8 research outputs found

    Automated analysis of 3D echocardiography

    Get PDF
    In this thesis we aim at automating the analysis of 3D echocardiography, mainly targeting the functional analysis of the left ventricle. Manual analysis of these data is cumbersome, time-consuming and is associated with inter-observer and inter-institutional variability. Methods for reconstruction of 3D echocardiographic images from fast rotating ultrasound transducers is presented and methods for analysis of 3D echocardiography in general, using tracking, detection and model-based segmentation techniques to ultimately fully automatically segment the left ventricle for functional analysis. We show that reliable quantification of left ventricular volume and mitral valve displacement can be achieved using the presented techniques.SenterNovem (IOP Beeldverwerking, grant IBVC02003), Dutch Technology Foundation STW (grant 06666)UBL - phd migration 201

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world

    Automatic whole heart segmentation based on image registration

    Get PDF
    Whole heart segmentation can provide important morphological information of the heart, potentially enabling the development of new clinical applications and the planning and guidance of cardiac interventional procedures. This information can be extracted from medical images, such as these of magnetic resonance imaging (MRI), which is becoming a routine modality for the determination of cardiac morphology. Since manual delineation is labour intensive and subject to observer variation, it is highly desirable to develop an automatic method. However, automating the process is complicated by the large shape variation of the heart and limited quality of the data. The aim of this work is to develop an automatic and robust segmentation framework from cardiac MRI while overcoming these difficulties. The main challenge of this segmentation is initialisation of the substructures and inclusion of shape constraints. We propose the locally affine registration method (LARM) and the freeform deformations with adaptive control point status to tackle the challenge. They are applied to the atlas propagation based segmentation framework, where the multi-stage scheme is used to hierarchically increase the degree of freedom. In this segmentation framework, it is also needed to compute the inverse transformation for the LARM registration. Therefore, we propose a generic method, using Dynamic Resampling And distance Weighted interpolation (DRAW), for inverting dense displacements. The segmentation framework is validated on a clinical dataset which includes nine pathologies. To further improve the nonrigid registration against local intensity distortions in the images, we propose a generalised spatial information encoding scheme and the spatial information encoded mutual information (SIEMI) registration. SIEMI registration is applied to the segmentation framework to improve the accuracy. Furthermore, to demonstrate the general applicability of SIEMI registration, we apply it to the registration of cardiac MRI, brain MRI, and the contrast enhanced MRI of the liver. SIEMI registration is shown to perform well and achieve significantly better accuracy compared to the registration using normalised mutual information

    Automated Analysis of 3D Stress Echocardiography

    Get PDF
    __Abstract__ The human circulatory system consists of the heart, blood, arteries, veins and capillaries. The heart is the muscular organ which pumps the blood through the human body (Fig. 1.1,1.2). Deoxygenated blood flows through the right atrium into the right ventricle, which pumps the blood into the pulmonary arteries. The blood is carried to the lungs, where it passes through a capillary network that enables the release of carbon dioxide and the uptake of oxygen. Oxygenated blood then returns to the heart via the pulmonary veins and flows from the left atrium into the left ventricle. The left ventricle then pumps the blood through the aorta, the major artery which supplies blood to the rest of the body [Drake et a!., 2005; Guyton and Halt 1996]. Therefore, it is vital that the cardiovascular system remains healthy. Disease of the cardiovascular system, if untreated, ultimately leads to the failure of other organs and death
    corecore