3 research outputs found

    Real-Time Traffic Assignment Using Fast Queries in Customizable Contraction Hierarchies

    Get PDF
    Given an urban road network and a set of origin-destination (OD) pairs, the traffic assignment problem asks for the traffic flow on each road segment. A common solution employs a feasible-direction method, where the direction-finding step requires many shortest-path computations. In this paper, we significantly accelerate the computation of flow patterns, enabling interactive transportation and urban planning applications. We achieve this by revisiting and carefully engineering known speedup techniques for shortest paths, and combining them with customizable contraction hierarchies. In particular, our accelerated elimination tree search is more than an order of magnitude faster for local queries than the original algorithm, and our centralized search speeds up batched point-to-point shortest paths by a factor of up to 6. These optimizations are independent of traffic assignment and can be generally used for (batched) point-to-point queries. In contrast to prior work, our evaluation uses real-world data for all parts of the problem. On a metropolitan area encompassing more than 2.7 million inhabitants, we reduce the flow-pattern computation for a typical two-hour morning peak from 76.5 to 10.5 seconds on one core, and 4.3 seconds on four cores. This represents a speedup of 18 over the state of the art, and three orders of magnitude over the Dijkstra-based baseline

    Faster and better nested dissection orders for Customizable Contraction Hierarchies

    Get PDF
    Graph partitioning has many applications. We consider the acceleration of shortest path queries in road networks using Customizable Contraction Hierarchies (CCH). It is based on computing a nested dissection order by recursively dividing the road network into parts. Recently, with FlowCutter and Inertial Flow, two flow-based graph bipartitioning algorithms have been proposed for road networks. While FlowCutter achieves high-quality results and thus fast query times, it is rather slow. Inertial Flow is particularly fast due to the use of geographical information while still achieving decent query times. We combine the techniques of both algorithms to achieve more than six times faster preprocessing times than FlowCutter and even faster queries on the Europe road network. We show that, using 16 cores of a shared-memory machine, this preprocessing needs four minutes
    corecore