64,901 research outputs found

    Vision-based hand gesture interaction using particle filter, principle component analysis and transition network

    Get PDF
    Vision-based human-computer interaction is becoming important nowadays. It offers natural interaction with computers and frees users from mechanical interaction devices, which is favourable especially for wearable computers. This paper presents a human-computer interaction system based on a conventional webcam and hand gesture recognition. This interaction system works in real time and enables users to control a computer cursor with hand motions and gestures instead of a mouse. Five hand gestures are designed on behalf of five mouse operations: moving, left click, left-double click, right click and no-action. An algorithm based on Particle Filter is used for tracking the hand position. PCA-based feature selection is used for recognizing the hand gestures. A transition network is also employed for improving the accuracy and reliability of the interaction system. This interaction system shows good performance in the recognition and interaction test

    Towards an intuitive human-robot interaction based on hand gesture recognition and proximity sensors

    Get PDF
    In this paper, we present a multimodal sensor interface that is capable of recognizing hand gestures for human-robot interaction. The proposed system is composed of an array of proximity and gesture sensors, which have been mounted on a 3D printed bracelet. The gesture sensors are employed for data collection from four hand gesture movements (up, down, left and right) performed by the human at a predefined distance from the sensorised bracelet. The hand gesture movements are classified using Artificial Neural Networks. The proposed approach is validated with experiments in offline and real-time modes performed systematically. First, in offline mode, the accuracy for recognition of the four hand gesture movements achieved a mean of 97.86%. Second, the trained model was used for classification in real-time and achieved a mean recognition accuracy of 97.7%. The output from the recognised hand gesture in real-time mode was used to control the movement of a Universal Robot (UR3) arm in the CoppeliaSim simulation environment. Overall, the results from the experiments show that using multimodal sensors, together with computational intelligence methods, have the potential for the development of intuitive and safe human-robot interaction

    A novel architecture for hand gesture–based control of mobile robots

    Get PDF
    The aim of this paper is to present a novel architecture for hand gesture-based control of mobile robots. The research activity was mainly focused on the design of a new method for hand gestures recognition under unconstrained scenes. Our method comes to solve some of the most important problems that current HRI (Human-Robot Interaction) systems fight with: changes of lighting, long distances, speed. Like any other HRI specific method, the one that we developed is working in real time/environment. It is a robust and adaptive method, being able to deal with changes of lighting. It is also capable of recognizing hand gestures from long distances. Another important issue we have focused upon was the integration of our method into a more complex HRI system, in which a human operator can drive a mobile robot only through hand gestures. In systems like these, the communication between human operators and robotic systems should be done in the most natural way. Typically, communication is done through voice and hands/head postures and gestures. Our method was designed in such a manner that will be able to recognize the hand gestures even if there are certain deviations from the ideal cases

    3D Hand gesture recognition using a ZCam and an SVM-SMO classifier

    Get PDF
    The increasing number of new and complex computer-based applications has generated a need for a more natural interface between human users and computer-based applications. This problem can be solved by using hand gestures, one of the most natural means of communication between human beings. The difficulty in deploying a computer vision-based gesture application in a non-controlled environment can be solved by using new hardware which can capture 3D information. However, researchers and others still need complete solutions to perform reliable gesture recognition in such an environment. This paper presents a complete solution for the one-hand 3D gesture recognition problem, implements a solution, and proves its reliability. The solution is complete because it focuses both on the 3D gesture recognition and on understanding the scene being presented (so the user does not need to inform the system that he or she is about to initiate a new gesture). The selected approach models the gestures as a sequence of hand poses. This reduces the problem to one of recognizing the series of hand poses and building the gestures from this information. Additionally, the need to perform the gesture recognition in real time resulted in using a simple feature set that makes the required processing as streamlined as possible. Finally, the hand gesture recognition system proposed here was successfully implemented in two applications, one developed by a completely independent team and one developed as part of this research. The latter effort resulted in a device driver that adds 3D gestures to an open-source, platform-independent multi-touch framework called Sparsh-U

    Nhận dạng cử chỉ của bàn tay người theo thời gian thực.

    Get PDF
    This paper proposes a new  method of hand gesture recognition using Microsoft’s Kinect in real-time. Our system includes detecting and recognizing hand gestures via combining shape, local auto-correlation information and multi-class support vector machine (SVM). Our evaluation shows that the system recognizes one-handed gestures with more than 93% accuracy in real-time. The efficiency of the system execution is good enough and we are encouraged to develop a natural human-machine interaction in the near future.Bài báo trình bày một số kết quả nhận dạng cử chỉ của bàn tay người theo thời gian thực sử dụng thông tin thu được từ cảm biến Kinect của hãng Microsoft. Một số kết quả chính của hướng nghiên cứu được trình bày như: kỹ thuật tách vùng bàn tay, nhận dạng tư thế của bàn tay, đề xuất thuật toán hiệu chỉnh kết quả nhận dạng từ chuỗi các tư thế. Kết quả nhận dạng cho độ chính xác khả quan (trên 93%) tạo tiền đề cho các ứng dụng tương tác người máy theo thời gian thực

    An Energy-Efficient IoT node for HMI applications based on an ultra-low power Multicore Processor

    Get PDF
    Developing wearable sensing technologies and unobtrusive devices is paving the way to the design of compelling applications for the next generation of systems for a smart IoT node for Human Machine Interaction (HMI). In this paper we present a smart sensor node for IoT and HMI based on a programmable Parallel Ultra-Low-Power (PULP) platform. We tested the system on a hand gesture recognition application, which is a preferred way of interaction in HMI design. A wearable armband with 8 EMG sensors is controlled by our IoT node, running a machine learning algorithm in real-time, recognizing up to 11 gestures with a power envelope of 11.84 mW. As a result, the proposed approach is capable to 35 hours of continuous operation and 1000 hours in standby. The resulting platform minimizes effectively the power required to run the software application and thus, it allows more power budget for high-quality AFE

    Hand2Face: Automatic Synthesis and Recognition of Hand Over Face Occlusions

    Full text link
    A person's face discloses important information about their affective state. Although there has been extensive research on recognition of facial expressions, the performance of existing approaches is challenged by facial occlusions. Facial occlusions are often treated as noise and discarded in recognition of affective states. However, hand over face occlusions can provide additional information for recognition of some affective states such as curiosity, frustration and boredom. One of the reasons that this problem has not gained attention is the lack of naturalistic occluded faces that contain hand over face occlusions as well as other types of occlusions. Traditional approaches for obtaining affective data are time demanding and expensive, which limits researchers in affective computing to work on small datasets. This limitation affects the generalizability of models and deprives researchers from taking advantage of recent advances in deep learning that have shown great success in many fields but require large volumes of data. In this paper, we first introduce a novel framework for synthesizing naturalistic facial occlusions from an initial dataset of non-occluded faces and separate images of hands, reducing the costly process of data collection and annotation. We then propose a model for facial occlusion type recognition to differentiate between hand over face occlusions and other types of occlusions such as scarves, hair, glasses and objects. Finally, we present a model to localize hand over face occlusions and identify the occluded regions of the face.Comment: Accepted to International Conference on Affective Computing and Intelligent Interaction (ACII), 201

    An original framework for understanding human actions and body language by using deep neural networks

    Get PDF
    The evolution of both fields of Computer Vision (CV) and Artificial Neural Networks (ANNs) has allowed the development of efficient automatic systems for the analysis of people's behaviour. By studying hand movements it is possible to recognize gestures, often used by people to communicate information in a non-verbal way. These gestures can also be used to control or interact with devices without physically touching them. In particular, sign language and semaphoric hand gestures are the two foremost areas of interest due to their importance in Human-Human Communication (HHC) and Human-Computer Interaction (HCI), respectively. While the processing of body movements play a key role in the action recognition and affective computing fields. The former is essential to understand how people act in an environment, while the latter tries to interpret people's emotions based on their poses and movements; both are essential tasks in many computer vision applications, including event recognition, and video surveillance. In this Ph.D. thesis, an original framework for understanding Actions and body language is presented. The framework is composed of three main modules: in the first one, a Long Short Term Memory Recurrent Neural Networks (LSTM-RNNs) based method for the Recognition of Sign Language and Semaphoric Hand Gestures is proposed; the second module presents a solution based on 2D skeleton and two-branch stacked LSTM-RNNs for action recognition in video sequences; finally, in the last module, a solution for basic non-acted emotion recognition by using 3D skeleton and Deep Neural Networks (DNNs) is provided. The performances of RNN-LSTMs are explored in depth, due to their ability to model the long term contextual information of temporal sequences, making them suitable for analysing body movements. All the modules were tested by using challenging datasets, well known in the state of the art, showing remarkable results compared to the current literature methods
    corecore