370 research outputs found

    Electronic scan weather radar: scan strategy and signal processing for volume targets

    Get PDF
    2013 Fall.Includes bibliographical references.Following the success of the WSR-88D network, considerable effort has been directed toward searching for options for the next generation of weather radar technology. With its superior capability for rapidly scanning the atmosphere, electronically scanned phased array radar (PAR) is a potential candidate. A network of such radars has been recommended for consideration by the National Academies Committee on Weather Radar Technology beyond NEXRAD. While conventional weather radar uses a rotating parabolic antenna to form and direct the beam, a phased array radar superimposes outputs from an array of many similar radiating elements to yield a beam that is scanned electronically. An adaptive scan strategy and advanced signal designs and processing concepts are developed in this work to use PAR effectively for weather observation. An adaptive scan strategy for weather targets is developed based on the space-time variability of the storm under observation. Quickly evolving regions are scanned more often and spatial sampling resolution is matched to spatial scale. A model that includes the interaction between space and time is used to extract spatial and temporal scales of the medium and to define scanning regions. The temporal scale constrains the radar revisit time while the measurement accuracy controls the dwell time. These conditions are employed in a task scheduler that works on a ray-by-ray basis and is designed to balance task priority and radar resources. The scheduler algorithm also includes an optimization procedure for minimizing radar scan time. In this research, a signal model for polarimetric phased array weather radar (PAWR) is presented and analyzed. The electronic scan mechanism creates a complex coupling of horizontal and vertical polarizations that produce the bias in the polarimetric variables retrieval. Methods for bias correction for simultaneous and alternating transmission modes are proposed. It is shown that the bias can be effectively removed; however, data quality degradation occurs at far off boresight directions. The effective range for the bias correction methods is suggested by using radar simulation. The pulsing scheme used in PAWR requires a new ground clutter filtering method. The filter is designed to work with a signal covariance matrix in the time domain. The matrix size is set to match the data block size. The filter's design helps overcome limitations of spectral filtering methods and make efficient use of reducing ground clutter width in PAWR. Therefore, it works on modes with few samples. Additionally, the filter can be directly extended for staggered PRT waveforms. Filter implementation for polarimetric retrieval is also successfully developed and tested for simultaneous and alternating staggered PRT. The performance of these methods is discussed in detail. It is important to achieve high sensitivity for PAWR. The use of low-power solid state transmitters to keep costs down requires pulse compression technique. Wide-band pulse compression filters will partly reduce the system sensitivity performance. A system for sensitivity enhancement (SES) for pulse compression weather radar is developed to mitigate this issue. SES uses a dual-waveform transmission scheme and an adaptive pulse compression filter that is based on the self-consistency between signals of the two waveforms. Using SES, the system sensitivity can be improved by 8 to 10 dB

    Doppler Radar for USA Weather Surveillance

    Get PDF

    Spectral analyses of the dual polarization Doppler weather radar data.

    Get PDF
    Echoes in clear air from biological scatterers mixed within the resolution volumes over a large region are presented. These echoes were observed with the polarimetric prototype of the forthcoming WSR-88D weather radar. The study case occurred in the evening of September 7, 2004, at the beginning of the bird migrating season. Novel polarimetric spectral analyses are used for distinguishing signatures of birds and insects in multimodal spectra. These biological scatterers were present at the same time in the radar resolution volumes over a large area. Spectral techniques for (1) data censoring, (2) wind retrieval and (3) estimation of intrinsic values/functions of polarimetric variables for different types of scatterers are presented. The technique for data censoring in the frequency domain allows detection of weak signals. Censoring is performed on the level of spectral densities, allowing exposure of contributions to the spectrum from multiple types of scatterers. The spectral techniques for wind retrieval allow simultaneous estimation of wind from the data that are severely contaminated by migrating birds, and assessment of bird migration parameters. The intrinsic polarimetric signatures associated with the variety of scatterers can be evaluated using presented methodology. Algorithms for echo classification can be built on these. The possibilities of spectral processing using parametric estimation techniques are explored for resolving contributions to the Doppler spectrum from the three types of scatterers: passive wind tracers, actively flying insects and birds. A combination of parametric and non-parametric polarimetric spectral analyses is used to estimate the small bias introduced to the wind velocity by actively flying insects

    Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    Get PDF
    2012 Summer.Includes bibliographical references.The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi-channel digital receiver has been successfully deployed as a key component in the recently developed National Aeronautical and Space Administration (NASA) Global Precipitation Measurement (GPM) Dual-Frequency Dual-Polarization Doppler Radar (D3R). The D3R is the principal ground validation instrument for the precipitation measurements of the Dual Precipitation Radar (DPR) onboard the GPM Core Observatory satellite scheduled for launch in 2014. The D3R system employs two broadly separated frequencies at Ku- and Ka-bands that together make measurements for precipitation types which need higher sensitivity such as light rain, drizzle and snow. This research describes unique design space to configure the digital receiver for D3R at several processing levels. At length, this research presents analysis and results obtained by employing the multi-carrier waveforms for D3R during the 2012 GPM Cold-Season Precipitation Experiment (GCPEx) campaign in Canada

    Development and validation of an X-band dual polarization Doppler weather radar test node for a tropical network, The

    Get PDF
    2012 Fall.Includes bibliographical references.An automated network of three X-band dual polarization Doppler weather radars is in process of being deployed and operational on the western coast of Puerto Rico. Colorado State University and the University of Puerto Rico at Mayaguez have collaborated to install the first polarimetric weather radar network in a tropical environment, known as TropiNet, to observe the lowest 2 km of the troposphere where the National Weather Service NEXRAD radar in Cayey, PR (TJUA) has obstructed views of the west coast, below 1.5 km due to terrain blockage and the Earth curvature problem. The CSU-X25P radar test node was developed, validated, and deployed to Mayaguez, PR in early 2011 to make first observations of this tropical region, and served as a pilot project to verify the infrastructure of the TropiNet network. This research describes the CSU-X25P radar test node, presenting the radar system specifications and an overview of the data acquisition and signal processing sub-systems, and the antenna positioner and control sub-system. The development and validation process included integration, sub-system calibration and test, and a final evaluation by conducting end-to-end calibration of the radar system. Validation of the calculated data moments, include Doppler velocity, reflectivity, differential reflectivity, differential propagation phase, and specific differential phase. The validation was accomplished by comparative analysis of data from coordinated scans between CSU-X25P and the well-established CSU-CHILL S-band polarimetric Doppler weather radar, in Greeley, CO. Upon validation, CSU-X25P was disassembled, packaged, and shipped to Puerto Rico to be fully deployed for operation in a tropical seaside environment. This research presents select observations of severe weather events, such as tropical storms and hurricanes, which attest to the robustness of the radar test node, and the TropiNet network infrastructure

    A satellite-based radar wind sensor

    Get PDF
    The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system

    Fuzzy logic filtering of radar reflectivity to remove non-meteorological echoes using dual polarization radar moments

    Get PDF
    The ability of a fuzzy logic classifier to dynamically identify non-meteorological radar echoes is demonstrated using data from the National Centre for Atmospheric Science dual polarisation, Doppler, X-band mobile radar. Dynamic filtering of radar echoes is required due to the variable presence of spurious targets, which can include insects, ground clutter and background noise. The fuzzy logic classifier described here uses novel multi-vertex membership functions which allow a range of distributions to be incorporated into the final decision. These membership functions are derived using empirical observations, from a subset of the available radar data. The classifier incorporates a threshold of certainty (25 % of the total possible membership score) into the final fractional defuzzification to improve the reliability of the results. It is shown that the addition of linear texture fields, specifically the texture of the cross-correlation coefficient, differential phase shift and differential reflectivity, to the classifier along with standard dual polarisation radar moments enhances the ability of the fuzzy classifier to identify multiple features. Examples from the Convective Precipitation Experiment (COPE) show the ability of the filter to identify insects (18 August 2013) and ground clutter in the presence of precipitation (17 August 2013). Medium-duration rainfall accumulations across the whole of the COPE campaign show the benefit of applying the filter prior to making quantitative precipitation estimates. A second deployment at a second field site (Burn Airfield, 6 October 2014) shows the applicability of the method to multiple locations, with small echo features, including power lines and cooling towers, being successfully identified by the classifier without modification of the membership functions from the previous deployment. The fuzzy logic filter described can also be run in near real time, with a delay of less than 1 min, allowing its use on future field campaigns

    An Improved Clutter Suppression Method for Weather Radars Using Multiple Pulse Repetition Time Technique

    Get PDF
    This paper describes the implementation of an improved clutter suppression method for the multiple pulse repetition time (PRT) technique based on simulated radar data. The suppression method is constructed using maximum likelihood methodology in time domain and is called parametric time domain method (PTDM). The procedure relies on the assumption that precipitation and clutter signal spectra follow a Gaussian functional form. The multiple interleaved pulse repetition frequencies (PRFs) that are used in this work are set to four PRFs (952, 833, 667, and 513 Hz). Based on radar simulation, it is shown that the new method can provide accurate retrieval of Doppler velocity even in the case of strong clutter contamination. The obtained velocity is nearly unbiased for all the range of Nyquist velocity interval. Also, the performance of the method is illustrated on simulated radar data for plan position indicator (PPI) scan. Compared with staggered 2-PRT transmission schemes with PTDM, the proposed method presents better estimation accuracy under certain clutter situations

    Analysis and improved design considerations for airborne pulse Doppler radar signal processing in the detection of hazardous windshear

    Get PDF
    High resolution windspeed profile measurements are needed to provide reliable detection of hazardous low altitude windshear with an airborne pulse Doppler radar. The system phase noise in a Doppler weather radar may degrade the spectrum moment estimation quality and the clutter cancellation capability which are important in windshear detection. Also the bias due to weather return Doppler spectrum skewness may cause large errors in pulse pair spectral parameter estimates. These effects are analyzed for the improvement of an airborne Doppler weather radar signal processing design. A method is presented for the direct measurement of windspeed gradient using low pulse repetition frequency (PRF) radar. This spatial gradient is essential in obtaining the windshear hazard index. As an alternative, the modified Prony method is suggested as a spectrum mode estimator for both the clutter and weather signal. Estimation of Doppler spectrum modes may provide the desired windshear hazard information without the need of any preliminary processing requirement such as clutter filtering. The results obtained by processing a NASA simulation model output support consideration of mode identification as one component of a windshear detection algorithm
    corecore