
Real-Time Traffic Assignment Using Fast Queries
in Customizable Contraction Hierarchies
Valentin Buchhold
Karlsruhe Institute of Technology, Germany

Peter Sanders
Karlsruhe Institute of Technology, Germany

Dorothea Wagner
Karlsruhe Institute of Technology, Germany

Abstract
Given an urban road network and a set of origin-destination (OD) pairs, the traffic assignment
problem asks for the traffic flow on each road segment. A common solution employs a feasible-
direction method, where the direction-finding step requires many shortest-path computations.
In this paper, we significantly accelerate the computation of flow patterns, enabling interactive
transportation and urban planning applications. We achieve this by revisiting and carefully
engineering known speedup techniques for shortest paths, and combining them with customizable
contraction hierarchies. In particular, our accelerated elimination tree search is more than an
order of magnitude faster for local queries than the original algorithm, and our centralized search
speeds up batched point-to-point shortest paths by a factor of up to 6. These optimizations are
independent of traffic assignment and can be generally used for (batched) point-to-point queries.
In contrast to prior work, our evaluation uses real-world data for all parts of the problem. On a
metropolitan area encompassing more than 2.7 million inhabitants, we reduce the flow-pattern
computation for a typical two-hour morning peak from 76.5 to 10.5 seconds on one core, and
4.3 seconds on four cores. This represents a speedup of 18 over the state of the art, and three
orders of magnitude over the Dijkstra-based baseline.

2012 ACM Subject Classification Theory of computation → Shortest paths

Keywords and phrases traffic assignment, equilibrium flow pattern, customizable contraction
hierarchies, batched shortest paths

Digital Object Identifier 10.4230/LIPIcs.SEA.2018.27

Acknowledgements We thank Peter Vortisch for providing the Stuttgart instance, and Lukas
Barth and Ben Strasser for interesting discussions.

1 Introduction

The number of drivers traveling along a road segment within a given period is the result of
many individual decisions. The common behavioral assumption in practice is that motorists
driving between a given origin and destination choose the path with the minimum travel
time (known as Wardrop’s first rule [39]). This seems natural, since travel is usually not a
goal in itself, but entails disutility. However, the travel time on a path depends on the route
choice of all other drivers, who themselves are trying to choose minimum travel time routes.
Due to congestion, the travel time on a road segment increases with the traffic flow on it. As
a result, some drivers choose at some point alternative routes, which can also get congested,
and so on. When no driver can improve his travel time by unilaterally changing routes, each

© Valentin Buchhold, Peter Sanders, and Dorothea Wagner;
licensed under Creative Commons License CC-BY

17th International Symposium on Experimental Algorithms (SEA 2018).
Editor: Gianlorenzo D’Angelo; Article No. 27; pp. 27:1–27:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/159309588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.SEA.2018.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Real-Time Traffic Assignment Using Fast Queries in CCHs

route used between a given origin and destination has the same travel time. This condition is
known as the user equilibrium, and the flow pattern is called the equilibrium flow pattern [37].

We study the efficient computation of equilibrium flow patterns in road networks. More
formally, given an urban road network and a set of origin-destination (OD) pairs, we want
to compute the traffic flow on each road segment at equilibrium. This is known as traffic
assignment, and is one of the major problems facing transportation engineers and urban
planners [37]. In this paper, we accelerate the process of traffic assignment significantly
(by a factor of 18). Our goal is twofold. The short-term objective is to enable interactive
transportation and urban planning applications. The long-term aim is to develop a real-time
demand-responsive public transit system, which makes use of a traffic assignment procedure
as a subroutine. There, we decrease (rather than increase) the travel cost per individual as
the flow increases, since increased flow makes public transit more cost-effective.

Related Work. The traffic assignment problem has been studied for over 60 years, and
has motivated extensive research in the operations research community. The formulation
as a mathematical program first appeared in 1956 [5]. A common solution employs the
Frank-Wolfe algorithm [17], a feasible-direction method for solving quadratic programs with
linear constraints. The application of the Frank-Wolfe method to the traffic assignment
problem was first proposed in the late 1960s [6, 31], and the solution was implemented
and experimentally evaluated for the first time in 1975 [25]. The textbook by Sheffi [37]
offers a comprehensive introduction to the traffic assignment problem and considers research
published until 1985. More recent developments are covered by Patriksson [32]. Peeta et
al. [33] survey recent advances in dynamic traffic assignment, recognizing time variations
in traffic flows and conditions during the period of analysis. Finally, Babonneau et al. [1]
collect benchmark instances previously used in the literature, however, their largest instance
is still an order of magnitude smaller than the benchmark instance used in this paper.

The performance of the Frank-Wolfe algorithm is clearly dominated by the direction-
finding step, which requires a large number of shortest-path computations. The past decade
has seen intense research on speedup techniques [2] for Dijkstra’s algorithm [13], which
rely on a slow preprocessing phase to enable fast queries. One of the most prominent and
versatile techniques among these are contraction hierarchies (CH) [18], which exploit the
inherent hierarchy of the network. A fairly recent development are customizable speedup
techniques [8, 12, 14], which split preprocessing into a slow metric-independent part, taking
only the graph structure into account, and a fast metric-dependent part (the customization),
incorporating new edge weights (the metric). CRP [8] and customizable CHs [12] are the
most prominent among them. A common approach to accelerate one-to-all queries is to
bundle together multiple shortest-path computations in a single search [20, 8, 7, 4, 40].

To the best of our knowledge, there is only a single paper [26] that solves the traffic
assignment problem using state-of-the-art shortest-path algorithms (plain CHs in this case).

Contribution and Outline. The contribution of this work is twofold. First, we accelerate
the state of the art in the area of traffic assignment. On our main benchmark instance, we see
a speedup of 18. This is more than three orders of magnitude faster than the Dijkstra-based
baseline. However, the building blocks to achieve this are also independent contributions,
not restricted to traffic assignment, but generally applicable in the area of route planning.
Our two main building blocks are as follows. (1) Currently, there are two CCH query
algorithms, one based on Dijkstra’s algorithm and one based on elimination trees (a structure
encoding the CH search space of each vertex). We thoroughly reengineer the elimination tree
search (Section 3), providing a unified query algorithm that combines the good local-query

V. Buchhold, P. Sanders, and D. Wagner 27:3

performance of the Dijkstra-based search with the good global-query performance of the
elimination tree search. (2) We introduce a centralized elimination tree search for computing
batched point-to-point shortest paths fast (Section 4). While there is a large amount of work
on one-to-all, one-to-many, many-to-many, and point-of-interest queries [7, 9, 15, 16, 22, 10],
we are the first that accelerate batched point-to-point shortest paths. All building blocks
are extensively experimentally evaluated using solely real-world data (Section 5), whereas
previous work fell back on synthetic OD-pairs [26].

2 Preliminaries

We now briefly review the three main algorithms we build upon. First, we describe the
Frank-Wolfe algorithm for solving the traffic assignment problem. Then, we discuss two
speedup techniques for Dijkstra’s algorithm, CHs and their customizable counterpart CCHs.

2.1 Traffic Assignment
Popular approaches [37] to the traffic assignment problem formulate a mathematical program,
known as Beckmann’s transformation [5], whose solution is the equilibrium flow pattern. It is
a convex minimization program with linear constraints. The Frank-Wolfe algorithm [17, 37], a
feasible-direction method, is especially suitable for solving Beckmann’s transformation, since
the direction-finding step can be implemented relatively efficiently. Being a feasible-direction
method, it iteratively finds a feasible descent direction and advances by an optimal move
size in the direction. An important subroutine of the Frank-Wolfe algorithm (when solving
Beckmann’s transformation) is the all-or-nothing assignment procedure, which processes
each OD-pair in turn and assigns one flow unit to each edge on the shortest travel time path.

The algorithm can be summarized as follows. (1) Perform an all-or-nothing assignment
using free-flow travel times, yielding an initial solution. (2) Update the travel time on each
edge according to the current solution (recall that the travel time increases with the traffic
flow). (3) Perform an all-or-nothing assignment using the current travel times, yielding a
set of auxiliary flows. (4) Perform a line search to determine the optimal move size α. (5)
Set the new solution to a convex combination of the current solution and the auxiliary flows
(according to α). (6) Check the stopping criterion, and terminate or go to step (2). In this
paper we update travel times according to the modified Davidson function [30], perform the
bisection method of Bolzano as line search, and stop after a predefined number of iterations.

2.2 Contraction Hierarchies
Contraction hierarchies (CH) [18] are a two-phase speedup technique to accelerate point-to-
point shortest-path computations, which exploits the inherent hierarchy of road networks.
The preprocessing phase heuristically orders the vertices by importance, and contracts them
from least to most important. Intuitively, vertices that hit many shortest paths are considered
more important, such as vertices on highways. To contract a vertex v, it is temporarily
removed from the graph, and shortcut edges are added between its neighbors to preserve
distances in the remaining graph (without v). Note that a shortcut is only needed if it
represents the only shortest path between its endpoints, which can be checked by running a
witness search (local Dijkstra) between its endpoints. The query phase runs a bidirectional
Dijkstra on the augmented graph that only relaxes edges leading to vertices of higher ranks
(importance). The stall-on-demand [18] optimization prunes the search at any vertex v with
a suboptimal distance label, which can be checked by looking at upward edges coming into v.

SEA 2018

27:4 Real-Time Traffic Assignment Using Fast Queries in CCHs

Traffic Assignment Using CHs. The shortest-path computations are by far the most time-
consuming part of the Frank-Wolfe algorithm. Carrying them out with the use of CHs (instead
of Dijkstra’s algorithm) accelerates traffic assignments by two orders of magnitude [26]. Since
the weight of each edge changes between two iterations, the CH is rebuilt from scratch in
each iteration. Queries do not unpack shortcuts, but assign one flow unit to each (shortcut)
edge on the packed path. After computing all paths, the shortcuts are unpacked in top-down
fashion, with cumulated flow units propagated from shortcut to original edges.

2.3 Customizable CHs

Customizable contraction hierarchies (CCH) [12] are a three-phase technique, splitting CH
preprocessing into a relatively slow metric-independent phase and a much faster customization
phase. The metric-independent phase computes a nested dissection order [3, 19] on the
vertices of the unweighted graph, and contracts them in this order without running witness
searches (as they depend on the metric). As a result, it adds every potential shortcut. The
customization phase computes the weights of the shortcuts by processing them in bottom-up
fashion. To process a shortcut (u, v), it enumerates all triangles 〈u, v, w〉 where w has lower
rank than u and v, and checks if the path (u,w, v) improves the weight of (u, v). After basic
customization, one can optionally run perfect witness searches to remove superfluous edges.

There are two different query algorithms possible. First, one can run a standard CH
search without modification. In addition, Dibbelt et al. [12] describe a query algorithm based
on the elimination tree of the augmented graph. The parent of a vertex in the elimination
tree is its lowest-ranked upward neighbor in the augmented graph. Bauer et al. [3] prove
that the ancestors of a vertex v in the elimination tree are exactly the set of vertices in the
CH search space of v. Hence, the elimination tree query algorithm explores the search space
by traversing the elimination tree, avoiding a priority queue completely.

3 Accelerating Elimination Tree Searches

In the next section, we will devise a fast traffic assignment procedure based on customizable
contraction hierarchies. While Dibbelt et al. [12] observe that the CCH query algorithm
based on elimination trees achieves fastest query times for random queries (which tend to
be long-range), it is slower by more than an order of magnitude than the Dijkstra-based
query algorithm for local queries (see Section 5). However, the input of the traffic assignment
problem consists of both local and long-range OD-pairs, requiring a query algorithm that can
handle both types of queries well. Therefore, we review and carefully engineer the elimination
tree search in this section. The result is a fast, unified CCH query algorithm, combining
good performance for both local and long-range queries.

Given a source vertex s and a target vertex t, the original elimination tree search [12]
works in five phases. First, we compute the lowest common ancestor (LCA) x of s and t in
the elimination tree T rooted at the highest-ranked vertex r. This is done by enumerating
the ancestors of s and t in increasing rank order until a common ancestor is found. Second,
we revisit each vertex v on the s–x path in T , relaxing all outgoing upward edges of v. Third,
we do the same for each vertex v on the t–x path in T , relaxing all incoming upward edges of
v. Fourth, we visit each vertex v on the x–r path in T , relaxing all outgoing and incoming
upward edges of v. Moreover, we check at each such vertex v whether the s–t path via v
improves the tentative s–t distance. Fifth, we again revisit each vertex on the s–r and t–r
path to reset its distance labels for the next shortest-path computation.

V. Buchhold, P. Sanders, and D. Wagner 27:5

Phase Reduction. Our first optimization reduces the number of phases of the elimination
tree search. We refrain from computing the LCA first, and then visiting each vertex from the
source (target) to the LCA again. Instead, while we enumerate the ancestors of s and t in
the same fashion as before, we immediately relax their edges. Moreover, we observe that the
resetting phase is unnecessary. After relaxing the edges of a vertex, its distance labels are
never read again. Therefore, we can safely reset them to ∞ right after relaxing the edges,
avoiding the fifth phase completely. Note that we cannot reset parent pointers, since they
may be needed afterwards. However, this is not an issue because resetting the distance labels
suffices to decide whether a vertex has been visited before during the next query. With this
optimization, each vertex is visited at most once, instead of up to three times as before.

Pruning Rule. The basic elimination tree search does not make use of pruning. Only when
combined with the perfect witness search, Dibbelt et al. [12] employ the following basic
pruning rule. Due to the removal of superfluous edges, a vertex may have an ancestor in
the elimination tree that is not in its perfect search space. Such an ancestor will have a
distance label of ∞ when visited during the search. To accelerate queries, Dibbelt et al. do
not relax the edges of a vertex with a distance label of ∞. We observe that a stricter pruning
rule is possible. We do not relax edges of a vertex whose distance label exceeds the current
tentative shortest-path distance, since those edges cannot possibly contribute to a shorter
path. Despite its simplicity, this optimization accelerates the search quite drastically, by a
factor of 15 for short-range queries (see Section 5). Moreover, our pruning rule does not
require the perfect witness search, but can also be combined with the basic customization.

4 Accelerating Traffic Assignments by Fast Batched Shortest Paths

Previous work [26] applying speedup techniques to traffic assignment observed that the
performance bottleneck depends on the traffic scenario under study. For short or off-peak
periods, where there are few OD-pairs, preprocessing dominates the total running time. When
there are many OD-pairs, as for long or peak periods, queries become the main bottleneck.

To decrease the preprocessing time, we apply the concept of customization to traffic
assignment. Customizable speedup techniques [8, 12, 14] split preprocessing into a metric-
independent part, taking only the graph structure into account, and a metric-dependent
part (the customization), incorporating new edge weights (the metric). Since the graph
topology does not change in all iterations of the traffic assignment procedure and only edge
weights change, it suffices to run a fast customization in each iteration instead of an entire
preprocessing. We build our accelerated traffic assignment upon customizable contraction
hierarchies [12], which allows us to employ the hierarchy decomposition optimization from [26].
As basic query algorithm, we use the engineered elimination tree search from the previous
section. To reduce the query time, the following sections introduce several optimization
techniques for computing batched point-to-point shortest paths fast.

4.1 Reordering OD-pairs to Exploit Locality
Previous work processed the OD-pairs in no particular order. However, reordering the
OD-pairs so that pairs with similar forward and reverse search spaces tend to be processed in
succession improves memory locality and cache efficiency. We call two search spaces similar
if their symmetric difference is small. Note that the size of the symmetric difference between
the search spaces of u and v is equal to the distance between u and v in the elimination tree.
Hence, we partition the elimination tree into as few cells with bounded diameter as possible,

SEA 2018

27:6 Real-Time Traffic Assignment Using Fast Queries in CCHs

assign IDs to cells according to the order in which they are reached during a DFS [29] on the
elimination tree, and reorder OD-pairs lexicographically by the origin and destination cells.

We use a simple yet optimal greedy algorithm to partition the elimination tree into as
few cells with diameter at most U as possible. Our algorithm repeatedly cuts out a subtree
(with diameter at most U) and makes it a cell of its own. In order to do so, it maintains for
each vertex v the height h(v) of the remaining subtree Tv rooted at v, initialized to zero, and
processes vertices in ascending rank order. To process v, we examine its children wi in order
of increasing height of Twi . If h(v) + 1 + h(wi) ≤ U , we set h(v) = 1 + h(wi). Otherwise, we
cut out Twi

, making it a cell of its own. We use U = 40 in our experiments.

4.2 Centralized Searches
Instead of processing similar OD-pairs in succession, processing them at once in a single
search achieves additional speedup. The idea of bundling together multiple shortest-path
computations was introduced in [20] and later used in [8, 7, 9, 4, 40]. However, in each case,
centralized searches were only used for one-to-all and -many queries, and only combined with
plain Dijkstra (and Bellman-Ford in [8]). Even (R)PHAST [7, 9] performs the CH searches
sequentially, and bundles only the linear sweeps. We extend the idea to point-to-point queries,
and combine it with CH searches, including appropriate stopping and pruning criteria.

The basic idea of centralized searches is to maintain k distance labels for each vertex u,
laid out consecutively in memory. The i-th distance label represents the tentative distance
from the i-th source to u. Initially, the i-th distance label of the i-th source is set to zero,
and all remaining kn − k distance labels to ∞. When relaxing an edge (u, v), we try to
improve all k distance labels of v at once. Increasing k allows us to compute more shortest
paths at once, however, it also evicts useful data from caches.

Dijkstra-Based Search. Initially, we insert all k sources (targets) into the queue of the
forward (reverse) search. As keys, we can use many different values, for example the minimum
over all k entries in a distance label or the minimum over the entries that were improved by
the last edge relaxation. However, a preliminary experiment showed that using the minimum
over all k entries clearly dominates the others, which is consistent with previous observations
on related techniques [20]. We can stop the forward (reverse) search as soon as its queue is
empty or the smallest queue entry exceeds the maximum over all k tentative shortest-path
distances. When using stall-on-demand [18], we prune the forward (reverse) search at a
vertex v when each of the k distance labels of v is suboptimal.

Elimination Tree Search. Computing multiple shortest paths in a single elimination tree
search is more involved, since it uses no queues that can easily be initialized with multiple
sources and targets. Instead, we equip the forward and reverse search each with a tournament
tree [23]. Suppose we have k sorted sequences that are to be merged into a single output
sequence, as in k-way mergesort. To do so, we have to repeatedly find the smallest from the
leading elements in the k sequences. This can be done efficiently with a tournament tree.

In our case, the k sorted sequences are the paths in the elimination tree T from each
source (target) to the root, and the single output sequence is the order in which we want
to process the vertices during the search. More precisely, we initialize the tournament tree
with all k sources (targets). Then, we extract a lowest-ranked vertex from the tournament
tree, process it, and insert its parent in T into the tournament tree. We continue with a
next-lowest-ranked vertex, until we reach the root of T . Note that in our case, unlike in
mergesort, the sequences are implicit, and never stored explicitly.

V. Buchhold, P. Sanders, and D. Wagner 27:7

As soon as two (or more) of the k paths in T converge at a common vertex, there are
duplicates in the single output sequence. However, we want to process each vertex at most
once. Therefore, whenever two or more paths converge, we block all but one of them, so that
only one continues to move through the tournament tree. To do so, we insert for each path
to be blocked a vertex with infinite rank into the tournament tree (instead of the next vertex
on the path). We know that some paths converged, when we extract the very same vertex
several times in succession from the tournament tree.

A clear advantage of the centralized elimination tree search is that it retains the label-
setting property, i.e., each vertex and each edge is processed at most once. In contrast, the
centralized Dijkstra-based search is a label-correcting algorithm. Note that one centralized
elimination tree search is slower than k elimination tree searches by a factor of log k in
O-notation (due to k-way merging), but outperforms them in practice (see Section 5).

4.3 Instruction-Level Parallelism

Modern CPUs have special registers and instructions that enable single-instruction multiple-
data (SIMD) computations performing basic operations (e.g., additions, subtractions, shifts,
compares, and data conversions) on multiple data items simultaneously [24]. We implemented
versions of the centralized searches using SSE instructions (working with 128-bit registers), and
additionally versions using AVX(2) instructions (manipulating 256-bit registers), requiring a
processor based on Intel’s Haswell or AMD’s Excavator microarchitecture.

As an example, we describe how an AVX-accelerated edge relaxation (used in Dijkstra-
based and elimination tree searches) works, assuming k = 8. Since we use 32-bit distance
labels, all k labels of a vertex fit in a single 256-bit register. To relax an edge (u, v), we copy
all k distance labels of u to an AVX register, and broadcast the edge weight to all elements
of another register. Then, we add both registers with a single instruction, and check with
an AVX comparison whether any tentative distance improves the corresponding distance
label of v. If so, we compute the packed minimum of the tentative distances and v’s distance
labels. In the same fashion, we implement the other aspects (stopping and pruning criteria).

4.4 Core-Level Parallelism

Dibbelt et al. [12] introduce parallelization techniques for the triangle enumeration during
customization. However, we observed that the perfect witness search building the upward
and downward search graphs (which is difficult to parallelize) actually takes up 60% of the
customization time. Hence, the speedup obtainable by parallelizing the customization phase
is limited (less than a factor of 1.5). For simplicity, we stick to sequential customization.

In contrast, the shortest-path computations are easy to parallelize. Since the centralized
computations are independent from one another, we can assign contiguous subsets of OD-pairs
to distinct cores. We distribute the OD-pairs to cores in chunks of size 64. This maintains
some locality even between centralized computations. Each core executes a chunk, then
requesting another chunk until no chunk remains. Flow units on the (shortcut) edges are
cumulated locally and aggregated after computing all paths. We observe an almost perfect
speedup for the time spent on queries (see Section 5).

SEA 2018

27:8 Real-Time Traffic Assignment Using Fast Queries in CCHs

Table 1 Traffic scenarios used for the evaluation of our traffic assignment procedures. We report
for each scenario the period of analysis and the number of OD-pairs departing within that period.

scenario analysis period # OD-pairs

Tue30m Tue., 7:00–7:30 118 933
Tue01h Tue., 7:00–8:00 246 089
Tue02h Tue., 7:00–9:00 478 098
Tue24h a whole Tuesday 3 355 442
MonSun a whole week 21 248 278

5 Experiments

Our publicly available code1 is written in C++14 and compiled with the GNU compiler 7.3
using optimization level 3. We use 4-heaps [21] as priority queues. To ensure a correct
implementation, we make extensive use of assertions (disabled during measurements), and
check results against reference implementations such as Dijkstra’s algorithm. Our benchmark
machine runs openSUSE Leap 42.3 (kernel 4.4.114), and has 128GiB of DDR4-2133 RAM
and an Intel Xeon E5-1630 v3 CPU, which has four cores clocked at 3.70Ghz.

5.1 Inputs and Methodology
Our main instance is the metropolitan area of Stuttgart [36], Germany, encompassing more
than 2.7 million inhabitants. The experiments were performed on the largest strongly
connected component, consisting of 134 663 vertices and 307 759 edges. While this instance
is significantly smaller than road networks studied before for evaluating point-to-point
queries [2], it is the largest available to us that provides real-world capacities and OD-pairs,
and is still an order of magnitude larger than the instances collected in [1]. Moreover, urban
planners are usually interested in traffic assignments on metropolitan areas, not continents.

The OD-pairs were obtained from [27, 28], which was calibrated from a household travel
survey [38] conducted in 2009/2010. The raw data contains about 51.8 million trips between
1174 traffic zones for a whole week, encompassing various modes of transportation such
as pedestrian, bicycle, public transit and car. For our experiments we only considered car
trips, and extracted five different traffic scenarios, as shown in Table 1. We chose a typical
two-hour morning peak on a working day (Tuesday), and also included two smaller and two
larger scenarios. While it may be unrealistic to compute a traffic assignment for a whole
week (as the period of analysis would be too inhomogeneous), it shows the scalability of our
procedures for tens of millions of OD-pairs. Note that we assume the actual origins and
destinations to be uniformly distributed in the zone, and obtain OD-pairs by picking the
origins and destinations uniformly at random from the zones according to the predicted trips.

Since our engineered elimination tree search is not restricted to traffic assignment, we
evaluate it on the European road network, which is the standard benchmark instance for
point-to-point queries [2]. It has 18 017 748 vertices and 42 560 275 edges, and was made
available by PTV AG for the 9th DIMACS Implementation Challenge [11].

The CH preprocessing is borrowed from the open-source library RoutingKit2. We compute
nested dissection orders for CCHs using Inertial Flow [35], setting the balance parameter

1 https://github.com/vbuchhold/routing-framework
2 https://github.com/RoutingKit/RoutingKit

https://github.com/vbuchhold/routing-framework
https://github.com/RoutingKit/RoutingKit

V. Buchhold, P. Sanders, and D. Wagner 27:9

b = 0.3. The reported running times do no include partitioning time, as it suffices to partition
a network only once, and reuse the resulting order for all traffic assignments on the same
network. Partitioning the metropolitan area of Stuttgart takes less than two seconds (even
on a single core). We always use perfect witness searches in combination with CCHs.

5.2 Elimination Tree Search
First we evaluate our engineered elimination tree search on its own. As most queries in
the real world tend to be local, we use the established Dijkstra rank methodology [34],
which considers local and long-range queries equally. In contrast, random queries tend to
be long-range. The Dijkstra rank (with respect to a source s) of a vertex v is r if v is the
r-th vertex settled by a Dijkstra search from s. We run 1000 point-to-point queries (without
path unpacking) for each Dijkstra rank tested, with s picked uniformly at random. Figure 1
compares the performance of our accelerated elimination tree search (CCH-tree-fast), the
original CCH query algorithms (CCH-Dij and CCH-tree), and the plain CH search on Europe
with travel times. Note that CCH-tree is not really the original algorithm, but already uses
our phase reduction optimization. CCH-tree-fast additionally uses our stricter pruning rule.

We observe that CCH-tree, while outperforming CCH-Dij on random queries [12], is
actually much slower for most Dijkstra ranks, especially for the realistic ones. The reason
is that the performance of CCH-tree is independent of the Dijkstra rank, since it always
processes each vertex in the search space. However, our stricter pruning rule makes the
algorithm sensitive to the Dijkstra rank, drastically speeding up short- and mid-range
queries (by up to a factor of 15). As a result, CCH-tree-fast combines the good local-query
performance of CCH-Dij with the good global-query performance of CCH-tree, and is faster
than both on mid-range queries. It can be seen as a unified CCH query algorithm, replacing
both original ones. Moreover, for many (realistic) Dijkstra ranks, it is about as fast as the
non-customizable CH search. When optimizing travel distances (not shown in the figure),
CCH-tree-fast even outperforms the CH search.

5.3 Traffic Assignment
We now evaluate the impact of our building blocks (customization, reordering OD-pairs,
centralized searches, and parallelism at multi-core and instruction levels) on the performance
of the traffic assignment procedure. As already mentioned, we run a predefined number of
iterations for each scenario: twelve on Tue30m, Tue01h and Tue02h, six on Tue24h and
MonSun. This choice is consistent with [37] and also justified by subsequent experiments.

Customization and Centralized Searches. Table 2 considers the influence of customization
and of the centralized searches on the performance of the traffic assignment. For now, we use
only a single core. The CCH-based procedures use the engineered elimination tree search.

Switching from plain to customizable CHs reduces the running time for all traffic scenarios.
As expected, we obtain larger speedups for smaller scenarios (a factor of 3 on Tue30m), since
preprocessing time dominates more in such scenarios. In contrast, reordering the OD-pairs so
that similar OD-pairs are processed successively works better for larger scenarios, improving
the running time on MonSun by about 20%.

The impact of computing multiple shortest paths at once without exploiting instruction-
level parallelism is limited. However, when using SIMD instructions, centralized searches
decrease the running time by up to another factor of 5.2. Increasing k allows us to compute
more shortest paths at once, but it also evicts useful data from caches. Setting k = 32 seems

SEA 2018

27:10 Real-Time Traffic Assignment Using Fast Queries in CCHs

1
10

10
0

27 28 29 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224

Dijkstra rank

qu
er
y
tim

e
[µ
s]

CH
CCH-Dij
CCH-tree
CCH-tree-fast

Figure 1 Performance of our engineered elimination-tree search (CCH-tree-fast), the original
CCH query algorithms (CCH-Dij and CCH-tree), and a CH. The input is Europe with travel times.

to be a good choice. Moreover, we observe that the centralized elimination searches achieve
greater speedups than the Dijkstra-based ones, since they are label-setting. (Although the
clustering approach described in Section 4 is tailored to the elimination tree search, preliminary
experiments with unbiased clustering approaches not building upon the elimination tree
showed a quite similar performance difference.)

Combining the optimizations, the traffic assignment procedure based on AVX-accelerated
centralized elimination tree searches with k = 32 gives the best overall performance. It
speeds up the state of the art by a factor of about 8 on all of our traffic scenarios. Compared
to the Dijkstra-based baseline, this configuration is several hundred times faster.

Core-Level Parallelism. Table 3 shows how the traffic assignment procedure scales as the
number of cores increases. We observe that the time spent on queries scales very well. With
4 cores, we gain a speedup of 3.5 for Tue24h and MonSun, and even our smallest scenario
is accelerated by a factor of 2.7. In total, our multi-threaded centralized traffic assignment
procedure decreases the running time on our main benchmark instance Tue02h from 76.5 to
4.3 seconds, a speedup of 18 over the state of the art.

For comparison, we also run the state of the art on four cores, parallelizing the shortest-
path computations as described in Section 4. We observe that even on a single core, our
procedure is always more than twice as fast as the parallelized state of the art. The difference
between both parallelized versions is again a factor of about 8.

Convergence. Next, we evaluate how long the traffic assignment procedure takes to converge.
For that we run a very large number of iterations of the procedure (300 in our case) and take
the resulting flow pattern as the equilibrium situation. Figure 2 shows the average deviation
of the OD-travel-costs in each iteration from the OD-travel-costs at equilibrium.

We observe that Tue30m, Tue01h, and Tue02h require more iterations to converge, since
they are periods during the morning peak. In contrast, Tue24h and MonSun behave like

V. Buchhold, P. Sanders, and D. Wagner 27:11

Table 2 Impact of the centralized searches on the running time (in seconds) of the traffic
assignment procedure for our scenarios. We evaluate the influence of using customizable CHs,
reordering the OD-pairs (sorted), computing k shortest paths simultaneously, and using SSE and
AVX instructions. The prior state of the art and our default configuration are highlighted in bold.

algo sorted k SSE AVX Tue30m Tue01h Tue02h Tue24h MonSun

Dij ◦ 1 ◦ ◦ 1857.27 3582.67 6028.48 20128.24 128993.50

CH ◦ 1 ◦ ◦ 35.85 52.81 76.54 183.59 1082.20
CH • 1 ◦ ◦ 35.06 48.72 67.83 153.90 851.63
CH • 4 ◦ ◦ 34.47 45.75 62.20 130.07 656.66
CH • 4 • ◦ 30.27 39.85 52.89 99.22 507.49
CH • 8 ◦ ◦ 38.04 50.80 71.11 151.24 763.45
CH • 8 • ◦ 29.41 36.23 46.79 85.89 410.03
CH • 8 ◦ • 29.64 36.33 45.51 81.98 397.91
CH • 16 ◦ • 29.33 35.08 44.34 75.45 352.90
CH • 32 ◦ • 29.87 37.30 46.71 72.85 322.04
CH • 64 ◦ • 34.79 43.98 54.75 85.28 354.15

CCH ◦ 1 ◦ ◦ 11.99 22.75 40.02 132.54 803.48
CCH • 1 ◦ ◦ 10.62 19.59 34.12 108.08 659.57
CCH • 4 ◦ ◦ 9.71 17.28 29.50 87.70 499.25
CCH • 4 • ◦ 6.28 10.60 17.82 51.91 298.91
CCH • 8 ◦ ◦ 11.71 20.72 35.14 102.89 581.38
CCH • 8 • ◦ 5.31 8.61 14.02 39.25 218.79
CCH • 8 ◦ • 4.86 7.84 12.66 35.11 195.63
CCH • 16 ◦ • 4.58 6.98 10.83 27.48 144.81
CCH • 32 ◦ • 4.60 6.89 10.54 25.14 126.70
CCH • 64 ◦ • 5.91 8.92 13.55 29.78 145.33

Table 3 Impact of core-level parallelization on the performance of the traffic assignment procedure.
We report for each scenario the time spent on queries and the total running time (both in seconds).

Tue30m Tue01h Tue02h Tue24h MonSun

algo cores qry total qry total qry total qry total qry total

CH 4 4.14 24.76 8.21 28.33 14.85 34.41 46.28 54.97 295.39 304.33

CCH 1 3.12 4.60 5.41 6.89 9.05 10.54 24.42 25.14 125.97 126.70
CCH 2 1.85 3.32 3.18 4.66 5.23 6.71 13.46 14.18 70.18 70.91
CCH 3 1.38 2.86 2.29 3.76 3.63 5.10 9.09 9.82 47.12 47.85
CCH 4 1.17 2.65 1.82 3.31 2.86 4.33 6.95 7.67 35.90 36.64

off-peak periods, since the traffic is considered to be uniformly distributed over the period of
analysis. In relatively uncongested networks, the edge flows are in the range where the travel
time functions are almost flat, the updated travel times are closer to the initial ones, and
the equilibrium flow pattern is more similar to the initial solution [37]. The peak scenarios
are close to equilibrium after about twelve iterations, the off-peak scenarios after about six
iterations.

SEA 2018

27:12 Real-Time Traffic Assignment Using Fast Queries in CCHs

0
4

8
12

16
20

1 3 5 7 9 11 13 15
iteration

av
er
ag

e
er
ro
r
[%

]

Tue30m
Tue01h
Tue02h
Tue24h
MonSun

Figure 2 Convergence of the traffic assignment procedure. The plot shows the average deviation
of the OD-travel-costs in each iteration from the OD-travel-costs at equilibrium.

0
0.
1

0.
2

0.
3

1 3 5 7 9 11

cust qry other

(a) Traffic scenario Tue30m.

0
0.
2

0.
4

1 3 5 7 9 11

cust qry other

(b) Traffic scenario Tue02h.

0
2

4
6

8

1 2 3 4 5 6

cust qry other

(c) Traffic scenario MonSun.

Figure 3 Time in seconds (vertical) spent in each iteration (horizontal) for the multi-threaded
traffic assignment procedure (using all 4 cores). For MonSun, customization and other work are
hardly visible, since they take only 1.59% and 0.41% of the total time, respectively.

Time per Iteration. Figure 3 plots the running time (per phase) that our multi-threaded
traffic assignment spends in each iteration. First, we observe that the procedure spends
the same amount of time in each iteration. Although the inherent hierarchy of the network
is weakened while computing an equilibrium flow pattern [26], this is expected since the
performance of both CCH customization and queries is mostly metric-independent [12]. For
our smallest scenario, customization takes 44% of the total time. This decreases to 27% for
Tue02h, and to 2% for our largest scenario. All other work, such as the line search, the edge
updates, and the convergence checks, is negligible (only 12% even for the smallest scenario).

6 Conclusion

We accelerated the computation of equilibrium flow patterns significantly. This was achieved
by carefully engineering a number of building blocks, including customization, an improved
CCH query algorithm, centralized searches, and parallelism at multi-core and instruction
levels. Moreover, the improved, unified CCH query algorithm (replacing both original query
algorithms) and the centralized elimination tree search are not restricted to the traffic

V. Buchhold, P. Sanders, and D. Wagner 27:13

assignment problem, but generally applicable to (batched) point-to-point shortest paths.
All building blocks were evaluated on real-world data used in production systems. On a
metropolitan area encompassing more than 2.7 million inhabitants, we compute the flow
pattern for a typical two-hour morning peak in merely 4.3 seconds, 18 times faster than
the state of the art, and 1390 times faster than the Dijkstra-based baseline. This makes
interactive urban transportation planning applications practical.

For traffic scenarios where the shortest-path computations are still the performance
bottleneck of the traffic assignment procedure, it would be interesting to process only a
sample of the demand in early iterations, and add more and more OD-pairs in subsequent
iterations. In addition, we are interested in testing our traffic assignment procedure on
benchmark instances that are even an order of magnitude larger than the one used in this
work. Since we are not aware of any such real-world instances, we plan to work on realistic
generators for synthetic OD-pairs. Finally, it would be interesting to study the efficient
computation of time-dependent traffic flow profiles.

References

1 Frédéric Babonneau and Jean-Philippe Vial. Test instances for the traffic assignment prob-
lem. Technical report, Ordecsys, 2008.

2 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route planning in trans-
portation networks. In Algorithm Engineering: Selected Results and Surveys, pages 19–80.
Springer, 2016. doi:10.1007/978-3-319-49487-6_2.

3 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space
size in contraction hierarchies. Theoretical Computer Science, 645:112–127, 2016. doi:
10.1016/j.tcs.2016.07.003.

4 Reinhard Bauer and Daniel Delling. SHARC: Fast and robust unidirectional routing.
ACM Journal of Experimental Algorithmics, 14:2.4:1–2.4:29, 2009. doi:10.1145/1498698.
1537599.

5 Martin Beckmann, C. Bart McGuire, and Christopher B. Winsten. Studies in the Eco-
nomics of Transportation. Yale University Press, 1956.

6 M. Bruynooghe, A. Gilbert, and M. Sakarovich. Une méthode d’affectation du traffic. In
Proceedings of the 4th International Symposium on the Theory of Road Traffic Flow, 1968.

7 Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck. PHAST:
Hardware-accelerated shortest path trees. Journal of Parallel and Distributed Computing,
73(7):940–952, 2013. doi:10.1016/j.jpdc.2012.02.007.

8 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
route planning in road networks. Transportation Science, 51(2):566–591, 2017. doi:10.
1287/trsc.2014.0579.

9 Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Faster batched shortest
paths in road networks. In Proceedings of the 11th Workshop on Algorithmic Approaches
for Transportation Modeling, Optimization, and Systems (ATMOS’11), pages 52–63, 2011.
doi:10.4230/OASIcs.ATMOS.2011.52.

10 Daniel Delling and Renato F. Werneck. Customizable point-of-interest queries in road
networks. IEEE Transactions on Knowledge and Data Engineering, 27(3):686–698, 2015.
doi:10.1109/TKDE.2014.2345386.

11 Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The Shortest
Path Problem: Ninth DIMACS Implementation Challenge, volume 74 of DIMACS Book.
American Mathematical Society, 2009.

SEA 2018

http://dx.doi.org/10.1007/978-3-319-49487-6_2
http://dx.doi.org/10.1016/j.tcs.2016.07.003
http://dx.doi.org/10.1016/j.tcs.2016.07.003
http://dx.doi.org/10.1145/1498698.1537599
http://dx.doi.org/10.1145/1498698.1537599
http://dx.doi.org/10.1016/j.jpdc.2012.02.007
http://dx.doi.org/10.1287/trsc.2014.0579
http://dx.doi.org/10.1287/trsc.2014.0579
http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.52
http://dx.doi.org/10.1109/TKDE.2014.2345386

27:14 Real-Time Traffic Assignment Using Fast Queries in CCHs

12 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable contraction hier-
archies. ACM Journal of Experimental Algorithmics, 21(1):1.5:1–1.5:49, 2016. doi:
10.1145/2886843.

13 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

14 Alexandros Efentakis and Dieter Pfoser. Optimizing landmark-based routing and prepro-
cessing. In Proceedings of the 6th ACM SIGSPATIAL International Workshop on Compu-
tational Transportation Science (IWCTS’13), pages 25–30, 2013. doi:10.1145/2533828.
2533838.

15 Alexandros Efentakis and Dieter Pfoser. GRASP. Extending graph separators for the single-
source shortest-path problem. In Proceedings of the 22th Annual European Symposium on
Algorithms (ESA’14), pages 358–370, 2014. doi:10.1007/978-3-662-44777-2_30.

16 Alexandros Efentakis, Dieter Pfoser, and Yannis Vassiliou. SALT. A unified framework for
all shortest-path query variants on road networks. In Proceedings of the 14th International
Symposium on Experimental Algorithms (SEA’15), pages 298–311, 2015. doi:10.1007/
978-3-319-20086-6_23.

17 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval
Research Logistics Quarterly, 3(1-2):95–110, 1956. doi:10.1002/nav.3800030109.

18 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
2012. doi:10.1287/trsc.1110.0401.

19 Alan George. Nested dissection of a regular finite element mesh. SIAM Journal on Numer-
ical Analysis, 10(2):345–363, 1973. doi:10.1137/0710032.

20 Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Fast point-to-point
shortest path computations with arc-flags. In The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, pages 41–72. American Mathematical Society, 2009.

21 Donald B. Johnson. Priority queues with update and finding minimum spanning trees.
Information Processing Letters, 4(3):53–57, 1975. doi:10.1016/0020-0190(75)90001-0.

22 Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea Wagner.
Computing many-to-many shortest paths using highway hierarchies. In Proceedings of
the 9th Workshop on Algorithm Engineering and Experiments (ALENEX’07), pages 36–45,
2007. doi:10.1137/1.9781611972870.4.

23 Donald E. Knuth. The Art of Computer Programming: Sorting and Searching. Addison-
Wesley, 1998.

24 Daniel Kusswurm. Modern X86 Assembly Language Programming: 32-bit, 64-bit, SSE, and
AVX. Apress, 2014.

25 Larry J. LeBlanc, Edward K. Morlok, and William P. Pierskalla. An efficient approach to
solving the road network equilibrium traffic assignment problem. Transportation Research,
9(5):309–318, 1975. doi:10.1016/0041-1647(75)90030-1.

26 Dennis Luxen and Peter Sanders. Hierarchy decomposition for faster user equilibria on road
networks. In Proceedings of the 10th International Symposium on Experimental Algorithms
(SEA’11), pages 242–253, 2011. doi:10.1007/978-3-642-20662-7_21.

27 Nicolai Mallig, Martin Kagerbauer, and Peter Vortisch. mobitopp - A modular agent-based
travel demand modelling framework. In Proceedings of the 2nd International Workshop on
Agent-based Mobility, Traffic and Transportation Models, Methodologies and Applications
(ABMTRANS’13), pages 854–859, 2013. doi:10.1016/j.procs.2013.06.114.

28 Nicolai Mallig and Peter Vortisch. Modeling car passenger trips in mobitopp. In Proceedings
of the 4nd International Workshop on Agent-based Mobility, Traffic and Transportation
Models, Methodologies and Applications (ABMTRANS’15), pages 938–943, 2015. doi:10.
1016/j.procs.2015.05.169.

http://dx.doi.org/10.1145/2886843
http://dx.doi.org/10.1145/2886843
http://dx.doi.org/10.1145/2533828.2533838
http://dx.doi.org/10.1145/2533828.2533838
http://dx.doi.org/10.1007/978-3-662-44777-2_30
http://dx.doi.org/10.1007/978-3-319-20086-6_23
http://dx.doi.org/10.1007/978-3-319-20086-6_23
http://dx.doi.org/10.1002/nav.3800030109
http://dx.doi.org/10.1287/trsc.1110.0401
http://dx.doi.org/10.1137/0710032
http://dx.doi.org/10.1016/0020-0190(75)90001-0
http://dx.doi.org/10.1137/1.9781611972870.4
http://dx.doi.org/10.1016/0041-1647(75)90030-1
http://dx.doi.org/10.1007/978-3-642-20662-7_21
http://dx.doi.org/10.1016/j.procs.2013.06.114
http://dx.doi.org/10.1016/j.procs.2015.05.169
http://dx.doi.org/10.1016/j.procs.2015.05.169

V. Buchhold, P. Sanders, and D. Wagner 27:15

29 Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox.
Springer, 2008. doi:10.1007/978-3-540-77978-0.

30 Enock T. Mtoi and Ren Moses. Calibration and evaluation of link congestion functions:
Applying intrinsic sensitivity of link speed as a practical consideration to heterogeneous
facility types within urban network. Journal of Transportation Technologies, 4:141–149,
2014. doi:10.4236/jtts.2014.42014.

31 John D. Murchland. Road traffic distribution in equilibrium. In Proceedings of Mathemat-
ical Methods in the Economic Sciences, 1969.

32 Michael Patriksson. The Traffic Assignment Problem: Models and Methods. Topics in
Transportation. VSP, 1994.

33 Srinivas Peeta and Athanasios K. Ziliaskopoulos. Foundations of dynamic traffic assignment:
The past, the present and the future. Networks and Spatial Economics, 1(3-4):233–265, 2001.
doi:10.1023/A:1012827724856.

34 Peter Sanders and Dominik Schultes. Highway hierarchies hasten exact shortest path
queries. In Proceedings of the 13th Annual European Symposium on Algorithms (ESA’05),
pages 568–579, 2005. doi:10.1007/11561071_51.

35 Aaron Schild and Christian Sommer. On balanced separators in road networks. In Pro-
ceedings of the 14th International Symposium on Experimental Algorithms (SEA’15), pages
286–297, 2015. doi:10.1007/978-3-319-20086-6_22.

36 Johannes Schlaich, Udo Heidl, and R. Pohlner. Verkehrsmodellierung für die Region
Stuttgart: Schlussbericht. unpublished, 2011.

37 Yosef Sheffi. Urban Transportation Networks: Equilibrium Analysis with Mathematical
Programming Methods. Prentice Hall, 1985.

38 Verband Region Stuttgart. Mobilität und Verkehr in der Region Stuttgart 2009/2010:
Regionale Haushaltsbefragung zum Verkehrsverhalten. Schriftenreihe Verband Region
Stuttgart, 29:1–138, 2011.

39 John G. Wardrop. Some theoretical aspects of road traffic research. In Proceedings of the
Institution of Civil Engineers, pages 325–362, 1952. doi:10.1680/ipeds.1952.11259.

40 Hiroki Yanagisawa. A multi-source label-correcting algorithm for the all-pairs shortest paths
problem. In 24th IEEE International Symposium on Parallel and Distributed Processing
(IPDPS’10), pages 1–10, 2010. doi:10.1109/IPDPS.2010.5470362.

SEA 2018

http://dx.doi.org/10.1007/978-3-540-77978-0
http://dx.doi.org/10.4236/jtts.2014.42014
http://dx.doi.org/10.1023/A:1012827724856
http://dx.doi.org/10.1007/11561071_51
http://dx.doi.org/10.1007/978-3-319-20086-6_22
http://dx.doi.org/10.1680/ipeds.1952.11259
http://dx.doi.org/10.1109/IPDPS.2010.5470362

	Introduction
	Preliminaries
	Traffic Assignment
	Contraction Hierarchies
	Customizable CHs

	Accelerating Elimination Tree Searches
	Accelerating Traffic Assignments by Fast Batched Shortest Paths
	Reordering OD-pairs to Exploit Locality
	Centralized Searches
	Instruction-Level Parallelism
	Core-Level Parallelism

	Experiments
	Inputs and Methodology
	Elimination Tree Search
	Traffic Assignment

	Conclusion

