave the dedicated
boundary constraint study for RCCRO for future research.

B. Other Implementation Details

For completeness, the following explains some implemen-
tation details of RCCRO in the simulation in Section IV.

1) Decomposition Operator: We apply “half-total-change”
used to solve channel assignment problem in [18] to our
implementation of RCCRO. We add perturbations to n

2 vari-
ables of the original solution to create new solutions, where
n is the dimension of the problem. The following pseudocode
illustrates how to produce two new solutions from an existing
one, i.e., line 1 of pseudocode “decompose(M, buffer)” in [18].

gen 2 new molecules(M)
Input: a solution ω.
1. Duplicate ω to produce ω′

1 and ω′
2

2. for change = 1 to n
2 do

3. Get i and j randomly in the set {1, . . . , n}
4. Add random perturbations to ω′

1(i) and ω′
2(j)

5. end for
6. Output ω′

1 and ω′
2

2) Synthesis Operator: Similar to decomposition, we apply
“probabilistic select” used in [18] to implement synthesis for
the simulation in Section IV. We try to combine two solutions
ω1 and ω2 into a new one ω′. We assign each component of ω′

with the one in the same position of either ω1 or ω2 randomly.
The following pseudocode demonstrates line 1 of pseudocode
“synthesis(M1, M2) in [18].

combine 2 molecules(M)
Input: solutions ω1 and ω2.
1. for i = 1 to n do
2. Get t randomly in [0, 1]
3. if t > 0.5 then
4. ω′(i) is set to ω1(i)
5. else
6. ω′(i) is set to ω2(i)
7. end if
8. Output ω′

Recall that synthesis aims at combining two (or more)
molecules into one. The effect is similar to the result of a

recombination (crossover) operator used in many other evolu-
tionary algorithms. In general, a crossover is a mechanism for
different agents (e.g., chromosomes in GA) to share informa-
tion and to produce new solutions by inheriting their features.
In [33], a taxonomy of many effective recombination operators
for real parameter optimization is given. [34] also states
that hybrid crossover operators can improve the performance.
However, the main purpose of synthesis is to accumulate
the energy from some energy-deficient molecules (see the
definition of the synthesis criterion in Section II-D) so that
the resultant molecule has sufficient energy to explore other
search regions after a synthesis. In other words, synthesis im-
plements exploration (i.e., diversification). A molecule which
lacks energy will get stuck in a local minimum and synthesis
is a way to produce a molecule with enough energy by
combination. Although a new “offspring” solution is created
by using the features from its “parent” molecules, the primary
concern is the matter of energy. On the contrary, the focus of
a recombination operator in general is on exploitation (i.e., in-
tensification). Moreover, synthesis is triggered less frequently
(only when energy-deficient molecules meet) when compared
to a crossover used in a general evolutionary algorithms (in
which crossover is called many times in each generation).
These are the main differences between synthesis in RCCRO
and recombination in other evolutionary algorithms.

BLX-α is one of the best crossover operators tested in [33]
and it was proved to enhance diversity when α is larger than
(
√

3 − 1)/2 [35]. In order to test if a recombination operator
will help, we also implement BLX-0.5 and compare with our
basic scheme “probabilistic select” in Section IV.5

3) Negative Objective Function Value Handling: In CRO,
objective function values are modeled as energy. The former
can be negative in some problems6 while the latter must be
non-negative. To ease this contradiction, we add an offset to
the objective function to make all possible objective function
values non-negative, i.e., f ′ = f + offset ≥ 0. It is always
possible as there must exist a positive number ξ ≥ | min f |.
Offset can be any ξ. As the global minimums of most con-
tinuous benchmark problems are known, the easiest way is to
set offset equal to the global minimum. In our simulation in
Section IV, offset is applied and equal to the absolute value
of the global minimum when the global minimum is known
to be negative. In practice, when the global minimum of a
problem is not known in advance, one can assign offset with
a reasonable large positive value. For example, after a few
evaluations of the problem (i.e., obtaining several objective
function values with some random feasible solutions), we get
an objective function value f of a feasible solution (e.g., the
maximum one of the random solutions). Normally, assigning
a value equal to 1000 × |f | to offset is enough.

In fact, the above manipulation is to make “energy” mean-
ingful as negative energy is not realistic in a chemical reaction.
Besides, we can handle negative objective values by the
“programming” approach. If we inspect (4) carefully, it can

5In [33]’s terminology, “probabilistic select” and BLXα are classified as
a discrete crossover operator and a neighborhood-based crossover operator,
respectively.

6Some benchmark problems used in Section IV can take negative values.

344 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

be rearranged into(∑
ω

PEω −
∑
ω′

PEω′

)
+

∑
ω

KEω ≥ 0.

It means that a change is accepted provided that the difference
of PE before and after an elementary reaction together with
the KE before the reaction is nonnegative. For the PE terms
in the bracket, we only examine the difference of energy.
In other words, negativity of PE does not affect (4). When
programming RCCRO (or CRO in general), one can allow
negative PE (i.e., negative objective function values)7 and
handle the energy difference in (4).

C. Adaptive Scheme

Algorithm parameter adjustment is crucial to the success of
an algorithm in solving a problem. It may take a significant
effort to find a combination of parameter values for an algo-
rithm with satisfactory performance. The whole process from
choosing an algorithm to successfully obtaining a good solu-
tion to a problem will become more efficient if the algorithm
can adapt to the problem by self-adapting its parameters to
fit the problem. Research on adaptation mechanisms has been
flourishing since 1967, and [36] is one of the earliest work
in this area. One of the most intensely studied parameters is
the mutative step size, see σ in (7). Here, we propose the first
adaptive scheme for RCCRO by adapting σ to a problem.

In the original proposal of RCCRO (i.e., the basic scheme
in Section IV-D), σ is a fixed value during the whole course of
RCCRO and it is problem-dependent (i.e., it should be set to
different values for different problems to get the best perfor-
mance). In Section IV, we try to fix σ for each category of the
problems. However, if σ is too large for a particular problem,
the algorithm may not investigate each region thoroughly (due
to ineffective collisions), fail to locate the minimum of the
region, and jump to other regions rashly. If σ is too small,
the algorithm will become highly inefficient. To adapt to a
problem, we try to assign the initial value of σ with a value
equal to the range of the solution space of the problem (i.e.,
u − l in Section III-A1). This ensures that the algorithm will
not be too inefficient and too randomized to shuttle around the
search space. When the algorithm is running, we try to refine
the perturbations so that it searches each region in more details
gradually. To do this, in each fixed interval (�), we decrease
σ by a fixed factor (θ), i.e., σ ← σ × θ. This logarithmic
decrease can avoid overly aggressive refinements.

Recall that the purpose of an adaptive scheme is to avoid
explicit parameter tuning so that the effort spent on parameter
tuning of an algorithm can be reduced. In the above scheme,
we try to reduce the effort to tune σ, but it seems that we
introduce two more parameters (� and θ) while “removing”
σ. However, � and θ are generally fixed for all problems while
σ needs to be tuned for different problems. We actually reduce
the exertion of parameter tuning for RCCRO.

7Note that KE should still be nonnegative. Since KE is an artificial term of
CRO, independent of problems, we still insist on nonnegativity of energy for
KE.

IV. Simulation Results

A. Benchmark Functions

In order to have a comprehensive evaluation of RCCRO on
problems in the continuous domain, we test the performance
of RCCRO with a large set of standard benchmarks used in
[37]. These benchmarks are listed in Table I which contains
their dimension sizes, their feasible solution space S, and the
objective function values of their global minimums fmin.

There are 23 benchmark functions in total, classified into
three categories according to their characteristics.

1) Unimodal Functions: This group consists of functions
f1–f7 and they are high-dimensional. There is only one
global minimum in each of the functions. They are
relatively “easy” to solve when compared with those in
the next group.

2) High-Dimensional Multimodal Functions: This group is
composed of functions f8–f13. They are high-dimensional
and contain many local minimums. They are considered
as the most difficult problems in the benchmark set.

3) Low-Dimensional Multimodal Functions: This group in-
cludes functions f14–f23. They have lower dimensions
and have fewer local minimums than the previous group.

B. Experimental Setting

All simulations are performed on the same personal com-
puter with Intel Core Quad 2.66 GHz CPU and 4 GB of RAM.
RCCRO is implemented with CROToolbox [38] available at
[39] in Windows 7 environment.

C. Parameter Tuning

Parameter settings affect an algorithm’s performance. With-
out suitable parameters, the algorithm may result in bad
simulation results. Recall that there are eight parameters in
RCCRO (i.e. PopSize, StepSize, buffer, InitialKE, MoleColl,
KELossRate, α, and β). A complete evaluation on all possible
combinations of the parameters is impractical.

Our goal is to assign parameter values to RCCRO with
relatively good performance for the 23 benchmark functions.
Each function has its own characteristics and a single param-
eter value combination is hardly suitable for every function.
However, configuring a good combination for each function is
too purposive and may lead to unfair comparison with the
counterparts in the next sections. As the benchmark set is
generally divided into three categories (i.e., unimodal, high-
dimensional multimodal, and low-dimensional multimodal),
we try to determine a parameter value combination generally
suitable for each category. As in [37], we select some functions
out of each categories as representatives: f1 and f2 for
Category I, f10 and f11 for Category II, f21, f22, and f23 for
Category III. We will use these representatives for parameter
tuning.

We tune the parameters in an ad hoc manner. We test the
performance with certain parameter value combinations and
and each simulation run terminates when a certain number of
function evaluations (FEs) have been reached. The FE limits
of RCCRO for different functions are listed in Table II. For
each category, we first determine the “initial” combination

LAM et al.: REAL-CODED CHEMICAL REACTION OPTIMIZATION 345

TABLE I

23 Benchmark Functions

346 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

Fig. 1. Parameter tuning for f1. (a) PopSize. (b) StepSize. (c) buffer. (d) InitialKE. (e) MoleColl. (f) KELossRate. (g) α. (h) β.

Fig. 2. Parameter tuning for f10. (a) PopSize. (b) StepSize. (c) buffer. (d) InitialKE. (e) MoleColl. (f) KELossRate. (g) α. (h) β.

for tuning (shown in Table III) by running RCCRO on the
representative functions with random parameter values for a
few times. Then, based on the “initial” parameter values, we
adjust the parameters, one at a time, in the order given in
Table III. For each parameter, we select some values for testing
and we perform 100 runs for each of the chosen values. We
compare the averages of the sets of 100 runs among the chosen
values and select the one with the smallest averaged objective
values. We run the tests for all the representative functions.
To enhance readability, we only provide the averages of the
parameter values for f1, f10, and f21, one for each function
category. They are shown in Figs. 1–3 and the best values are
circled. After confirming the appropriate value for a particular
parameter, we replace the corresponding one in the initial
combination with the new value and then we proceed to the
next parameters with the amended combination. For example,
we tune the parameters with f21 (see Fig. 3). The initial com-
bination for Category III is [25, 2, 108, 106, 0.2, 0.2, 1000, 0]
(see Table III). With other parameters fixed, we vary the
values of PopSize and the best value is found to be
100, and then we update the parameter combination to

[100, 2, 108, 106, 0.2, 0.2, 1000, 0]. Next we utilize the new
combination to tune StepSize. After tuning, the next com-
bination becomes [100, 0.5, 108, 106, 0.2, 0.2, 1000, 0]. The
process continues until we have updated β. Note that the above
procedure does not guarantee that the tuned parameter com-
bination maximizes the performance for solving a particular
function unless we try all possible combinations. We aim to
determine a good combination so that RCCRO can sustain
satisfactory performance.

After the tuning process, we obtain a parameter value com-
bination for each representative function, listed in Table III.
Then we need to decide a final combination for each function
category. Sometimes there are some discrepancies between
the tuned combinations for the representative functions in a
category. For example, we get StepSize equal to 0.1 and 0.01
for f1 and f2 in Category I, respectively. We choose the
one for the smaller function index, and in this example, we
pick 0.1. In this way, we fix a final combination for each
category. Moreover, since the ranges of the solution spaces
for f8 and f11 are exceptionally larger than the rest in the
same category, we keep StepSize equal to 300 and 15 for f8

LAM et al.: REAL-CODED CHEMICAL REACTION OPTIMIZATION 347

Fig. 3. Parameter tuning for f21. (a) PopSize. (b) StepSize. (c) buffer. (d) InitialKE. (e) MoleColl. (f) KELossRate. (g) α. (h) β.

TABLE II

Number of FEs for Functions f1–f23

Function RCCRO GA FEP CEP FES CES PSO GSO RCBBO DE CMAES G3PCX
f1 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000
f2 150 000 150 000 200 000 200 000 200 000 200 000 150 000 150 000 200 000 150 000 150 000 150 000
f3 250 000 250 000 500 000 500 000 500 000 500 000 250 000 250 000 500 000 250 000 250 000 250 000
f4 150 000 150 000 500 000 500 000 500 000 500 000 150 000 150 000 500 000 150 000 150 000 150 000
f5 150 000 150 000 2 000 000 2 000 000 2 000 000 2 000 000 150 000 150 000 500 000 150 000 150 000 150 000
f6 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000
f7 150 000 150 000 300 000 300 000 300 000 300 000 150 000 150 000 300 000 150 000 150 000 150 000
f8 150 000 150 000 900 000 900 000 900 000 900 000 150 000 150 000 300 000 150 000 150 000 150 000
f9 250 000 250 000 500 000 500 000 500 000 500 000 250 000 250 000 300 000 250 000 250 000 250 000
f10 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000
f11 150 000 150 000 200 000 200 000 200 000 200 000 150 000 150 000 300 000 150 000 150 000 150 000
f12 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000
f13 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000 150 000
f14 7500 7500 10 000 10 000 10 000 10 000 7500 7500 10 000 7500 7500 7500
f15 250 000 250 000 400 000 400 000 400 000 400 000 250 000 250 000 100 000 250 000 250 000 250 000
f16 1250 1250 10 000 10 000 10 000 10 000 1250 1250 10 000 1250 1250 1250
f17 5000 5000 10 000 10 000 10 000 10 000 5000 5000 10 000 5000 5000 5000
f18 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000
f19 4000 4000 10 000 10 000 10 000 10 000 4000 4000 10 000 4000 4000 4000
f20 7500 7500 20 000 20 000 20 000 20 000 7500 7500 20 000 7500 7500 7500
f21 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000
f22 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000
f23 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000 10 000

and f11, respectively, but StepSize for the other functions in
Category II are still set to 1.

Note that the above procedures for parameter tuning does
not guarantee the tuned parameter combinations will maximize
RCCRO’s performance in solving the test functions. Here, we
try to give a preliminary empirical study which may serve
as a guide to suggest parameter values for RCCRO when
it is applied to other problems similar to the test functions.
To have a better analysis on the choice of parameter values
for RCCRO, we can apply the relevant estimation and value
calibration method [40], [41] but we leave this detailed study
for future research.

D. Comparisons

In Section III, we have two approaches to handle the
boundary constraints, i.e., (9) and (10), and two approaches for
synthesis, i.e., “probabilistic select” and “BLX-0.5.” Moreover,

we try to make RCCRO adaptive. Thus, we have several
versions of RCCRO for comparison.

1) RCCRO1: We utilize the neighborhood search operator
(8), boundary constraint handling (9), decomposition op-
erator “half-total-change,” and synthesis operator “prob-
abilistic select.” We also call this version the “basic
scheme.”

2) RCCRO2: This version is identical to the basic scheme,
except that the boundary constraint handling is replaced
by (10).

3) RCCRO3: This version is identical to the basic scheme,
except that the synthesis operator is replaced by BLX-0.5.

4) RCCRO4: This is the adaptive scheme discussed in
Section III-C with � and θ set to 100 FE and 0.99,
respectively.

We will first compare the basic scheme with other rep-
resentative evolutionary algorithms. Then we will study if

348 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

TABLE III

Parameter Tuning for the Representative Functions in Each Category

Category I Category II Category III
Order Parameter Initial f1 f2 Final Initial f10 f11 Final Initial f21 f22 f23 Final
1 PopSize 10 10 10 10 10 20 20 20 25 100 100 100 100
2 StepSize 0.1 0.1 0.01 0.1 1.5 1 15 1a 2 0.5 0.5 0.5 0.5
3 buffer 1E+6 0 0 0 1E+8 1E+5 1000 1E+5 1E+8 0 0 0 0
4 InitialKE 1000 1000 1000 1000 1E+6 1E+07 1000 1E+7 1E+6 1000 1000 1000 1000
5 MoleColl 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
6 KELossRate 0.9 0.1 0.1 0.1 0 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1
7 α 1.5E+5 1.5E+5 1.5E+5 1.5E+5 2000 1.5E+5 1.5E+5 1.5E+5 1000 500 500 500 500
8 β 0 10 10 10 0 0 10 10 0 10 10 10 10
a 300 for f8 and 15 for f11.

TABLE IV

Average Computation Time

Function Time (s)
f1 0.063
f2 0.068
f3 0.095
f4 0.078
f5 0.123
f6 0.165
f7 0.088
f8 0.533
f9 0.443
f10 0.335
f11 0.553
f12 0.295
f13 0.308
f14 0.008
f15 0.152
f16 0.005
f17 0.005
f18 0.007
f19 0.009
f20 0.013
f21 0.006
f22 0.006
f23 0.007

the modifications to the basic scheme help improve the
performance.

1) Basic Scheme and Other Algorithms: We perform
simulations on the benchmark functions with RCCRO1 and
compare the results with GA, fast evolutionary programming
(FEP) [37], classical evolutionary programming (CEP) [37],
fast evolutionary strategy (FES) [42], conventional evolution-
ary strategy (CES) [42], PSO, group search optimizer (GSO)
[43], real-coded biogeography-based optimization (RCBBO)
[44], differential evolution (DE) [45], [46], covariance matrix
adaptation evolution strategy (CMAES) [47], and generalized
generation gap model with generic parent-centric recombi-
nation operator (G3PCX) [48]. Evolutionary programming
[26] and evolutionary strategies [49] are two branches of
evolutionary algorithms. CEP and CES are their canonical im-
plementations while FEP and FES are their improved variants,
respectively. RCBBO is an improved version of biogeography-
based optimization [50] on solving problems in the continuous
domain. DE is usually considered an improved version of GA
and it generates offsprings by perturbing the candidate solu-
tions with the scaled differences of some random chosen ones.
DE has been applied to solve many real-world problems [46]
and a state-of-the-art survey can be found at [51]. CMAES is a

variant of ES, implemented with an adaption of the covariance
matrix to model a second-order approximation of the objective
function. G3PCX incorporates an elite-preserving and scalable
model and the parent-centric recombination operator with GA.
CMAES and G3PCX are very competitive with the classical
optimization schemes and they are considered as benchmark
algorithms for real-valued optimization.

Besides RCCRO1, DE, CMAES, and G3PCX, all data
are adopted from published results where those of FEP and
CEP are from [37], those of FES and CES are from [42],
those of GA, PSO, and GSO are from [43], and those of
RCBBO are from [44]. We implement DE, CMAES, and
G3PCX with the source codes available at [46], [52], and [53],
respectively. Their parameter values are selected according
to the recommendations of their respective authors: for DE,
population size NP = 7 × n, weighting factor F = 0.5, and
crossover constant CR = 0.1 [45], [46]; for CMAES, initial
point x(0) set to a random point in the search region, initial
step size σ(0) set to one third of the search region, population
size λ = 4 + �3ln(n) and parent number μ = �λ/2 [47]; and
for G3PCX, population size N = 100, variances for PCX σζ =
ση = 0.1 [48]. The FE limits of all algorithms for all functions
are also shown in Table II. Note that RCCRO is evaluated with
the least FE in each function while the results for some other
algorithms are obtained with more FE (because the data are
acquired from the literature. For each function, we run RCCRO
100 times and obtain the averaged computed minimum value
(Mean) and standard deviation (StdDev). We compare the
performance among the algorithms according to categories
of the benchmark functions. For completeness, we also give
the averaged computation times in Table IV. The results are
discussed according to the function categories as follows.

a) Unimodal functions: Table V gives the results for the
unimodal functions (Category I). As in [43], we first
rank the algorithms from the lowest Mean to the highest.
Then we average the ranks over the seven functions and
obtain the average rank. Finally, we order the average
rank and get the overall rank. According to the overall
rank, RCCRO1 outperforms the rest of the algorithms. In
general, RCCRO1 is efficient in solving high-dimensional
unimodal functions.

b) High-dimensional multimodal functions: Table VI gives
the results for high-dimensional multimodal functions
(Category II). RCCRO1 gives poorer results on solving
f12. However, it performs best on f13 and ranks second

LAM et al.: REAL-CODED CHEMICAL REACTION OPTIMIZATION 349

TABLE V

Simulation Results for f1–f7

RCCRO1 GA FEP CEP FES CES PSO GSO RCBBO DE CMAES G3PCX
Mean 6.427E−07 3.171E+00 5.700E−04 2.200E−04 2.500E−04 3.400E−05 3.693E−37 1.948E−08 1.390E−03 6.576E−06 6.093E−29 6.404E−79

f1 StdDev 2.099E−07 1.662E+00 1.300E−04 5.900E−04 6.800E−04 8.600E−06 2.460E−36 1.163E−08 5.500E−04 1.132E−06 1.554E−29 1.248E−78
Rank 5 12 10 8 9 7 2 4 11 6 3 1
Mean 2.196E−03 5.771E−01 8.100E−03 2.600E−03 6.000E−02 2.100E−02 2.917E−24 3.704E−05 7.990E−02 2.894E−04 3.480E−14 2.803E+01

f2 StdDev 4.341E−04 1.306E−01 7.700E−04 1.700E−04 9.600E−03 2.200E−03 1.136E−23 8.619E−05 1.440E−02 2.518E−05 4.034E−15 1.012E+01
Rank 5 11 7 6 9 8 1 3 10 4 2 12
Mean 2.966E−07 9.750E+03 1.600E−02 5.000E−02 1.400E−03 1.300E−04 1.198E−03 5.783E+00 2.270E+01 1.212E+04 1.511E−26 1.064E−76

f3 StdDev 1.146E−07 2.595E+03 1.400E−02 6.600E−02 5.300E−04 8.500E−05 2.111E−03 3.681E+00 1.030E+01 1.554E+03 3.644E−27 1.532E−76
Rank 3 11 7 8 6 4 5 9 10 12 2 1
Mean 9.318E−03 7.961E+00 3.000E−01 2.000E+00 5.500E−03 3.500E−01 4.123E−01 1.078E−01 3.090E−02 5.790E+00 3.994E−15 4.543E+01

f4 StdDev 3.657E−03 1.506E+00 5.000E−01 1.200E+00 6.500E−04 4.200E−01 2.500E−01 3.998E−02 7.270E−03 4.559E−01 5.311E−16 8.092E+00
Rank 3 11 6 9 2 7 8 5 4 10 1 12
Mean 2.706E+01 3.386E+02 5.060E+00 6.170E+00 3.328E+01 6.690E+00 3.736E+01 4.984E+01 5.540E+01 9.338E+01 5.581E−01 3.091E+00

f5 StdDev 3.427E+01 3.615E+02 5.870E+00 1.361E+01 4.313E+01 1.445E+01 3.214E+01 3.018E+01 3.520E+01 1.734E+01 1.390E+00 1.639E+01
Rank 6 12 3 4 7 5 8 9 10 11 1 2
Mean 0.000E+00 3.697E+00 0.000E+00 5.778E+02 0.000E+00 4.112E+02 1.460E−01 1.600E−02 0.000E+00 0.000E+00 7.000E−02 9.462E+01

f6 StdDev 0.000E+00 1.952E+00 0.000E+00 1.126E+03 0.000E+00 6.954E+02 4.182E−01 1.333E−01 0.000E+00 0.000E+00 2.932E−01 5.969E+01
Rank 1 9 1 12 1 11 8 6 1 1 7 10
Mean 5.405E−03 1.045E−01 7.600E−03 1.800E−02 1.200E−02 3.000E−02 9.902E−03 7.377E−02 1.750E−02 3.967E−02 2.209E−01 9.797E−01

f7 StdDev 2.985E−03 3.622E−02 2.600E−03 6.400E−03 5.800E−03 1.500E−02 3.538E−02 9.256E−02 6.430E−03 7.832E−03 8.653E−02 4.627E−01
Rank 1 10 2 6 4 7 3 9 5 8 11 12

Average rank 3.429 10.857 5.143 7.571 5.429 7.000 5.000 6.429 7.286 7.429 3.857 7.143
Overall rank 1 12 4 11 5 7 3 6 9 10 2 8

Fig. 4. % Improvement of RCCRO2, RCCRO3, and RCCRO4 over RCCRO1.

on f8, f9. As a whole, RCCRO1 ranks second in this
category.

c) Low-dimensional multimodal functions: Table VII shows
the comparisons for the low-dimensional multimodal
functions (Category III). RCCRO1 performs particular
well on f16, the Hartman’s family (f19 and f20), and
the Shekel’s family (f21–f23). The reason may be due
to the fact that we utilize these functions to tune the
parameter values for the whole function category. As a
whole, RCCRO1 is superior to other algorithms according
to the overall rank given in Table VII.

2) Various Versions of RCCRO: We compare RCCRO2,
RCCRO3, and RCCRO4 with the basic scheme. Our purpose
is to study if some sophisticated operators designed for other
evolutionary algorithms and the adaptive scheme work with
RCCRO. We compare the results in terms of percentage
improvement (%Improvement) defined as

%Improvement =
ResultRCCRO1 − Resultξ

|ResultRCCRO1| (11)

where ξ is RCCRO2, RCCRO3, or RCCRO4. If ξ has better
performance than the basic scheme, %Improvement will be

350 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

Fig. 5. Convergence curves of RCCRO1 and RCCRO4 for (a) f1, (b) f5, (c) f8, and (d) f20.

positive. Otherwise, it is negative. The results are given in
Fig. 4. The numbers in brackets shown above the bars indicate
which versions give the best performance on the problem
instances. We have several observations as follows.

a) There is probably no general scheme which can work best
on all the functions. As shown in Fig. 4, each scheme
can outperform the others on certain functions: RCCRO1
performs best on f16, f17, f19, and f20; RCCRO2 on f7

and f22; RCCRO3 on f18, f21, and f23; and RCCRO4 on
f1–f5, f8–f13, and f15.

b) Changing operators does not have a significant effect on
some of the functions, i.e., f6, f8, f16–f23. It may be
due to the effect of CRO’s fundamental characteristics
(i.e., the energy handling mechanisms) and the unaltered
operators (e.g., the “half-total-change” operator used in
decomposition) dominate the new operators for these
functions.

c) Without considering the adaptive scheme, besides the
exceptional case on f4, HS (10) is preferable on unimodal
functions (Category I) while RS (9) works better on
multimodal functions (Categories II and III). For HS,
there is a higher probability of searching the boundary
regions and thus it searches through the whole solution
space more thoroughly. In the cases under Category I,
the functions are simpler and algorithms converge to
global minimums faster. Thus, HS with more thorough
search may give better results. For RS, there is a higher
probability of searching in the interior of the solution

space. For those cases whose global minimums are not
on the boundaries or the problems are more complicated
so that algorithms tend to getting stuck in local minimums
(e.g., functions under Categories II and III), focusing on
the interior may give better performance.

d) In general, RCCRO1 and RCCRO3 have similar perfor-
mance. In other words, RCCRO is invariant to the choice
of “recombination” operators for synthesis. Recall that
synthesis focuses on accumulating energy from multiple
molecules so that the resultant molecule has sufficient
energy to “explore” other regions in the solution space.
The operator used in synthesis is for creating the structure
of the new solution for diversification, but a recombina-
tion operator designed for general evolutionary algorithms
is used to combine features from other solutions for
exploitation. Thus, our results are consistent with the
discussion in Section III-B2.

e) Fig. 5 shows the convergence curves for some of the func-
tions from a particular run of RCCRO1 and RCCRO4.
The adaptive scheme generally converges faster than the
basic scheme.

f) RCCRO4 works best on the average. This shows that
our adaptive scheme is useful to solve the benchmark
problems.

E. Discussion

In Section IV-D1, the algorithms chosen to compare with
RCCRO1 may not be their best variants in solving the bench-

LAM et al.: REAL-CODED CHEMICAL REACTION OPTIMIZATION 351

TABLE VI

Simulation Results for f8–f13

RCCRO1 GA FEP CEP FES CES PSO GSO RCBBO DE CMAES G3PCX
Mean −1.257E+04 −1.257E+04 −1.255E+04 −7.917E+03 −1.256E+04 −7.550E+03 −9.660E+03 −1.257E+04 −1.257E+04 −1.257E+04 −9.873E+07 −2.577E+03

f8 StdDev 2.317E-02 2.109E+00 5.260E+01 6.345E+02 3.253E+01 6.314E+02 4.638E+02 2.214E−02 2.200E−05 2.333E−05 8.547E+08 4.126E+02
Rank 2 2 8 10 7 11 9 2 2 2 1 12
Mean 9.077E−04 6.509E−01 4.600E−02 8.900E+01 1.600E−01 7.082E+01 2.079E+01 1.018E+00 2.620E−02 7.261E−05 4.950E+01 1.740E+02

f9 StdDev 2.876E−04 3.594E−01 1.200E−02 2.310E+01 3.300E−-01 2.149E+01 5.940E+00 9.509E-01 9.760E-03 3.376E-05 1.229E+01 3.199E+01
Rank 2 6 4 11 5 10 8 7 3 1 9 12
Mean 1.944E−03 8.678E−01 1.800E−02 9.200E+00 1.200E−02 9.070E+00 1.340E−03 2.655E−05 2.510E−02 7.136E−04 4.607E+00 1.352E+01

f10 StdDev 4.190E−04 2.805E−01 2.100E−02 2.800E+00 1.800E−03 2.840E+00 4.239E−02 3.082E−05 5.510E−03 6.194E−05 8.725E+00 4.815E+00
Rank 4 8 6 11 5 10 3 1 7 2 9 12
Mean 1.117E−02 1.004E+00 1.600E−02 8.600E−02 3.700E−02 3.800E−01 2.323E−01 3.079E−02 4.820E−01 9.054E−05 7.395E−04 1.127E−02

f11 StdDev 1.622E−02 6.755E−02 2.200E−02 1.200E−01 5.000E−02 7.700E−01 4.434E−01 3.087E−02 8.490E−02 3.402E−05 2.389E−03 1.310E−02
Rank 3 12 5 8 7 10 9 6 11 1 2 4
Mean 2.074E−02 4.372E−02 9.200E−06 1.760E+00 2.800E−02 1.180E+00 3.950E−02 2.765E−11 3.280E−05 1.886E−07 5.167E−03 4.593E+00

f12 StdDev 5.485E−02 5.058E−02 6.140E−05 2.400E+00 8.100E−11 1.870E+00 9.142E−02 9.167E−11 3.330E−05 4.266E−08 7.338E−03 5.984E+00
Rank 6 9 3 11 7 10 8 1 4 2 5 12
Mean 7.048E−07 1.681E−01 1.600E−04 1.400E+00 4.700E−05 1.390E+00 5.052E−02 4.695E−05 3.720E−04 9.519E−07 1.639E−03 2.349E+01

f13 StdDev 5.901E−07 7.068E−02 7.300E−05 3.700E+00 1.500E−05 3.330E+00 5.691E−01 7.001E−04 4.630E−04 2.021E−07 4.196E−03 2.072E+01
Rank 1 9 5 11 4 10 8 3 6 2 7 12

Average rank 3.000 7.667 5.167 10.333 5.833 10.167 7.500 3.333 5.500 1.667 5.500 10.667
Overall rank 2 9 4 11 7 10 8 3 5 1 5 12

TABLE VII

Simulation Results for f14–f23

RCCRO1 GA FEP CEP FES CES PSO GSO RCBBO DE CMAES G3PCX
f14 Mean 9.980E−01 9.989E−01 1.220E+00 1.660E+00 1.200E+00 2.160E+00 1.024E+00 9.980E−01 9.980E−01 1.576E+00 1.246E+01 1.231E+01

StdDev 1.197E−07 4.433E−03 5.600E−01 1.190E+00 6.300E−01 1.820E+00 1.450E−01 0.000E+00 2.740E−05 2.140E+00 5.529E+00 5.882E+00
Rank 2 4 7 9 6 10 5 1 3 8 12 11

f15 Mean 5.555E−04 7.088E−03 5.000E−04 4.700E−-04 9.700E−04 1.200E−03 3.807E−04 3.771E−04 7.860E−04 5.372E−04 6.554E−04 5.332E−04
StdDev 8.944E−05 7.855E−03 3.200E−04 3.000E−04 4.200E−04 1.600E−05 2.509E−04 2.597E−04 1.800E−04 1.221E−04 3.730E−04 3.784E−04
Rank 7 12 4 3 10 11 2 1 9 6 8 5

f16 Mean −1.032E+00 −1.030E+00 −1.030E+00 −1.030E+00 −1.032E+00 −1.032E+00 −1.016E+00 −1.032E+00 −1.031E+00 −1.019E+00 −1.015E+00 −4.928E−01
StdDev 4.843E−04 3.143E−03 4.900E−04 4.900E−04 6.000E−07 6.000E−07 1.279E−02 0.000E+00 9.010E−04 1.869E−02 1.148E−01 3.367E−01
Rank 1 8 6 6 3 3 10 2 5 9 11 12

f17 Mean 3.979E−01 4.040E−01 3.980E−01 3.980E−01 3.980E−01 3.980E−01 4.040E−01 3.979E−01 3.984E−01 3.995E−01 3.979E−01 5.560E+01
StdDev 8.525E−07 1.039E−02 1.500E−-07 1.500E−07 6.000E−08 6.000E−08 6.881E−02 0.000E+00 6.770E−04 4.281E−03 1.047E−15 1.071E−13
Rank 2 10 4 4 4 4 10 3 8 9 1 12

f18 Mean 3.001E+00 7.503E+00 3.020E+00 3.000E+00 3.000E+00 3.000E+00 3.005E+00 3.000E+00 3.010E+00 3.479E+00 5.700E+00 8.670E+00
StdDev 1.171E−03 1.040E+01 1.100E−01 0.000E+00 0.000E+00 0.000E+00 1.212E−03 0.000E+00 1.120E−02 3.319E+00 1.051E+01 1.290E+01
Rank 5 11 8 1 1 1 6 1 7 9 10 12

f19 Mean −3.863E+00 −3.862E+00 −3.860E+00 −3.860E+00 −3.860E+00 −3.860E+00 −3.858E+00 −3.863E+00 −3.862E+00 −3.862E+00 −3.725E+00 −3.598E+00
StdDev 1.464E−03 6.284E−04 1.400E−05 1.400E−02 4.000E−03 1.400E−05 3.213E−03 3.843E−06 3.650E−04 1.672E−03 5.744E−01 1.869E−01
Rank 1 5 6 6 6 6 10 2 3 4 11 12

f20 Mean −3.319E+00 −3.263E+00 −3.270E+00 −3.280E+00 −3.230E+00 −3.240E+00 −3.185E+00 −3.270E+00 −3.317E+00 −3.316E+00 −3.290E+00 −.1980E+00
StdDev 2.115E−03 6.040E−02 5.900E−02 5.800E−02 1.200E−01 5.700E−02 6.105E−02 5.965E−02 2.360E−02 6.674E−03 5.305E−02 4.327E−01
Rank 1 8 6 5 10 9 11 7 2 3 4 12

f21 Mean −1.011E+01 −5.165E+00 −5.520E+00 −6.860E+00 −5.540E+00 −6.960E+00 −7.544E+00 −6.090E+00 −5.513E+00 −8.739E+00 −6.683E+00 −7.476E−01
StdDev 3.505E−02 2.925E+00 1.590E+00 2.670E+00 1.820E+00 3.100E+00 3.030E+00 3.456E+00 3.350E+00 1.571E+00 3.719E+00 3.170E−01
Rank 1 11 9 5 8 4 3 7 10 2 6 12

f22 Mean −1.035E+01 −5.443E+00 −5.520E+00 −8.270E+00 −6.760E+00 −8.310E+00 −8.355E+00 −6.555E+00 −6.800E+00 −9.199E+00 −6.574E+00 −9.468E−01
StdDev 4.838E−02 3.278E+00 2.120E+00 2.950E+00 3.010E+00 3.100E+00 2.018E+00 3.244E+00 3.520E+00 1.217E+00 3.641E+00 3.761E−01
Rank 1 11 10 5 7 4 3 9 6 2 8 12

f23 Mean −1.048E+01 −4.911E+00 −6.570E+00 −9.100E+00 −7.630E+00 −8.500E+00 −8.944E+00 −7.402E+00 −7.285E+00 −9.229E+00 −7.576E+00 −1.130E+00
StdDev 3.885E−02 3.487E+00 3.140E+00 2.920E+00 3.270E+00 1.250E+00 1.630E+00 3.213E+00 3.380E+00 1.325E+00 3.741E+00 3.678E-01
Rank 1 11 10 3 6 5 4 8 9 2 7 12

Average rank 2.200 9.100 7.000 4.700 6.100 5.700 6.400 4.100 6.200 5.400 7.800 11.200
Overall rank 1 11 9 3 6 5 8 2 7 4 10 12

mark problems and their parameter settings may not be tailored
to the benchmarks. Thus, we do not intend to claim that RC-
CRO is the best algorithm in solving the benchmarks. In this
paper, we try to show that CRO has the ability to work well in
the continuous domain, as a complement to the original CRO
working in the discrete domain [18]. As a whole, we try to
demonstrate that the CRO framework can be applied to a large
range of problems. For those interested in the state-of-the-art
algorithms in solving real-parameter optimization, they may
refer to black-box optimization benchmarking [54] and the
competition on constrained real-parameter optimization [55].
Moreover, a recently proposed method which makes use of an
ensemble of several constraint handling techniques has shown

to be promising for real-parameter optimization [56]. However,
pursuit of the best algorithm outperforming all existing ones
and integrating CRO with other algorithms are beyond the
scope of this paper. In fact, we have shown that RCCRO has
a practical application; it has been applied to train artificial
neural networks and it has outstanding performance when
compared to many other evolutionary algorithm strategies [24].

V. Conclusion

In a chemical reaction, molecules start from high-energy
states and terminate at low-energy states via a sequence of
collisions and molecular changes. CRO captures this idea

352 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 16, NO. 3, JUNE 2012

to develop a metaheuristic for optimization problems. The
CRO framework is not restricted to or favor continuous or
discrete optimization. As CRO has been demonstrated to work
well in solving discrete problems, we decided to propose a
real-coded version of CRO, i.e., RCCRO, for optimization
problems in the continuous domain. In this paper, Gaussian
distribution is adopted to produce perturbations to search the
continuous neighborhoods. This simple modification allowed
CRO to work in the continuous domain. By considering other
recombination and boundary constraint handling operators, we
have developed several versions of the algorithms based on
the basic RCCRO scheme. We also proposed an adaptive
scheme for RCCRO. We applied RCCRO to a widely studied
set of continuous benchmark problems and compared the
performance of RCCRO with a large set of representative
algorithms. Simulation results revealed that CRO works well
in all three categories of the benchmark functions. We also
compared the various proposed versions of RCCRO and found
that the adaptive RCCRO is the most effective.

In the future, we plan to apply RCCRO to more continuous
problems. Besides, we can have a detailed study on the pa-
rameter values of RCCRO using the value calibration method.
Instead of the adaptive approach described in this paper, we
will try to develop a self-adaptive scheme which associates the
parameter adaptation mechanism to each molecule. Moreover,
we may adopt tailor-made operators in the implementation
of RCCRO to solve specific problems. In addition, we may
include RCCRO in an ensemble-based algorithm for real-
parameter optimization.

References

[1] S.-Y. Shin, I.-H. Lee, D. Kim, and B.-T. Zhang, “Multiobjective evolu-
tionary optimization of DNA sequences for reliable DNA computing,”
IEEE Trans. Evol. Comput., vol. 9, no. 2, pp. 143–158, Apr. 2005.

[2] Y. Zhang, L. O. Hall, D. B. Goldgof, and S. Sarkar, “A constrained
genetic approach for computing material property of elastic objects,”
IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 341–357, May 2006.

[3] L. Yu, H. Chen, S. Wang, and K. K. Lai, “Evolving least squares support
vector machines for stock market trend mining,” IEEE Trans. Evol.
Comput., vol. 13, no. 1, pp. 87–102, Feb. 2009.

[4] M. Alrashidi and M. El-Hawary, “A survey of particle swarm optimiza-
tion applications in electric power systems,” IEEE Trans. Evol. Comput.,
vol. 13, no. 4, pp. 913–918, Aug. 2009.

[5] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. New York:
Springer, 2006.

[6] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, May
1983.

[7] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[8] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA:
MIT Press, 2004.

[9] J. Kennedy and R. Eberhart, Swarm Intelligence. San Francisco, CA:
Morgan Kaufmann, 2001.

[10] Wikipedia. (2009, Sep.). Discrete Optimization [Online]. Available: http:
//en.wikipedia.org/wiki/Discrete optimization

[11] A. Corana, M. Marchesi, C. Martini, and S. Ridella, “Minimizing multi-
modal functions of continuous variables with the ‘simulated annealing’
algorithm,” ACM Trans. Math. Softw., vol. 13, no. 3, pp. 262–280, Sep.
1987.

[12] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA: MIT Press, 1992.

[13] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer-Verlag, 1992.

[14] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B,
vol. 26, no. 1, pp. 29–41, Feb. 1996.

[15] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domains,” Eur. J. Oper. Res., vol. 185, no. 3, pp. 1155–1173, Mar.
2008.

[16] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., Nov.–Dec. 1995, pp. 1942–1948.

[17] J. Kennedy and R. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., Oct.
1997, pp. 4104–4109.

[18] A. Y. S. Lam and V. O. K. Li, “Chemical-reaction-inspired metaheuristic
for optimization,” IEEE Trans. Evol. Comput., vol. 14, no. 3, pp. 381–
399, Jun. 2010.

[19] J. Xu, A. Y. S. Lam, and V. O. K. Li, “Chemical reaction optimization
for the grid scheduling problem,” in Proc. IEEE ICC, May 2010, pp.
1–5.

[20] J. Xu, A. Y. S. Lam, and V. O. K. Li, “Chemical reaction optimization
for task scheduling in grid computing,” IEEE Trans. Parallel Distrib.
Syst., 2011, to be published.

[21] A. Y. S. Lam and V. O. K. Li, “Chemical reaction optimization for
cognitive radio spectrum allocation,” in Proc. IEEE GLOBECOM, Dec.
2010, pp. 1–5.

[22] A. Y. S. Lam, J. Xu, and V. O. K. Li, “Chemical reaction optimization
for population transition in peer-to-peer live streaming,” in Proc. IEEE
CEC, Jul. 2010, pp. 1–8.

[23] J. Xu, A. Y. S. Lam, and V. O. K. Li, “Parallel chemical reaction
optimization for quadratic assignment problem,” in Proc. Int. Conf.
GEM, 2010, pp. 125–131.

[24] J. J. Q. Yu, A. Y. S. Lam, and V. O. K. Li, “Evolutionary artificial neural
network based on chemical reaction optimization,” in Proc. IEEE CEC,
Jun. 2011, pp. 2083–2090.

[25] D. H. Wolpert and W. G. Macready, “No free lunch theorems for
optimization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[26] L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through
Simulated Evolution. New York: Wiley, 1966.

[27] K. Krishnamoorthy, Handbook of Statistical Distributions with Applica-
tions. Boca Raton, FL: Chapman and Hall/CRC, 2006.

[28] W. Chu, X. Gao, and S. Sorooshian, “Handling boundary constraints for
particle swarm optimization in high-dimensional search space,” Inform.
Sci., vol. 181, no. 20, pp. 4569–4581, Oct. 2011.

[29] J. Ronkkonen, S. Kukkonen, and K. V. Price, “Real-parameter opti-
mization with differential evolution,” in Proc. IEEE CEC, Sep. 2005,
pp. 506–513.

[30] J. Brest, “Constrained real-parameter optimization with ε-self-adaptive
differential evolution,” in Constraint-Handling in Evolutionary Op-
timization (Series Studies in Computational Intelligence), vol. 198,
E. Mezura-Montes, Ed. Berlin/Heidelberg, Germany: Springer, 2009, pp.
73–93.

[31] W.-J. Zhang, X.-F. Xie, and D.-C. Bi, “Handling boundary constraints
for numerical optimization by particle swarm flying in periodic search
space,” in Proc. IEEE CEC, Jun. 2004, pp. 2307–2311.

[32] G. Leguizamón and C. A. C. Coello, “Boundary search for constrained
numberical optimization problems with an algorithm inspired by the
ant colony metaphor,” IEEE Trans. Evol. Comput., vol. 13, no. 2, pp.
350–368, Apr. 2009.

[33] F. Herrera, M. Lozano, and A. M. Sánchez, “A taxonomy for
the crossover operator for real-coded genetic algorithms: An exper-
imental study,” Int. J. Intell. Syst., vol. 18, no. 3, pp. 309–338,
2003.

[34] F. Herrera, M. Lozano, and A. M. Sánchez, “Hybrid crossover operators
for real-coded genetic algorithms: An experimental study,” Soft Comput.,
vol. 9, pp. 280–298, Apr. 2005.

[35] T. Nomura and K. Shimohara, “An analysis of two-parent recombi-
nations for real-valued chromosomes in an infinite population,” Evol.
Computat., vol. 9, no. 3, pp. 283–308, 2001.

[36] J. Reed, R. Toombs, and N. A. Barricelli, “Simulation of biological
evolution and machine learning. I. Selection of self-reproducing numeric
patterns by data processing machines, effects of hereditary control,
mutation type and crossing,” J. Theoretic. Biol., vol. 17, no. 3, pp. 319–
342, Dec. 1967.

[37] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made
faster,” IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Aug.
1999.

[38] A. Y. S. Lam, V. O. K. Li, and J. J. Q. Yu, “CROToolbox: A toolbox
for chemical reaction optimization,” submitted for publication.

LAM et al.: REAL-CODED CHEMICAL REACTION OPTIMIZATION 353

[39] Chemical Reaction Optimization. University of Hong Kong, Pokfulam,
Hong Kong [Online]. Available: http://cro.eee.hku.hk

[40] V. Nannen and A. Eiben, “A method for parameter calibration and
relevance estimation in evolutionary algorithms,” in Proc. 8th Annu.
Conf. GECCO, 2006, pp. 183–190.

[41] V. Nannen and A. E. Eiben, “Relevance estimation and value calibration
of evolutionary algorithm parameters,” in Proc. 20th Int. Joint Conf.
Artif. Intell., 2007, pp. 975–980.

[42] X. Yao and Y. Liu, “Fast evolution strategies,” in Proc. 6th Int. Conf.
Evol. Program. VI, 1997, pp. 151–162.

[43] S. He, Q. H. Wu, and J. R. Saunders, “Group search optimizer:
An optimization algorithm inspired by animal searching behavior,”
IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 973–990, Aug.
2009.

[44] W. Gong, Z. Cai, C. X. Ling, and H. Li, “A real-coded biogeography-
based optimization with mutation,” Appl. Math. Comput., vol. 216, no.
9, pp. 2749–2758, Jul. 2010.

[45] R. Storn and K. Price, “Differential evolution: A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimiz., vol. 11, no. 4, pp. 341–359, Dec. 1997.

[46] K. V. Price, R. M. Storn, and J. L. Lampinen, Differential Evolution: A
Practical Approach to Global Optimization. Berlin, Germany: Springer,
2005.

[47] N. Hansen and A. Ostermeier, “Completely derandomized self-adaption
in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp. 159–195, Jun.
2001.

[48] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolution-
ary algorithm for real-parameter optimization,” Evol. Comput., vol. 10,
no. 4, pp. 371–395, Dec. 2002.

[49] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: A compre-
hensive introduction,” Nat. Comput., vol. 1, no. 1, pp. 3–52, Mar.
2002.

[50] D. Simon, “Biogeography-based optimization,” IEEE Trans. Evol. Com-
put., vol. 12, no. 6, pp. 702–713, Nov. 2008.

[51] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
Feb. 2011.

[52] CMA-ES Source Code. Laboratoire de Recherche en Informa-
tique, Orsay, France [Online]. Available: http://www.lri.fr/∼hansen/
cmaes inmatlab.html

[53] G3PCX Source Code. Kanpur Genetic Algorithms Laboratory, Kanpur,
India [Online]. Available: http://www.iitk.ac.in/kangal/codes.shtml

[54] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posik, “Comparing
results of 31 algorithms from the black-box optimization benchmarking
BBOB-2009,” in Proc. 12th Annu. Conf. GECCO, 2010, pp. 1689–
1696.

[55] R. Mallipeddi and P. N. Suganthan, “Problem definitions and evaluation
criteria for the CEC 2010 competition on constrained real-parameter
optimization,” Nanyang Technol. Univ., Singapore, Tech. Rep.,
2010.

[56] R. Mallipeddi and P. N. Suganthan, “Ensemble of constraint handling
techniques,” IEEE Trans. Evol. Comput., vol. 14, no. 4, pp. 561–579,
Feb. 2011.

Albert Y. S. Lam (S’03–M’10) received the B.E.
(first class honors) degree in information engineering
and the Ph.D. degree in electrical and electronic
engineering from the University of Hong Kong, Pok-
fulam, Hong Kong, in 2005 and 2009, respectively.

He is currently a Post-Doctoral Scholar with the
Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA. He
is a Croucher Research Fellow. His current research
interests include optimization theory and algorithms,
evolutionary computation, information theory, smart

grid, wireless and mobile networking, and Internet protocols and applications.
Dr. Lam also serves on the IEEE Computational Intelligence Society (CIS)

Social Media Subcommittee as the Chair, the CIS GOLD Subcommittee as
the Vice Chair, CIS Webinars Subcommitee as a member, and an ad hoc
committee as a member.

Victor O. K. Li (S’80–M’81–SM’86–F’92) received
the S.B., S.M., E.E., and S.D. degrees in electrical
engineering and computer science from the Mas-
sachusetts Institute of Technology, Cambridge, in
1977, 1979, 1980, and 1981, respectively.

He is the Associate Dean of engineering and
Chair Professor of information engineering with the
University of Hong Kong (HKU), Pokfulam, Hong
Kong, a Visiting Professor with King Saud Univer-
sity, Riyadh, Saudi Arabia, and a Guest Chair Profes-
sor of wireless communication and networking with

Tsinghua University, Beijing, China. He also served as the Managing Director
of Versitech Ltd., Pokfulam, the technology transfer and commercial arm of
HKU, and on the boards of SUNeVision Holdings Ltd. and China.com Ltd.
Previously, he was a Professor of electrical engineering with the University
of Southern California (USC), Los Angeles, and the Director of the USC
Communication Sciences Institute. Sought by government, industry, and
academic organizations, he has lectured and consulted extensively around the
world.

Dr. Li has received numerous awards, including the PRC Ministry of
Education Changjiang Chair Professorship at Tsinghua University, the U.K.
Royal Academy of Engineering Senior Visiting Fellowship in Communica-
tions Award, the Croucher Foundation Senior Research Fellowship, and the
Order of the Bronze Bauhinia Star, Government of the Hong Kong Special
Administrative Region, China. He is a Registered Professional Engineer and
a fellow of the IAE and the HKIE.

James J. Q. Yu is currently pursuing the B.E. degree
from the Department of Electrical and Electronic
Engineering, University of Hong Kong, Pokfulam,
Hong Kong.

His current research interests include evolutionary
algorithms, wireless networking, and sensor net-
works.

